

Vol.10 (2020) No. 4

ISSN: 2088-5334

Evaluation of Software Requirement Specification Based on IEEE 830
Quality Properties

E. Stephena,1, E. Mita,2
aFaculty of Computer Science and Information Technology,Universiti Malaysia Sarawak (UNIMAS),94300, Sarawak, Malaysia.

E-mail: 1ellystephen@yahoo.com; 2edwin@unimas.my

Abstract— Software requirement specification (SRS) documented an essential requirement of software and its external interface.
Many studies found the quality of SRS, but lack of the informality organizing of document and representation of functional
requirement. This paper aims to evaluate the quality properties of the software requirement specification (SRS). There are four
quality properties to be assessed, which are completeness, correctness, preciseness, and consistency. Completeness quality is used to
evaluate the structure of the SRS document; meanwhile, the other three qualities used to evaluate the functional requirement. The
measurement for each quality properties has been proposed in the previous study. The evaluation process involves a few stages. In
short, the prototype would extract text through the provided document, do a calculation, and came out with the result in the form of a
similarity percentage. The prototype designs in such ways it minimizes the user interference. Those resulted in reducing human error.
Corpus contains libraries of term and topic are expected to increase the reliability of detection. The corpus includes topics extracted
from IEEE 830 standard, vague word, terms represent Create, Read, Update, and Delete (CRUD) operation, and terms denote
possible datatype. The extracted functional requirement would be refined based on the Requirement Boilerplate (RB) template. RB
adopted in the study to ensure the consistency of functional refinement requirements. The percentage of similarity is determined
based on comparison with IEEE 830 standard. The rate of the result of each quality properties reflects the quality of the software
requirement specification.

Keywords— quality properties; quantitative approach; requirement engineering; software requirement specification.

I. INTRODUCTION

Software Requirement Specification (SRS) document has
become crucial for development. It acts as a guideline and
medium of agreement between the client and the developer.
It also used to validate the requirement with the stakeholder
[1]. Due to heterogeneous software domains, this study
focuses on the general properties that must be fulfilled by
the domain. The general properties would reflect the quality
of the SRS document itself. It is important to consider that
software developer meet the quality properties as the
document tend to be shared among different level of the
organization [2]. Two criteria need to be considered in
writing the SRS [3]. First, the SRS must be readable. In brief,
the structure of the document must be organized, which lead
the reviewer to view the context at ease. Second, the SRS
must list a processable requirement with a degree of quality
for each functional requirement are stated clearly. The SRS
should be correct, complete, consistent, unambiguous,
verifiable, modifiable, and traceable [4].

Nowadays, requirement engineering (RE) value
increasingly important due to the complexity of capturing
the requirement proposed by the client. Requirement

Boilerplate has been introduced in the SRS to overcome the
complexity. Requirement Boilerplate provides the
uniformity for the functional requirement. By the
Requirement Boilerplate, the capturing or understanding of
the functional requirement could increase. The Requirement
Boilerplate is also introduced due to the ambiguity in the
natural language [5]. This paper discusses the output of the
system, which is built to cater to the heterogeneous SRS
domain. Four types of quality properties were measured.
These include completeness, consistency, correctness, and
preciseness [6]. The assessment target is used to measure the
structural component of the SRS and its functional
requirements. As stated above, the measurement would
focus on four quality properties. These include completeness,
consistency, correctness, and preciseness. Completeness
quality properties was targeted on the structural of the SRS;
meanwhile, the other three proposed quality properties focus
on the functional requirement. The framework of the
proposed measurement is shown in the study before [6].

A. Structural

The completeness quality properties are used to measure
the percentage of similarity between the standard structure

1396

stated in IEEE 830 with the provided SRS document [7].
Synonym topic library for the similarity between the
standard topic in the IEEE 830 table of content are build.
The translation matrix is used to solve the structural issue in
SRS document [2].

B. Functional Requirement

1) Consistency: The consistency quality properties were
measured against any of the non-similarity of each defined
functional requirement to assist by the presence of
stakeholders. Uniformity of the functional requirement
sentence structure can achieve consistency quality [8], [9].
The requirement Boilerplate (RB) template is adopted as an
effective way to minimize ambiguity due to the use of
natural language [5]. Aside from that, RB also provides
uniformity as well as consistency in deriving the functional
requirement. Each of the functional requirements must be
unique from one another. RB can be divided into two
sections, which are stakeholder and capability segment.
Syntactic similarity measurement can be used to measure
extracted text. Human interference would be needed if the
percentage of the measured similarity exceeds a certain
expectation [10].

2) Correctness: The correctness quality properties is
measured against the presence of the validation process for
each of the function. Evaluation of the correctness quality
can be performed on the requirement phase [11]. This idea
also supported by a few other researchers [12], [13]. A Test-
driven approach, which is a use case, has been chosen to
validate the functional requirement [14]. Test engineer uses
their knowledge and experience to create a test case [15].
The effectiveness of it has been proven in many cases. The
effectiveness of the generated test case depends on its
correctness and completeness [15]. Test cases usually
prepared during the requirement phase. By developing a test
case for the requirements, the checking or testing of the
requirements is part of the IEEE 830 best practice or
management [16]. The requirement analyst should be able to
come out with the test case based on the defined functional
requirement in the first place. If the requirement analyst is
unable to formulate the test case, then perhaps the functional
requirement is ambiguous or lack of necessary information
needed to develop testing components or test case [17].

3) Preciseness: The preciseness quality properties are
described to measure the presence of the vague word and
term represent possible datatype for each functional
requirement. If the requirements do not reflect the needs or
wishes of the client precisely or if the requirements are
described in an imprecise way; thus, allow for several
interpretations on the system, then, the result is often a
system that does not meet the expectations of the client or
the users [18]. The presence of the vague word would cause
several different interpretations [19]–[22]. A list of the
vague word is used to detect the presence of the ambiguous
word in the form of assessed functional requirements [19].
The library contains a numerous number of possible vague
word and datatype are built in order to increase the
reliability of detection. The presence of the datatype
increased the readability of the functional requirement,
which eventually lead to the traceability of it.

II. MATERIALS AND METHOD

The prototype is expected to come out with the
quantitative measurement of the quality properties. As stated
in Section II, the evaluation of the SRS would be based on
the general quality properties. The subcategorization of
general quality properties between the functional
requirement and structure is shown in Fig. 1. Further
discussion on each quality properties assessment is in the
following sub-section.

Fig. 1 Quality properties assessment

A. Prototype Background

Web-based programming has been used to build the
prototype. There would be two-level of the user, which are
the developer and admin. The knowledge-based would be
updated regularly by the admin. Currently, the knowledge-
based is localized. The developer would play an important
role in controlling all of the activities aside from maintaining
the knowledge-based. The developer would need to come
out with a complete SRS document for the assessment. The
assessment itself would involve the structure and functional
requirements of SRS. The SRS to be assessed must be in the
form of .docx format as the prototype design would only
accept those formats. The prototype would automatically do
the measurement. The updated knowledge-based would be
input during the pattern-matching process.

B. Prototype Assessment

The assessment would be divided into two, namely the
structural and the functional requirement. The assessment
would be based on the quality properties to be measured.

1) Structural: First, the developer must create their own
individual login account. It is to ensure the security of each
evaluated SRS document as each of the developers may
involve in a different type of project. Each project would
have its own SRS document. By using the prototype, the
developer can assess the quality of the document structure.
As mentioned before, the assessed SRS document must be in
the .docx format. The prototype would extract the text out
form the provided document. Then the text would be
cleansed. The cleanse text would undergo the pattern-
matching process. The cleanse text would be matched
against the topic in IEEE 830 standard. Twenty-three topics
in standard IEEE 830 table of content would become a
constant used to validate each of the provided SRS. The
result of the similarity is presented in the form of Table and
Graph. The reliability of the result increased by the
implementation of the corpus contain a synonym topic. The

1397

measurement of overall quality properties for completeness
would be done automatically by the prototype itself. To
increase the percentage of completeness, the developer may
need to replace or update the current SRS document, as
suggested by the detection result produce by the prototype.
The measurement is based on the similarity topic found in
the SRS document. It is recommended that the developer use
the topic retrieved from the standard IEEE 830 table of
content due to readability.

2) Functional Requirement: The developer needs to have
a separate document which only contains functional
requirements. Those documents must be in .docx format.
The prototype would extract the functional requirement from
the provided document. The extracted functional
requirement would undergo a cleansing process which
involves the singularization process. Then the cleanse
functional requirement would be refined into RB template.

Each of the functional requirements would be assessed
individually. The assessment would include the possible
presence of the test case, vague word, term represent
possible datatype, stakeholder, and similarity check of
functional requirement. The assessment itself is presented by
the properties of the qualities that are assessed. Before the
functional requirement can be inputted, the stakeholder
element must be defined first. So, the identification of the
stakeholder element in each sentence can be made. This can
reduce the ambiguity of the functional requirement [9].

Each of the functional requirement may have more than
one possible test case. The test case is one way to validate
the functional requirement. If the test case development is
parallel with the requirement development, the possible
number of errors can be detected easily [17]. The test case is
more challenge for the user compare to the user story.
However, the test case provides more organize information.
The example of technicality level of the user story and test
case can be seen in Table 1 below:

TABLE I
USER STORY VS. TEST CASE

User
Story

As a user, I can click on the viewed picture so that I
can view picture info.

Test
Case

• The user views the picture.
• The user clicks on the picture.
• The system searches the database based on the

picture id.
• The system views the picture info in model-dialog.

That information may contribute toward the quality of

traceability as it also can be used for the next phase after the
requirement phase. As each of the projects may have a
different domain, the developer needs to have the deep
knowledge to understand each functional requirement of the
system that need to be developed. It is also a challenge
toward the developer as each of the functional requirement
must have its flow.

The prototype allows the developer to create more than
one test case as it may create differences in the possible
graphical user interface design. The prototype would run a
similarity index for each of the test cases to ensure the
integrity of it. The similarity index includes the possible
design and the involvement of the stakeholder. The

prototype is designed in such a way it would not be allowed
multiple same functional requirements to be input within the
same project. The developer needs to confirm each of the
functional requirements before they proceed with the
measurement. The unconfirmed functional requirement
allows the developer to foresee any following possible
functions than the proposed system may have. To overcome
this issue, the developer needs to define stakeholder
involvement before adding any functional requirement. This
allows the prototype to run the similarity index to ensure the
defined stakeholder well presents each of the functional
requirements. Aside from that, it also promotes the degree of
uniformity of the use of stakeholders.

The use of natural language to define the functional
requirement may cause ambiguity. The functional
requirement should not contain any vague detail.
Requirement Boilerplate has been adopted as it helps to
provide a semiformal structural template [9]. The developer
tends to use informal language to write up the functional
requirement; it is prone to the ambiguous and inconsistent.
This is due to the natural language is a free text, and no rule
applied. Corpus contains a list of vague words also adapted
into the prototype to lower the ambiguity percentage for
each functional requirement. Aside from that, the corpus
includes a list of term represent the possible datatype also
adapted which help in restricting the word used in describing
the functional requirement.

III. RESULTS AND DISCUSSION

SRS from accounting domain had been selected as a case
study. The SRS in .docx format was inserted as input. The
prototype was scanned, extracted, and stored in the database.
Extracted text was undergone cleansing process to increase
the reliability of pattern-matching process. The prototype
was run through the pattern-matching to gather the possible
similar topic on the document. Number of similar topics
compared against IEEE 830 table of content was calculated.
The developer can view the possible synonym topic. This
allow the developer to have the possibility to amend the SRS
to comply with the standard. The prototype was used to
generate the graph to show the number of data on the
number of topics complied with the standard, the number
synonym topic, and the possible number of topics after
amendment. Based on the case study provided, the snapshot
result of identified topic is shown in Fig. 2 below. The list
topic identified similar to the IEEE 830 table of content is on
the left of the snapshot table, while the list identified
possible synonym topic is on the right side of the snapshot
table.

Fig. 2 List of identified topics

1398

The identification of the IEEE topic is straight forward.
For the list of synonym topic, the system would suggest a
possible similar meaning with the IEEE topic. The snapshot
list of recommended related issues to the IEEE topic shown
in Fig. 3.

Fig. 3 List of synonym topic with IEEE 830 Table of content similarity

The list of similarities shows two possibilities. If the SRS

topic detects as part of the topic in the IEEE 830 table of
content and if the user topic detected as a synonym topic and
the similar topic in the IEEE 830 table of content already
exist, then it would be treated as an additional topic. Else the
system suggests the possible similarity to the IEEE 830 table
of content.

It is shown in Figure 2 that the topic of the “Introduction”
is already detected. As in Figure 3, the topic of “Addition,”
it is similar to Introduction in the IEEE table of content, then
are treaded as an additional topic. The list in Figure 3 shows
that there is the possibility of more than one topic define by
the assessed SRS are under a similar topic. This may help
the developer to consider either grouping it under the
suggested topic, as in Figure 3 or ignore it. If the proposed
topic has not detected in Figure 2 under column IEEE topic,
then it is advisable to amend it as suggested in the similar
column in Fig. 3.

Fig. 4 Graph number of topics

The graph in Fig. 4 above shows the number of topics

detected in the case study. The first column shows the
number of topics detected based on the IEEE 830 table of
content. The second column shows the number of synonym
topic detected. The third column indicates the number of the
topic after the amendment. If the developer amends the
detected synonym topic based on suggested in column
similarity in Fig. 3, the possible maximum number would
increase. Based on the case study, the number of IEEE
topics detected is 6, the number of synonym topics detected
is 11, and the possible number of the topic after an
amendment is 13. The measurement of the SRS structure is
based on the number of the topic from the IEEE 830 table of
content detected. Based on the case study without any

amendment percentage of the completeness properties are
26%.

Meanwhile, assessment of the functional requirement
started with the functional requirement document, which
extracted manually from the assessed SRS. Those
documents must be in “.docx” format. The document then
inputted into the prototype. The prototype extracted the
functional requirement, and the cleansing process was done.
The final product would be a functional requirement that is
refined into RB template. Before the text cleansing process
started, the developer is required to define the possible
stakeholder of the system. Proper define stakeholder ensures
there is no conflict in defining its role. The developer should
use a semi-formal template, as discussed in Section II, if
needed to insert the functional requirement manually into the
prototype. This is due to the system are designed to achieve
an accurate result based on the Requirement Boilerplate
template.

The initial inserted functional requirement is in the
unconfirmed phase. The unconfirmed functional requirement
would not affect the measurement. Once confirmed, the
confirmed functional requirement was undergone by
automated measurement. Each of the functional
requirements should have at least one test case. The
prototype allows the developer to have created a test case
more than once for each functional requirement. This allows
the developer to choose which suitable test case that can be
implemented. The summarization of the quality properties of
the functional requirement for the case study shown in
Figure 5 below.

Fig. 5 Graph summarize quality properties for functional requirement

For instance, based on the case study, the total number of

153 functional requirements inputted into the system. As
stated in the previous section, the prototype only allows the
stakeholder to be inputted before the functional requirement
cleansing process started. Four numbers of stakeholders
were inserted. A list of the stakeholder comprises a system,
user, company, and debtor. The measurement of consistency
properties focused on the total stakeholder and total non-
similar role. This is due to only 111 number of functional
requirements identified has the stakeholder similar as stated
for the case study. As for the similarity, there is none of the
functional requirements had a similar role.

1399

Fig. 6 Sample snapshot identified stakeholder

Figure 6 above shows a sample snapshot of how the

stakeholder identified each functional requirement. From the
sample shown in Figure 6, only the first sample of the
functional requirement where the stakeholder had been
highlighted. As for the other, there is no stakeholder
identified based on the inputted stakeholder. The
measurement of correctness properties focused on the total
valid test case. Out of 153 number of functional
requirements, only 135 number of test cases inserted. As the
system run test on each of the inserted test case, only 67
number of the test case are valid. The validity of the test case
is based on the presence of the actor in the actor segment
and the similarity of the identified actor with the normal
flow in the normal flow segment. The sample of valid test
cases shown in Figure 7 below. The test case is considered
valid if the actor present and the normal flow is identified
with the presence of the similarity with the actor.

Fig. 7 Sample valid test case

Meanwhile, for the measurement of preciseness properties,

it is based on total vague word and total datatype found in
the functional requirement. Given that 62 number of
functional requirements have a vague word. Moreover, only
52 number of functional requirements have a possible
datatype. The sample of the functional requirement contains
vague words shown in Fig. 8 below. The identification of the
vague word would decrease the preciseness of the functional
requirement.

Fig. 8 Sample snapshot identified vague word

The identified word in Figure 9 is highlighted and

clickable shown the term represent the possible datatype.
The possible datatype design would be suggested once the
identified word clicked.

Fig. 9 Sample snapshot identified datatype

The overall percentage for each quality properties is

shown in Fig. 10. Based on the graph in Fig. 10, the overall
percentage of the quality completeness properties is 26.1%,
the quality correctness properties are 43.8%, the quality
consistency properties 72.5%, and the quality preciseness
properties is 37.3%. The overall percentage measurement for
the structural requirement is 26%. Meanwhile, the overall
measurement for the functional requirement is 51%. To
conclude the overall measurement of the quality properties
of the case study, it is 45%.

Fig. 10 Graph of overall percentage for each quality properties

The case study in the previous section yields up the

overall result of 45% when measured using the prototype.
Four quality properties are being assessed. Each of the
qualities contributes up to 25%, and with four qualities, it
resulted in a maximum of 100%. The measurement is
divided into two categories, which were the structural and
functional requirements. The result from the case study
would be discussed further below in Table 2.

TABLE II
CASE STUDY RESULT

Quality Properties Expected Actual
Structural Completeness 25% 6.5%

Functional
Requirement

Correctness 25% 11%
Consistency 25% 18.25%
Preciseness 25% 9.25%

Overall Quality 45%

For the structural, 26.1% resulted in the completeness

properties. This is due to only 6 number of topics out of 23
were detected similar to the IEEE 830 table of content. 11
number of detected topics had possible similarity toward the
IEEE table of content. The result may increase up to 56.5%
if the developer is willing to amend the SRS document.

1400

Method to calculate the topic similarity with IEEE 830 topic
is adopted in study [2]. However, this prototype automates
the pattern-matching process which limit the human error.

Meanwhile, for the functional requirement, three quality
properties contribute toward it. 43.8% resulted in correctness
properties. This resulted from the missing stakeholder for
each defined functional requirement. It is also would reflect
on the defined test case. Weiger and Beatty [17] highlight on
the capability of the developer to come out with possible test
case for each functional requirement. Those resulted in the
development of prototype component which validate the
present of test case for each functional requirement. The
validity of the test case depends on the presence of the
stakeholder in the actor segment and the normal flow
segment.

The quality properties of consistency resulted in 72.5%.
The percentage is quite high due to no similar functional
requirement detected. 42 number of functional requirements
have no stakeholder as defined previously before the
functional requirement can be added to the prototype. The
identification of the stakeholder is important as the prototype
is meant to adopt the Requirement Boilerplate template [3],
[5], [8].

Lastly, for the result of the quality properties of
preciseness, it is 37.3%. The low percentage has resulted
from the detection of the possible vague word in the
functional requirement. As the SRS is generated in natural
language, the ambiguity is an issue. The adoption of the
semi-formal template as such as Requirement Boilerplate
can help reduce the possibility of vague word presence [3],
[18]. Aside from that, the detection of a possible datatype is
also low, which also resulted in a low percentage of
preciseness in the case study. Method to identify the vague
word also adopted due to it is part of ambiguity [19], [20].
Requirement Boilerplate template stress on the restriction of
term usage in sentences. Pohl and Rupp [18], highlight on
the information must be precise to serve as input in next
development phase. Those promote the identification of term
representing possible datatype.

The case study is an SRS document that is available on
the website. If the real case scenario provided, the prototype
is expected to evaluate the maturity of the SRS before
proceed to the next phase. The prototype reflects the
importance of standard usage of the IEEE 830 table of
content structure and implementation of Requirement
Boilerplate. The prototype is intended to measure the general
quality properties that exist in the SRS so different SRS
domains can be evaluated using it.

IV. CONCLUSION

In this research, the usage of the web-based system to
define the library for each quality properties was a
significant challenge. Each of the libraries needs to be
updated periodically to increase the reliability of the
prototype. The separate table for each library needs to be
built in the database. The pattern-matching between the
library and the inputted functional requirement, as well as
the SRS document, need to separate so that the redundancy
would not occur. The update function in the prototype gives
flexibility toward the developer for amendment.

Aside from that, the rules for each of the quality
properties have been well defined to fit the quality to be
assessed. However, the amendment of the correctness rules
has been done due to restrictions of client involvement. The
work concluded where the prototype had been developed to
prove the concept or the rules define for each of the quality
properties. Prototype built is designed where it can be used
in a different domain. The quality properties to be assessed
are general and not specific toward certain domains.

ACKNOWLEDGMENT

The authors would like to thank Universiti Malaysia
Sarawak for providing the funding to conduct this research.
Fundamental Research Grant Scheme
FRGS/2/2014/ICT07/UNIMAS/02/1 supported this work

REFERENCES
[1] J. Medeiros, A. Vasconcelos, C. Silva, and M. Goulão, “Quality of

software requirements specification in agile projects: A cross-case
analysis of six companies,” Systems and Software, vol. 142, pp. 171-
194, Aug. 2018.

[2] A. Takoshima, and M. Aoyama, “Assessing the Quality of Software
Requirements Specifications for Automotive Software Systems,” in
Proc. APSEC, 2015, p. 393-400, Dec. 2015.

[3] E. Hull, K. Jackson, and J. Dick, Requirement Engineering, 3rd ed.,
New York: Springer, 2011.

[4] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontologies for
Software Engineering: Past, Present and Future,” Science and
Technology, vol. 9(9), pp. 1-16, Mar. 2016.

[5] A. Mustafa, W. M. N. W. Kadir, and N. Ibrahim, “Automated
Natural Language Requirements Analysis using General Architecture
for Text Engineering (GATE) Framework,” Telecommunication,
Electronic and Computer Engineering, vol. 9(3-4), pp. 97-101, Aug.
2017.

[6] E. Stephen, and E. Mit, “Framework for Measuring the Quality of
Software Specification,” Telecommunication, Electronic and
Computer Engineering, vol. 9(2-10), pp. 79-84, Aug. 2017.

[7] IEEE Recommended Practice for Software Requirement
Specifications, IEEE Std. 830, 1998.

[8] S. Ahmad, U. Anuar, and N.A. Emran, “A Tool-based Boilerplate
Technique to Improve SRS Quality: An Evaluation,”
Telecommunication, Electronic and Computer Engineering, vol.
10(2-7), pp. 111-114, Apr. 2018.

[9] E. Stachtiari, A. Mavridou, P. Katsaros, S. Bliudze and J. Sifakis,
“Early Validation of System Requirements and Design Through
Correctness-by-Construction,” System and Software, vol. 145, pp.
52-78, Nov. 2018.

[10] G. Lucassen, F. Dalpiaz, J. M. E. M. v. d. Werf, and S. Brinkkemper,
“Improving agile requirements: the Quality User Story framework
and tool,” Requirement Engineering, vol. 21(3), pp. 383-403, Sep.
2016.

[11] N. A. Moketar, M. Kamalrudin, M. M. Yusof, and S. Sidek, “A study
of generating abstract test for requirements validation among
requirements engineers,” Theoretical and Applied Information
Technology, vol. 95(7), pp. 1381-1388, Apr. 2017.

[12] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective
Regression Test Case Selection: A Systematic Literature Review,”
ACM Computing Surveys (CSUR), vol. 50(2), pp. 1-32, June 2017.

[13] S. Maalem, and N. Zarour, “Challenge of validation in requirements
engineering,” Innovation in Digital Ecosystems, vol. 3(1), pp. 15-21,
June 2016.

[14] M. Zhang, T. Yue, S. Ali, B. S. O. Okariz, R. Norgre, and K.
Intxausti, “Specifying uncertainty in use case models,” Systems and
Software, vol. 144, pp. 573-603, Oct. 2018.

[15] C. S. Gebizli, and H. Sözer, “Automated refinement of models for
model-based testing using exploratory testing,” Software Quality, vol.
25(3), pp. 979-1005, Sep. 2017.

[16] P. A. Laplante, What Every Engineer Should Know About Software
Engineering, 1st ed., Boca Raton, Florida: CRC Press, 2007.

[17] K. Weiger, and J. Beatty, Software Requirement, 3rd ed., Redmond,
Washington: Microsoft Press, 2013.

1401

[18] K. Pohl, and C. Rupp, Requirement Engineering Fundamentals, 2nd
ed., Santa Barbara, United States: Rocky Nook, 2015.

[19] A. Nordin, N. H. A. Zaidi, and N. A. Mazlan, “Measuring Software
Requirements Specification Quality,” Telecommunication, Electronic
and Computer Engineering, vol. 9(3-5 Special Issue), pp. 123-128,
Aug. 2017.

[20] A. O. J. A. Sabriye, and W. M. N. W. Zainon, “An approach for
detecting syntax and syntactic ambiguity in software requirement

specification,” Theoretical and Applied Information Technology, vol.
96(8), pp. 2275-2284, Apr. 2018.

[21] E. Serna, O. Bachiller, and A. Serna, “Knowledge meaning and
management in requirements engineering,” Information Management,
vol. 37(3), pp. 155-161, June 2017.

[22] H. Ahmed, A. Hussain, and F. Baharom, “Current Challenges of
Requirement Change Management,” Journal of Telecommunication,
Electronic and Computer Engineering, vol. 8(10), pp. 173-176, Dec.
2016.

1402

