International Journal on Vol.10 (2020) No. 1
H ISSN: 2088-5334

Advanced Science >5N: 2088-533

Engineering

Information Technology

How Usability Defects Defer from Non-Usability Defects? . A Case
Study on Open Source Projects
Nor Shahida Mohamad Yus@ohn Grundy Jean-Guy Schneidér Rajesh Vasa

#Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
E-mail: nor_shahida@tmsk.uitm.edu.my

"Faculty of Information Technology, Monash University, Melbourne, Australia
E-mail: john.grundy@monash.edu

"Faculty of Science, Engineering, and Built Environment, Deakin University, Melbourne, Australia
E-mail: jeanguy.schneidefrajesh.vasa}@deakin.edu.au

Abstract— Usability is one of the software qualities attributes that is subjective and often considered as a less critical defect to be
fixed. One of the reasons was due to the vague defect descriptions that could not convince developers about the validity of usability
issues. Producing a comprehensive usability defect description can be a challenging task, especially in reporting relevant and
important information. Prior research in improving defect report comprehension has often focused on defects in general or studied
various aspects of software quality improvement such as triaging defect reports, metrics and predictions, automatic defect detection
and fixing. In this paper, we studied 2241 usability and non-usability defects from three open-source projects - Mozilla Thunderbird,
Firefox for Android, and Eclipse Platform. We examined the presence of eight defect attributes - steps to reproduce, impact, software
context, expected output, actual output, assume cause, solution proposal, and supplementary information, and used various statistical
tests to answer the research questions. In general, we found that usability defects are resolved slower than non-usability defects, even
for non-usability defect reports that have less information. In terms of defect report content, usability defects often contain output
details and software context while non-usability defects are preferably explained using supplementary information, such as stack
traces and error logs. Our research findings extend the body of knowledge of software defect reporting, especially in understanding
the characteristics of usability defects. The promising results also may be valuable to improve software development practitioners'
practice.

Keywords— defect report; open-source; software repository mining; software defect repository; usability defects.

said to receive less attention from software developers [4]
[. INTRODUCTION and due to an abundant amount of information developers

Usability is a software quality characteristic that measures ha\ée d'ff('jcurllt'ej f'n |%ent|fy|ng vital - information - to
the understandability, learnability, operability and understand the defects [S]. .
attractiveness of the software products. The lack of a We b_eheve that usability defects need stronger ewdencg
systematic approach towards human-centered design ifo convince software developers that the issue reported is
software development is seen as an obstacle in producin ndeed a real defec_t aqd should be treated as .equally
high usable software [1]. An effort to increase software mportant as other high-risk defects, such as security and
usability is through consistent usability testing and user perfrc])rmancg def(;:tcts. Indopeln-source soféware prOJetg:tsr,] USers
experience evaluation during the development cycle [2]. 7, WNO can be Software developers or ena-users or oth - can
However, measuring usability defects is often difficult due directly report usability defects through defect reporting
to their subjective evaluation [3]. For example, one user tOOIS'_ Howeyer, the generic unstructured freg-text defect
might find a graphical icon in a user interface as annoying form in Bugzilla, JIRA _and GitHub, f_or exam_ple, IS 0“6”_’?‘“
but it is not so for others. As a result, there is often a VETY Nelpful for capturing valuable information for usability
disagreement between the reporters and software developel%efe‘:tS [6]. This is _because aspects such as I|!<ely d|ff|cu|t|es,
that subsequently carry out the defect resolution. In fact, in/MPact, users feelings, emotion and "struggling” with the

the context of software development, usability defects areinterfacg are natura}lly subject.i_/e and depend .heavily_on
human judgment. Without specific prompts for this usability

98

defect-specific information, it can be difficult for non- more dominantly rated low-severity compared to non-
technical users to provide such information. usability defects.

In this paper, we present an empirical investigation of 377 5) ROS5: How fast do open source communities respond
usability defects and 1864 non-usability defects in Mozilla) RS . pen o P
to usability defects in comparison to non-usability defects?

Thunderbird, Firefox for Android and Eclipse Platiorm On average, we found non-usability defects are responded to
open-source project to compare to what extent these non- g€, y P

usability defects are described and treated by these oper?1 r;[:jmgs tfi?r;s(tair ;ggtne :Jsiﬁg'rl]'tyuggﬁl?tts Ige';g?:glailnﬂlllfrne?‘g;blfrgr’
source communities. In this research, we picked Y

performance-related defects as a comparison benchmarkAndrOId and Eclipse Platform.

since it is a non-usability type of defect that is commonly 6) RQ6:Do different defect types and projects affect the
reported in open source projects. In addition to previous number of commentd?efect types do not statistically affect
studies that investigate the characteristics of defects [7], [8]the number of comments. However, the number of
using predefined defect data (i.e., product, component,comments differs between projects. The significant
version) and comments, we manually examined the textualdifference of total comments received among the three
descriptions of defect reports to find out how different types projects suggested that the contributor community of the
of defects influence the defect resolution time and severity, Thunderbird project is the most active, followed by Firefox
and the way defect is described. In particular, this paperfor Android and Eclipse Platform. The rest of the paper is
addresses the following four research questions (RQ): organized as follows. In Section 2, our experimental method
is presented. Defect sources, data extraction, and statistical
analysis used are discussed. In Section 3, the study results

the ways defects are described@ile defect description is) .
different between usability and performance defects and&'e presented and discussed. Section 6 concludes the paper
' with future works.

across the three open-source projects. We found usability
defects reported for open source projects usually contain
output details, and software context, while non-usability
defects are preferably explained using supplementarya. Defect Sources
information.

1) RQZ1: Do different defect types and projects influence

Il. MATERIALS AND METHOD

In this research, we studied the Mozilla Thunderbird,

2) RQ2: Does the presence of specific defect attributes Firefox for Android, and Eclipse platform projects. Across
influence the defect resolution tim&fe presence dfnpact the three projects, only 23373 defect reports are available to
expected outcomand actual outputwill eventually reduce download from Bugzilla defect tracking system. For
the defect resolution time of both usability and non-usability usability defects, we looked for Bugzilla usability keywords
defects. Also, when the usability and non-usability defect as listed in Table I, while for non-usability defects, we
reports contain supplementary information the total decided to include defects that were tagged with
resolution time and actual fix time can be reduced. performance-related issues such as perf, crash, top crash,
hang, intermittent-failure. As shown in Table I, 1206 and
6345 of downloaded defect reports were tagged with
usability and performance-related keywords, respectively.
However, in our study, we only included 2241 usability and
non-usability defect reports that were resolved as FIXED (a
defect has been fixed by developers, or being fixed by
another defect fix). We limit our analysis to FIXED defect
)) reports in order to reduce selection bias, as the software
defect_s, followed by the Eclipse platform and Firefox for developers already completed the resolution process and
Android. have reach agreement on the actual types of defects. We

4) RQ4: Is there any relationship between defect types extracted sample defect reports for each project using the
and defect severityThe relationship between defect types methods described in [9].
and severity is moderately significant. Usability defects are

3) RQ3: Do different defect types and projects influence
the defect resolution time, wait time and actual fix tifhib@
total resolution time, wait time and actual fix time differed
significantly between the different types of defects and
projects. We found that non-usability defects take less time
to correct than usability defects. In terms of projects, the
Thunderbird project took the largest time to resolve usability

TABLE |
DATASETSSTUDIED

Project Types Total Other Resolved/ Verified

resolution Fixed Duplicate Incomplete Invalid Wontfix Worksforme Expired
Mozilla Usability 384 185 88 64 4 9 16 17 1
Thunderbird | Non-usability 2223 212 349 406 453 158 7 591 47
Firefox for Usability 292 62 101 59 3 11 36 20 0
Android Non-usability 2855 643 822 422 44 43 66 815 0
Eclipse Usability 530 78 188 46 - 68 103 47 -
Platform Non-usability 1267 200 693 98 - 74 108 94 -
Total 7551 1380 2241 1095 504 363 336 1584 48
Other resolution — New, unconfirmed, assigned, and reopened
Non-usability - perf, crash, topcrash, hang, intermittent-failure
Usability — ue, uiwanted, useless-Ul, ux-affordance, ux-consistency, ux-control, ux-discovery, ux-efficiency, ux-error-prevention, ux-error-recovery, ux
implementation, ux-interruption, ux-jargon, ux-minimalism, ux-mode-error, ux-natural-mapping, ux-tone, ux-trust, ux-undo, ux-userfeddback,

99

TABLE I C. Information Extraction
RESEARCHQUESTIONS ANDCORRESPONDINGSTATISTICAL TEST i
A software defect reports have many attributes, some of

Research Questions Statistics S which are filled at the time of reporting and others are filled
RQL: tDO. ?‘Iluﬁerent g]efeCt typtzs fartdSFreth(J:ehr_\cg, Shatp"?'w'” during the fixing process [10]. In our study, we only focused
projects nfluence he ways delegiaest, Lhi-square tes on the attributes supplied during the initial reporting of a

are described? defect, not the sub t discussion about the problem and
RQ2: Does the presence of certaifrrequency, Shapiro-Wilk efect, not the subsequent discussion about the problem an

defect attributes influence the defactest, Spearman's rank ItS Possible solution in the comments sections. Our primary
resolution time? correlation textual analysis is focused on the defect repie,

RQ3: Do different defect types arjdFrequency, Shapiro-Wil description and attachment fields. Since the existing
projects influence the defecttest, Kruskal-Wallis H Bugzilla defect report template was in unstructured plain text,
resolution time, wait time and actupltest we were unable to automatically extract and assess the
fix time? presence oSTR, IMP, SC, EO, AO, AGP, andSI. Thus,

RQ4: Is there any relationshipFrequency, Shapiro-Wilk we manually read all the 2241 defect reports and used the
between defect types and defedest, Chi-Square test criteria suggested by Capra [11].

severity? The first author read all the 2241 defect descriptions. This

RQS: How fast open sourgeFrequency, Shapiro-Wil process requires the author to (1) interpret the reported

communities respond to usabilitytest, Kruskal-Wallis H
defects in comparison to performanceest problem, (2) classify the information into one of the

defects? predefined attributes, and (3) give score if the information is

RQ6: Do different defect types arjdFrequency, Shapiro-Wilk ~ Presented - 1 implies that the “information exists”, and 0
projects affect the number oftest, Kruskal-Wallis H implies that the “information does not exist.” In order to
comments? test validate the rating process and minimize the

misclassification error, a random sample of 10 defect reports

. . . was rated by the second author and then compared in a
B. Research Questions and Related Statistics Computation review meeting. Whenever the rating differed, such

We performed different statistical analyses for different differences were discussed until consensus reached.

research questions, depending on the types of data and For IMP, AC, and SP we assessed the presence of this
analysis we wanted to use. Since, Tmtal Resolution Time information usin3 the following criteria:

(TRT), Wait Time (WT), Actual Fix Time (AFBNnd First « AC - defect report number, in which the reporter felt

Comment Response Time (FCRWere not normally the current issues were likely due to the previous fixed

distributed (as assessed with Shapiro-Wilk's test for . IMP — user difficulty, number of reproducibility’s,

normality), non-parametric statistics were used for analysis. high numbersof users encountered the same problem

Table Il presents the list of research questions and their and severity

respective statistical procedures applied. We used SPSS . SP justification of the proposed solution or

(version 23) to conduct all tests. fragmental/ modification of affected code/ patch
We used Chi-square analysis to answer RQ1 and RQ4. description on how to fix the problem.

We consider textual information - steps to reproduce (STR),

impact (IMP), software context (SC), expected output (EO), I1l. RESULTS ANDDISCUSSION

actual output (AO), assumed cause (AC), solution proposal
(SP) and supplementary information (SI) as dependent

yanables, measu_red on nominal sca[e and defect,types agirefox for Android, and Eclipse Platform data. For each
independent variable. Alternately, in Spearman’s Rho ; : i
guestion, we present the results and a discussion of our

correlation analysis (to answer RQ2) STR, IMP, SC, EO, findings
AO, AC, SP, and Sl were used as the independent variable '
while TRT, WT, and AFT were used as the dependentA. The Essence of Defect Report Content
variable. For RQ3, we used Kruskal-Wallis H Test to
compare whethefotal Resolution Time (TRTWait Time
(WT)andActual Fix Time (AFT)measured on a continuous
scale (in days), differed based on defect types and project
(nominal data). We considefRT, WTand AFT as the
dependent variable, and defect types (usability or non-
usability defect) and project types (Mozilla Thunderbird,
Firefox for Android and Eclipse Platform project) as
independent variables. We also considerRhist Comment
Response Time (FCRBnd Total Comments (TCas the
dependent variable in examining RQ5 and RQ6. Since the
distribution of the scores for each group in defect types and
project types are identical, we used the medians value of th
dependent variables to compare the characteristics o
different groups of the independent variable.

Each subsection below discusses the three research
uestions that we studied using Mozilla Thunderbird,

To better understand how the usability defects are
described in comparison to other non-usability defects, we
examined the following research questioRQ1l: Do
Rifferent defect types and projects influence the ways defects
are described?”

Table Il reveals several observations from the Chi-square
test to answer RQL1. First, a large fraction of usability defects
in Mozilla Thunderbird, Firefox for Android and Eclipse
Platform contain&C AO, andEQ. Second, Only a few non-
usability defects contairEO (19.5%, 9.5%, 30.9%, for
Mozilla Thunderbird, Firefox for Android, and Eclipse
Platform, respectively). ThirdSl is mostly attached with

on-usability defects (67.0%, 89.4%, 15.0% for Mozilla
hunder, Firefox for Android, and Eclipse Platform,
respectively) than usability defects (13.6.0%, 26.7%, 5.3%

100

for Mozilla Thunderbird, Firefox for Android, and Eclipse relationship between defect types and the presence of defect
Platform, respectively). FourthMP, AG andSP are rarely information are significant for all attributes in the three
reported for both usability and non-usability defects acrossprojects, accept foSTR (df=1, p=0.420) andSC (df=1,
projects. Fifth, for the three projects, t88Ris more often p=0.162) in Firefox for Android, andO (df=1, p=0.708) in
described in the usability defect reports than in non-usability Eclipse Platform.

defects. At a significant level p=0.05, we found the

TABLE Il
CHI-SQUARE TESTRESULTS TOEXAMINE THE INFLUENCE OFDEFECTTYPES ANDDEFECTATTRIBUTES
Defect Report Attributes Mozilla Thunderbird (%) Firefox for Android (% Eclipse Platform (%)
Usability | Non-usability p-val Usability | Non-usability p-val Usability | Non-usability p-val

STR 46.6 24.1 0.000 18.8 15.7 0.420 32.4 21.1 0.901
IMP 38.6 15.2 0.000 27.8 2.2 0.000 28.2 7.1 0.000
SC 73.9 49.0 0.000 47.5 54.9 0.162 42.0 50.4 0.042
EO 76.1 19.5 0.000 52.5 9.5 0.000 60.6 30.9 0.000
AO 83.0 45.6 0.000 56.4 29.8 0.000 85.1 84.0 0.708
AC 2.3 9.2 0.031 2.0 9.7 0.010 2.7 19.5 0.000
SP 17.0 3.7 0.000 18.8 33 0.000 8.5 14.0 0.046
Sl 13.6 67.0 0.000 26.7 89.4 0.000 5.3 15.0 0.000

We have observed most open-source defect reportscollect hypermedia data automatically, thus making it a
regardless of different defect types, contain software contextconvoluted exercise for reporters to provide such
and the actual outcome, and by contrast, relatively fewinformation when a defect is first reported [14]. We
defect reports describe the impact, assumed cause and havepastulate that more convenient defect reporting tools to
solution proposal. Our findings confirm our previous support usability defect reporting issues could be developed
findings [12], where reporters seldom provide the assumedfor editing attachments, capturing Ul event traces, user
cause. Since existing defect report forms in Bugzilla defectinteractions, usage context and problematic screens, and
repositories do not have separate fields for each of theseecording current user roles and tasks.
attributes, the provision of this information relies on the o)
reporters’ ability to explain in the free format textual B- Usability Defect Resolution
description. To investigate the influences of defect resolution time, we

According to software developers [12], the presence of studied three aspects: (1) the content of defect reports, (2)
assumed cause is much appreciated as they can directlfypes of defects and projects, and (3) the relationship
investigate what caused the problems, rather than guessingetween types of defects and defect severity. The
and investigating the problems from scratch. This is aforementioned are addressed n the following research
evidence, where the non-usability defect reports containingquestions: “RQ2: Does the presence of certain defect
assumed cause has been resolved faster than those withoattributes influence the defect resolution time"RQ3: Do
this information. This is likely because logs and stack tracesdifferent defect types and projects influence the defect
in non-usability defect reports provide technical information resolution time, wait time and actual fix time?”, and “RQ4:
to directly determine the root cause of the problems, ratherls there any relationship between defect types and defect
than textual information that needs subjective interpretationseverity?”
and assumption. From our observations, we found assumed Defect resolution time is a time taken for actual time spent
cause often originated from the changes made to theto correct a defect and the wait time [15],. In many cases, the
previous code. Reporters often include the defect reporttime needed to correct a defect is short, but the resolution
number of other defect reports in which they suspect thetime is longer due to the long waiting time to find a resource
fixed causes of the current defects. For steps to reproduceand the urgency of the defect to be fixed. To examine RQ2
even software developers considered them to be useful foand RQ3, we used the following three metrics to measure
fixing software defects [12], [13], in real-world practice, defect resolution time:
however, we observed this information is much less reported - Total resolution time {RT) in days — the total time

for both usability and non-usability defect reports. taken to resolve an issue includes the actual time spent

As expected, the attachment of snapshots, stack traces, on defect resolution and the wait time. We measured
logs, external links and explanation of recovery steps appear the defect resolution time of each closed defect as
to be very helpful for software developers in order to fix ResolutionTime = DateResolved — DateOpened
defects, as this kind of information contains objective - Wait time (VT) in days — the time a reported defect
evidence for defects. However, supplementary information awaits the assignment of a resource. We measured the
was only found for less than 15% of usability defect reports defect wait time as the difference between the time a
— mostly in the form of screenshots and video. A closer defect is reported and the defect get assign before they
inspection of usability defect reports showed that many fixed, WaitTime = DateAssigned — DateOpened.
reporters like to attach screenshots, video and logs in the < Actual fix time AFT) in days - the time the assigned
later comments section. This is likely since such materials resource takes to start working on the defect until the
are not readily available when a defect is submitted. In defect is closed as resolveActualFixTime =
Bugzilla, for example, there are insufficient features to DateResolved — DateAssigned.

101

To answer RQ2, as shown in Table IV, Spearman’s Rhodefects. Meanwhile, the positive relationships suggest that
correlation results show that at significance level p =0.05, the presence dMP, EO andAO makes the resolution time
there is a positive relationship betwe€RT and IMP, EO slower. For non-usability defects, there are also positive
and AO for both defect types. At the same level of relationships betwee8T and IMP, and betweeAFT and
significance, we also see a negative relationship betweerSTR, EO, AGndSP. While for usability defects, a positive
TRT, AFTand Sl for non-usability defects and negative relationship betweenWT and IMP is also observed.
relationships betweeRT, WT, AFTand Sl for usability

TABLE IV
SPEARMAN' S RHO CORRELATION TOINVESTIGATE THEINFLUENCE OF DEFECTINFORMATION ONTRT, WT, AND AFT

| STR | IMP | sC | EO | AO | AC | SP | Sl
Non-usability defects
TRT 0.092* 0.080** 0.051* 0.088** 0.165** 0.026 0.044 -0.187**
WT 0.042 0.095** 0.041 -0.008 -0.008 -0.055* -0.032 0.005
AFT 0.081** 0.011 0.018 0.094** 0.213* 0.072* 0.067** -0.224**
Usability defects
TRT 0.120* 0.217** 0.025 0.142** 0.150** -0.026 0.003 -0.152**
WT 0.070 0.181* -0.048 0.096 0.100 -0.021 0.000 -0.135**
AFT 0.050 0.085 0.097 0.109* 0.036 0.010 0.001 -0.135**
* Correlation is significant at the 0.05 level (2-tailed)
** Correlation is significant at the level 0.01 level (2 tailed)

TABLE V
DISTRIBUTION OF TRT, WT, AND AFT FORUSABILITY AND NON\-USABILITY DEFECTS
TRT WT AFT
Project Usability Non-usability Usability Non-usability Usability Non-usability

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Mozilla ,
Th e i 717.84| 42300 | 96.77 12.00| 560.68 24890 69|65 400 157.16 2250 @ 27.12 1.00
Zﬁﬁfﬁ dfor 204.23| 51.00 51.56 10.00 153.14 26.00 38J34 3.00 51.09 11.00 13.23 3.00

Eclipse Platform | 367.40 166.00 181.87 42.00 224.84 105.90 68142 2.00 142.56 39.00 113.45 19.00

TABLE VI
CONTIGENCY TABLE. DEFECTSTYPES BYPROBABILITY OF RECEIVING DEFECTSEVERITY

Defect Type Defect Severity

Blocker Critical Major Minor Normal Trivia Enhancement Total
Usability 0.3(1) 1.9(7) 9.3 (35) 65.8 (248) 4.2 (16) 2.4(9) 16.2 (61) 100.00
Non-usability 1.3 (25) 39.8 (742) 8.7 (163) 47.4 (883) 0.6 (12) 0.00 (0) 2.1 (39) 100.00
Total 1.2 (26) 33.4 (749) 8.8 (198) 50.5 (1131 1.2 (28 0.4 (9) 4.5 (100 (22401)

22 (6) = 375.920, p=0.000,

Cramer's V =0.410

Note: Number in parentheses is the frequency of defects in each of severity.

For RQ3, we calculated the mean and mediahR¥, WT, shows the shortest time. We also observed that non-usability
and AFT for both usability and non-usability defects. Table defects are resolved slower in the Eclipse Platfokomoss
V shows the results. These numbers show that the resolutiotthe three open-source projects, Firefox for Android project
time for the usability defect is the longest. The wait time for takeslesstime to resolve usability and performance defects.
usability defects takes the most amount of time in defectA Kruskal-Wallis H test showed a significant difference
resolution for all three open-source projedBansidering between the project types and TR}J2 ((2) = 183.273,
the actual time, the developer spends to correct a defect, we p=0.000), WT 2 (2) = 16.143, p=0.000), and AFJ2((2) =
find that non-usability defects take less time to correct than 222.928, p=0.000).
usability defects. A Kruskal-Wallis H test showed that the For RQ4, Table VI summarizes the distribution of defects
total resolution time)2 (1) = 263.408, p=0.000), wait time types and severitylt shows that usability defects are
(x2 (1) = 273.269, p=0.000) and actual & (1) = 69.464, dominantly rated low-severity compared to non-usability
p=0.000) time differed significantly between the different defects. The percentage of low-severity for usability defects
types of defects. is 88.6%, much larger than the 50.1% for non-usability
We also considered the median time to see how fast thedefects. Similarly, the high-severity impacts that were rated
response of different open source project communities is infor non-usability defects, i.e. blocker, critical and major,
terms of correcting a defect. As shown in Table V, the account for 49.8% as compared to 11.5% for usability
Thunderbird project took the largest time to resolve usability defects, which is a considerable differengéso, we found
defects, followed by the Eclipse platform and Firefox for usability defects are more likely to be reported as
Android. In terms of actual time used by the software enhancements (16.2%). To further understand the influence
developer to correct usability defects, Firefox for Android of defect types on the severity, we present the Chi-square

102

test results in Table VI. The relation between defect typeseach textual defect attribute in the defect form and how to
and severity was significang? (6) = 375.92, p= 0.000 < explain them efficiently, especially for non-technical users.
0.05. Cramer’s V value between 0.4 and 0.6 indicates that While it is quite easy to collect information related to non-
the relationship between defect types and severity isusability defects, it is usually much more difficult to foresee
moderate. information needs for wusability defects. From our
Fixing usability defects is often take a much longer time observations, most of the defect reports do not follow the
than fixing non-usability defects [4]. Common reasons were defect template and do not have a sufficient level of detail to
due to incomplete information in defect reports, low severity explain the subjective nature of usability defects. For
rating to consider usability defects as significant issues, andexample, the report for defect #718960 in Firefox for
misunderstanding and misinterpretation about the usability Android reports:
issues by developers [4], [13]. In this research, we examined
the influence of defect resolution time from three
perspectives: (1) types of defects and projects, (2) defect
severity, and (3) the presence of specific defect attributes.
From our study, we found usability defects in Mozilla
Thunderbird, Firefox for Android, and Eclipse Platform take
a longer time to resolve than non-usability defects. In all
these projects, the waiting time for both usability defects and This report content suggests that the reporter understands
non-usability defects took the most significant time in the the problem context, and knows that something is not
resolution process. Based on our observations on the studiechatching his expectation, but they did not justify the impact
defect report comments, most of the waiting time is used toand user difficulties that they have experienced as a
reproduce the defects, discuss the rationale of the issuesonsequence of this problem. This defect was rated as a low-
propose ideas, and await the assignment of a resourcdevel severity and took 1090 days to be resolved. The very
Possibly, as open-source projects involve volunteers with along resolution time is likely due to the fact that software
variety of different commitment levels, levels of developers do not understand how to correct the user
involvement and degree of technical expertise, no dedicatednterface in order to improve the user experiences -
resources and fix-time can be assigned to work on eaclespecially when they thought that the user interface is
defect. already well designed. This is evidenced in the comments
The other possible explanation for a long resolution time section, where software developers discussed redesigning
of usability defects is due to the low-severity rate. We the feature to be more visible. Perhaps as a consequence of
observed about 90% of usability defects are rated as low-this, more guided-reporting defect forms could be used to
severity (minor, trivia, and enhancement). Within limited collect textual data, especially in describing the issues and
resources and time constraints, high-severity defects willuser's expectations. For example, we could develop a catalog
very likely to get more attention. When software crashes or aof usability defects categories, user difficulties, feelings, and
user interface is hanging, for example, software developersmpact to support reporters with relevant usability-related
will fix the issue as soon as they can so that the software isvocabulary when describing usability issues. Also, in order
usable again. Conversely, when someone experienceso capture user expectations, actual routine task and
difficulty to find certain menus or is confuses in performing suggestions to improve usability, a defect form should
certain tasks, that issue may not be an important issue to thepecifically prompt users for this kind of information. This
software developers. The software developers may see thesgill particularly benefit reporters with limited usability
kinds of usability defects as a low priority issue since the knowledge to submit higher quality defect reports, and help
software can still be used. In many cases, unconvincingsoftware developers to understand and evaluate usability
issues often closed as WORKSFORME [3]. Perhaps, defects as being as crucial as functional defects.
reporters should develop a strategy to write better usability ,
defect descriptions in more convincing and informative ways,C: Community Involvement
so that software developers can treat usability defects as We define two research questions to investigate the open-
important as functional defects. We discuss this further in source community involvement in responding to usability
the next section. and non-usability defects'RQ5: How fast open source
In contrast to our expectation, the presence of textualcommunities respond to usability defects in comparison to
information such as actual output expected output andperformance defects?and“RQ6: Do different defect types
impact do not appear to speed up the defect resolutionand projects affect the number of comment$” measured
process. Similarly, previous studies [16], [17] also found that the community involvement using the following two metrics.
there is no significant influence between the number of .« First comment response tim&QGRT) in days — the
defect attributes with the resolution time. Karim et al. [17], time it took the first comment to be added to a defect
for example, who studied high-impact defects (i.e., security, report [18], CommentResponseTime = DateOpened —
performance, breakage, and dormant defects) found there is FirstCommentDate.
no stable relationship exists between provided defect -« Total commentsTC) — the total number of comments
attribute and the defect fixing time even though defect fixing on a defect report. This data is automatically extracted
time can be reduced when defect report contains at least four from the defect CSV file
main attributes. One possible reason for that may be due to Table VII shows the total number of comments on a
“reporters’ effect” as they do not know what to describe for defect report, and the time it took for defect reports to

“The only way | found to show the "Add to Home
Screen" functionality is to long-tap on an awesome
bar list item. I'm not sure this is very discoverable.
Moreover, with the main screen being about: home,
| initially thought this would add to the site to about:

home, which would have been nice feature”

103

receive a first comment.n response to RQ5, we found defects is observed in the Mozilla Thunderbird, in which
usability defects are responded slower than non-usability usability defects took about twenty times longer to get a first
defects. A Kruskal-Wallis H test showed that there was a comment. We also found open source communities are more
statistically significant difference IFRCT between the responsive to non-usability defects than usability defects, as
different types of defectg2 (1) = 132.14, p= 0.000, and the median response time, in days is 0, and in most projects
projects,y2 (2) = 63.528, p=0.000. The most significant (Mozilla Thunderbird and Firefox for Android) the mean
response time difference between usability and non-usabilityresponse time is less than a week.

TABLE VII
COMMENT RESPONSETIME AND NUMBER OF COMMENTS OFUSABILITY VS NON-USABILITY DEFECTS
Project FCRT (days) TC
Usability Non-usability Usability Non-usability

Mean Median Mean Median Mean Median Mean Median
Mozilla Thunderbird 100.70 0.00 4.99 0.00 38.14 23.50 31.60 16.00
Firefox for Android 20.84 1.00 6.76 0.00 26.88 19.00 24.90 14.00
Eclipse Platform 69.82 14.00 21.03 0.00 9.68 6.00 10.5 7.00

Among the three projects, community response to not for complex usability defect discussions. For instance, to
usability defects is the slowest in the Mozilla Thunderbird, monitor how many users experienced a particular usability
while non-usability defects are the slowest in the Eclipse defect, we could use a one-click response (such as “Like”
Platform. Besides, Spearman’s correlation between theand thumb button) with a nested comment section to
number of comments and defect resolution indicates adescribe the corresponding reproducibility steps. For
significant positive relationship between the number of usability defects, the frequency of users that experienced the
comments and resolution time (p=0.00 < 0.05). problems can provide evidence that the identified problem

In terms of the number of comments received for eachwas true. Besides, developers could also systematically track
type of defect (RQ6), the Kruskal-Wallis H test showed that specific information rather than repeatedly having to scrolls
there is no significant difference betwe@®&€ and defect through the whole comments section.
types, 2 (1) = 0.185, p = 0.667 > 0.05. However, the
significant difference of the Kruskal-Wallis H test was IV. CONCLUSIONS
observed between TC and project typgs,(1) = 430.944,
p=0.000 < 0.05. As shown in Table \Mih most projects
(Thunderbird and Firefox for Android) non-usability
defects received few comments. However, we found that the

In this paper, we have compared the descriptions of
usability and non-usability defects and investigated how the
open-source communities treat these two types of defects.
. . We analyzed the 377 and 1864 of usability and non-usability
Thqnderblrd project attracts more comments than Otherdefect reports respectively from Mozilla Thunderbird,
propctsd. The S|gnr|1f|car;]t difference of total cdoanentsh Firefox for Android and Eclipse Platform project. In this
received among the three projects suggested that t ef)aper, we presented insights into the essence of report
contributor community of the Thunderbird project is the content, length of the defect resolution process, and

most active, followed by Firefox for Android and Eclipse . : :
’ . : . community engagement on different types of defects in these
Platform. One possible explanation why Eclipse Platform projec?sly gag ! yp !

has I?SS comment may _be due to the contr|bptlon of_the In all three projects, we observed statistically significant
technical users that provide more informative information differences in the means and medians of the resolution time

and less discussion. . - for usability and non-usability defects. We found usability
Based on the previous research [18], and our findings, Wedefects are resolved slower than non-usability defects in all
acknowl_edged that open source communities are Veryy, eq projects. We also observed that usability defects
responsive to high-risk d_e_fects (e.g., performance_ anOIreported for open source projects usually consisbutput
security) defects than usability defects. Even though in OUr yetails andsoftware contextwhile non-usability defects are
study usability defects received more comments than non'preferably explained usingsupplementary _information
usability defects, the difference was not significant. However’Besides, both usability and non-usability defects are
we_found that regardless_ of_dn‘fergn_t defect types a‘ndsignificantly influenced by a textual description of the
projects, the defect resolution time will increase when thereimpact, expected outpuind actual output However, the

Bositive Spearman’s correlation between them and resolution
time shows the presence of such information does not help to
hcrease the resolution process. Our findings also show
usability defects can be fixed faster when reporters provide
fhore evidence, such as snapshots, video, recovery steps and
Chxternal links. Results also suggest that community response

. .) 0 non-usability defects is much faster than usability defects.
In order to manage the active discussion, we recommencf—lowever, there is no significant difference in terms of

explor_lng_ community-centric _ Improvements to defect number of comments received for both types of defects. We
repositories for discussion management. The existing linear.

. “"also found that most usability defects are treated as low
sequence of comments may be suitable for a defect W'thseverity and considered as enhancements
relatively few comments and straightforward discussion, but '

are submitted during the discussions of defects, more
guestions, suggestions and debates will take place. Eve
though this process will delay the time to fix usability
defects, the solution outcomes of these discussions could b
more practical, ideal and less risky. In most cases, a defe
report contains more than five comments.

104

The implication of this research is twofold. Firstly, these [2]
research findings extend the knowledge of software defect
repositories mining specifically on usability defects, that to
our knowledge has not been studied in detail. The valuable3)
information of unstructured textual defect description
presented in this paper also highlights the opportunities for
other researchers to explore defect prediction models usin
the textual content of the reports, rather than typically used[s)
categorical data. Secondly, our findings may help
practitioners, especially software testers, to report relevant[6]
usability defect information for software developers.
Subsequently, this could facilitate software developers and
management to prioritize defect fix task accordingly.

In the future, we plan to extend our text analysis approach
using an automatic text analysis tool to improve the 8]
efficiency of text preprocessing methods. For example, we
could conduct Natural Language Processing (NLP)
techniques and bag-of-words representation to categorize th?g]
different categories of usability defects. This information
would complement defect reports and may help software
developers to understand the subjective nature of usability
defects better. (10

Since we have obtained promising findings in this [11]
usability defects study, we also plan to improve the existing
way of reporting software defects. Perhaps, a new defectl2]
report template could be designed to reflect different defect
types and project-specific needs. In this way, we could
enable users to submit clear defect information according to[13]
available information and technical knowledge limitations.

4]

(7]

ACKNOWLEDGMENT [14]

Support for the first author from the Fundamental
Research Grant Scheme (FRGS) under Contracts
FRGS/1/2018/ICT 01/UITM/02/1, Universiti Teknologi [15]
MARA (UiTM). We also would like to thank Prof Denny
Meyer from Swinburne University of Technology 16]
Melbourne for her valuable advice on statistical matters used[
in this paper.

[17]
REFERENCES
R. A. Majid, N. L. M. Noor, and W. A. W. Adnan, “An assessment
tool for measuring human centered design adoption in software

development process,” irAdvances in Intelligent Systems and
Computing 2018.

(1] (18]

105

N. H. Basri, W. A. W. Adnan, and H. Baharin, “E-participation
service in Malaysian e-government website: the user experience
evaluation,” Proc. 10th Int. Conf. E-Education, E-Business, E-
Management E-Learningp. 342—-346, 2019.

D. M. Nichols and M. B. Twidale, “Usability processes in open
source projects,Softw. Process Improv. Practvol. 11, no. 2, pp.
149-162, Mar. 2006.

C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability
issues: to bug or not to buglPiteractions pp. 15-19, 2001.

R. Stefan, A. Giris, and C. Yilmaz, “How to Provide Developers only
with Relevant Information?” i2016 7th International Workshop on
Empirical Software Engineering in Practice (IWESER®)16, pp. 1-6.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects: A Systematic Literature RevieWwZEE Trans. Softw. Eng.
vol. 43, no. 9, pp. 848-867, 2017.

S. Zaman, B. Adams, and A. E. Hassan, “Security Versus
Performance Bugs: A Case Study on Firefox,Pioceedings of the
8th Working Conference on Mining Software Repositp#ies1.

V. Garousi, E. G. Ergezer, and K. Herkilo, “Usage, usefulness and
quality of defect reports: an industrial case study,Pinceedings of

the 20th International Conference on Evaluation and Assessment in
Software Engineering?016.

N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “Analysis
of the Textual Content of Mined Open Source Usability Defect
Reports,” in 24th Asia-Pasific Software Engineering Conference
(APSEC) 2017.

] J. Uddin, R. Ghazali, M. M. Deris, and R. Naseem, “A survey on bug

prioritization,” Artif. Intell. Rev, vol. 47, no. April, 2016.

M. G. Capra, “Usability Problem Description and the Evaluator Effect
in Usability Testing,” 2006.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects — Do Reporters Report What Software Developers Need?” in
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineerig16.

E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction of Defect
Reporting in Industrial Software Development,” International
Symposium on Empirical Software Engineering and Measurement
2011, pp. 197-206.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects: Limitations of Open Source Defect Repositories and
Suggestions for Improvement,” irProceedings of the 24th
Australasian Software Engineering Confereri2@l5, pp. 38—43.

U. Raja, “All complaints are not created equal: text analysis of open
source software defect report&fpir. Softw. Engvol. 18, no. 1, pp.
117-138, Jan. 2012.

T. D. Sasso, A. Mocci, and M. Lanza, “What Makes a Satisficing Bug
Report?” in IEEE International Conference on Software Quality,
Reliability and Security (QRS2016.

M. R. Karim, A. lhara, X. Yang, E. Choi, H. lida, and K. Matsumoto,
“Improving the High-Impact Bug Reports: A Case Study of Apache
Projects,” 2016.

P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
empirical analysis of bug reports and bug fixing in open source
Android apps,” inProceedings of the European Conference on
Software Maintenance and Reengineering, CSRIR3, pp. 133-143.

