

Vol.10 (2020) No. 1

ISSN: 2088-5334

How Usability Defects Defer from Non-Usability Defects? : A Case
Study on Open Source Projects

Nor Shahida Mohamad Yusop#, John Grundy*, Jean-Guy Schneider+1, Rajesh Vasa+2
#Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

 E-mail: nor_shahida@tmsk.uitm.edu.my

*Faculty of Information Technology, Monash University, Melbourne, Australia
E-mail: john.grundy@monash.edu

+Faculty of Science, Engineering, and Built Environment, Deakin University, Melbourne, Australia

E-mail: 1jeanguy.schneider; 2rajesh.vasa}@deakin.edu.au

Abstract— Usability is one of the software qualities attributes that is subjective and often considered as a less critical defect to be
fixed. One of the reasons was due to the vague defect descriptions that could not convince developers about the validity of usability
issues. Producing a comprehensive usability defect description can be a challenging task, especially in reporting relevant and
important information. Prior research in improving defect report comprehension has often focused on defects in general or studied
various aspects of software quality improvement such as triaging defect reports, metrics and predictions, automatic defect detection
and fixing. In this paper, we studied 2241 usability and non-usability defects from three open-source projects - Mozilla Thunderbird,
Firefox for Android, and Eclipse Platform. We examined the presence of eight defect attributes - steps to reproduce, impact, software
context, expected output, actual output, assume cause, solution proposal, and supplementary information, and used various statistical
tests to answer the research questions. In general, we found that usability defects are resolved slower than non-usability defects, even
for non-usability defect reports that have less information. In terms of defect report content, usability defects often contain output
details and software context while non-usability defects are preferably explained using supplementary information, such as stack
traces and error logs. Our research findings extend the body of knowledge of software defect reporting, especially in understanding
the characteristics of usability defects. The promising results also may be valuable to improve software development practitioners'
practice.

Keywords— defect report; open-source; software repository mining; software defect repository; usability defects.

I. INTRODUCTION

Usability is a software quality characteristic that measures
the understandability, learnability, operability and
attractiveness of the software products. The lack of a
systematic approach towards human-centered design in
software development is seen as an obstacle in producing
high usable software [1]. An effort to increase software
usability is through consistent usability testing and user
experience evaluation during the development cycle [2].
However, measuring usability defects is often difficult due
to their subjective evaluation [3]. For example, one user
might find a graphical icon in a user interface as annoying
but it is not so for others. As a result, there is often a
disagreement between the reporters and software developers
that subsequently carry out the defect resolution. In fact, in
the context of software development, usability defects are

said to receive less attention from software developers [4]
and due to an abundant amount of information developers
have difficulties in identifying vital information to
understand the defects [5].

We believe that usability defects need stronger evidence
to convince software developers that the issue reported is
indeed a real defect and should be treated as equally
important as other high-risk defects, such as security and
performance defects. In open-source software projects, users
– who can be software developers or end-users or both - can
directly report usability defects through defect reporting
tools. However, the generic unstructured free-text defect
form in Bugzilla, JIRA and GitHub, for example, is often not
very helpful for capturing valuable information for usability
defects [6]. This is because aspects such as likely difficulties,
impact, user’s feelings, emotion and “struggling” with the
interface are naturally subjective and depend heavily on
human judgment. Without specific prompts for this usability

98

defect-specific information, it can be difficult for non-
technical users to provide such information.

In this paper, we present an empirical investigation of 377
usability defects and 1864 non-usability defects in Mozilla
Thunderbird, Firefox for Android and Eclipse Platform
open-source project to compare to what extent these non-
usability defects are described and treated by these open
source communities. In this research, we picked
performance-related defects as a comparison benchmark
since it is a non-usability type of defect that is commonly
reported in open source projects. In addition to previous
studies that investigate the characteristics of defects [7], [8]
using predefined defect data (i.e., product, component,
version) and comments, we manually examined the textual
descriptions of defect reports to find out how different types
of defects influence the defect resolution time and severity,
and the way defect is described. In particular, this paper
addresses the following four research questions (RQ):

1) RQ1: Do different defect types and projects influence
the ways defects are described? The defect description is
different between usability and performance defects, and
across the three open-source projects. We found usability
defects reported for open source projects usually contain
output details, and software context, while non-usability
defects are preferably explained using supplementary
information.

2) RQ2: Does the presence of specific defect attributes
influence the defect resolution time? The presence of impact
expected outcome and actual output will eventually reduce
the defect resolution time of both usability and non-usability
defects. Also, when the usability and non-usability defect
reports contain supplementary information, the total
resolution time and actual fix time can be reduced.

3) RQ3: Do different defect types and projects influence
the defect resolution time, wait time and actual fix time? The
total resolution time, wait time and actual fix time differed
significantly between the different types of defects and
projects. We found that non-usability defects take less time
to correct than usability defects. In terms of projects, the
Thunderbird project took the largest time to resolve usability
defects, followed by the Eclipse platform and Firefox for
Android.

4) RQ4: Is there any relationship between defect types
and defect severity? The relationship between defect types
and severity is moderately significant. Usability defects are

more dominantly rated low-severity compared to non-
usability defects.

5) RQ5: How fast do open source communities respond
to usability defects in comparison to non-usability defects?
On average, we found non-usability defects are responded to
5 times faster than usability defects in Mozilla Thunderbird,
and 3 times faster than usability defects in Firefox for
Android and Eclipse Platform.

6) RQ6: Do different defect types and projects affect the
number of comments? Defect types do not statistically affect
the number of comments. However, the number of
comments differs between projects. The significant
difference of total comments received among the three
projects suggested that the contributor community of the
Thunderbird project is the most active, followed by Firefox
for Android and Eclipse Platform. The rest of the paper is
organized as follows. In Section 2, our experimental method
is presented. Defect sources, data extraction, and statistical
analysis used are discussed. In Section 3, the study results
are presented and discussed. Section 6 concludes the paper
with future works.

II. MATERIALS AND METHOD

A. Defect Sources

In this research, we studied the Mozilla Thunderbird,
Firefox for Android, and Eclipse platform projects. Across
the three projects, only 23373 defect reports are available to
download from Bugzilla defect tracking system. For
usability defects, we looked for Bugzilla usability keywords
as listed in Table I, while for non-usability defects, we
decided to include defects that were tagged with
performance-related issues such as perf, crash, top crash,
hang, intermittent-failure. As shown in Table I, 1206 and
6345 of downloaded defect reports were tagged with
usability and performance-related keywords, respectively.
However, in our study, we only included 2241 usability and
non-usability defect reports that were resolved as FIXED (a
defect has been fixed by developers, or being fixed by
another defect fix). We limit our analysis to FIXED defect
reports in order to reduce selection bias, as the software
developers already completed the resolution process and
have reach agreement on the actual types of defects. We
extracted sample defect reports for each project using the
methods described in [9].

TABLE I
DATASETS STUDIED

Project Types Total
Other

resolution
Resolved/ Verified

Fixed Duplicate Incomplete Invalid Wontfix Worksforme Expired
Mozilla
Thunderbird

Usability 384 185 88 64 4 9 16 17 1
Non-usability 2223 212 349 406 453 158 7 591 47

Firefox for
Android

Usability 292 62 101 59 3 11 36 20 0
Non-usability 2855 643 822 422 44 43 66 815 0

Eclipse
Platform

Usability 530 78 188 46 - 68 103 47 -
Non-usability 1267 200 693 98 - 74 108 94 -

Total 7551 1380 2241 1095 504 363 336 1584 48
Other resolution – New, unconfirmed, assigned, and reopened
Non-usability - perf, crash, topcrash, hang, intermittent-failure
Usability – ue, uiwanted, useless-UI, ux-affordance, ux-consistency, ux-control, ux-discovery, ux-efficiency, ux-error-prevention, ux-error-recovery, ux-
implementation, ux-interruption, ux-jargon, ux-minimalism, ux-mode-error, ux-natural-mapping, ux-tone, ux-trust, ux-undo, ux-userfeddback,

99

TABLE II
RESEARCH QUESTIONS AND CORRESPONDING STATISTICAL TEST

Research Questions Statistics
RQ1: Do different defect types and
projects influence the ways defects
are described?

Frequency, Shapiro-Wilk
test, Chi-Square test

RQ2: Does the presence of certain
defect attributes influence the defect
resolution time?

Frequency, Shapiro-Wilk
test, Spearman’s rank
correlation

RQ3: Do different defect types and
projects influence the defect
resolution time, wait time and actual
fix time?

Frequency, Shapiro-Wilk
test, Kruskal–Wallis H
test

RQ4: Is there any relationship
between defect types and defect
severity?

Frequency, Shapiro-Wilk
test, Chi-Square test

RQ5: How fast open source
communities respond to usability
defects in comparison to performance
defects?

Frequency, Shapiro-Wilk
test, Kruskal–Wallis H
test

 RQ6: Do different defect types and
projects affect the number of
comments?

Frequency, Shapiro-Wilk
test, Kruskal–Wallis H
test

B. Research Questions and Related Statistics Computation

We performed different statistical analyses for different
research questions, depending on the types of data and
analysis we wanted to use. Since, the Total Resolution Time
(TRT), Wait Time (WT), Actual Fix Time (AFT), and First
Comment Response Time (FCRT) were not normally
distributed (as assessed with Shapiro-Wilk’s test for
normality), non-parametric statistics were used for analysis.
Table II presents the list of research questions and their
respective statistical procedures applied. We used SPSS
(version 23) to conduct all tests.

We used Chi-square analysis to answer RQ1 and RQ4.
We consider textual information - steps to reproduce (STR),
impact (IMP), software context (SC), expected output (EO),
actual output (AO), assumed cause (AC), solution proposal
(SP) and supplementary information (SI) as dependent
variables, measured on nominal scale and defect types as
independent variable. Alternately, in Spearman’s Rho
correlation analysis (to answer RQ2) STR, IMP, SC, EO,
AO, AC, SP, and SI were used as the independent variable
while TRT, WT, and AFT were used as the dependent
variable. For RQ3, we used Kruskal-Wallis H Test to
compare whether Total Resolution Time (TRT), Wait Time
(WT) and Actual Fix Time (AFT), measured on a continuous
scale (in days), differed based on defect types and projects
(nominal data). We consider TRT, WT and AFT as the
dependent variable, and defect types (usability or non-
usability defect) and project types (Mozilla Thunderbird,
Firefox for Android and Eclipse Platform project) as
independent variables. We also consider the First Comment
Response Time (FCRT) and Total Comments (TC) as the
dependent variable in examining RQ5 and RQ6. Since the
distribution of the scores for each group in defect types and
project types are identical, we used the medians value of the
dependent variables to compare the characteristics of
different groups of the independent variable.

C. Information Extraction

A software defect reports have many attributes, some of
which are filled at the time of reporting and others are filled
during the fixing process [10]. In our study, we only focused
on the attributes supplied during the initial reporting of a
defect, not the subsequent discussion about the problem and
its possible solution in the comments sections. Our primary
textual analysis is focused on the defect report title,
description and attachment fields. Since the existing
Bugzilla defect report template was in unstructured plain text,
we were unable to automatically extract and assess the
presence of STR, IMP, SC, EO, AO, AC, SP, and SI. Thus,
we manually read all the 2241 defect reports and used the
criteria suggested by Capra [11].

The first author read all the 2241 defect descriptions. This
process requires the author to (1) interpret the reported
problem, (2) classify the information into one of the
predefined attributes, and (3) give score if the information is
presented - 1 implies that the “information exists”, and 0
implies that the “information does not exist.” In order to
validate the rating process and minimize the
misclassification error, a random sample of 10 defect reports
was rated by the second author and then compared in a
review meeting. Whenever the rating differed, such
differences were discussed until consensus reached.

For IMP, AC, and SP we assessed the presence of this
information usin3 the following criteria:

• AC - defect report number, in which the reporter felt
the current issues were likely due to the previous fixed.

• IMP – user difficulty, number of reproducibility’s,
high numbers of users encountered the same problem
and severity.

• SP: justification of the proposed solution or
fragmental/ modification of affected code/ patch
description on how to fix the problem.

III. RESULTS AND DISCUSSION

Each subsection below discusses the three research
questions that we studied using Mozilla Thunderbird,
Firefox for Android, and Eclipse Platform data. For each
question, we present the results and a discussion of our
findings.

A. The Essence of Defect Report Content

To better understand how the usability defects are
described in comparison to other non-usability defects, we
examined the following research question: RQ1: Do
different defect types and projects influence the ways defects
are described?”

Table III reveals several observations from the Chi-square
test to answer RQ1. First, a large fraction of usability defects
in Mozilla Thunderbird, Firefox for Android and Eclipse
Platform contains SC, AO, and EO. Second, Only a few non-
usability defects contain EO (19.5%, 9.5%, 30.9%, for
Mozilla Thunderbird, Firefox for Android, and Eclipse
Platform, respectively). Third, SI is mostly attached with
non-usability defects (67.0%, 89.4%, 15.0% for Mozilla
Thunder, Firefox for Android, and Eclipse Platform,
respectively) than usability defects (13.6.0%, 26.7%, 5.3%

100

for Mozilla Thunderbird, Firefox for Android, and Eclipse
Platform, respectively). Fourth, IMP, AC, and SP are rarely
reported for both usability and non-usability defects across
projects. Fifth, for the three projects, the STR is more often
described in the usability defect reports than in non-usability
defects. At a significant level p=0.05, we found the

relationship between defect types and the presence of defect
information are significant for all attributes in the three
projects, accept for STR (df=1, p=0.420) and SC (df=1,
p=0.162) in Firefox for Android, and AO (df=1, p=0.708) in
Eclipse Platform.

TABLE III
CHI-SQUARE TEST RESULTS TO EXAMINE THE INFLUENCE OF DEFECT TYPES AND DEFECT ATTRIBUTES

Defect Report Attributes Mozilla Thunderbird (%) Firefox for Android (%) Eclipse Platform (%)
Usability Non-usability p-val Usability Non-usability p-val Usability Non-usability p-val

STR 46.6 24.1 0.000 18.8 15.7 0.420 32.4 21.1 0.001
IMP 38.6 15.2 0.000 27.8 2.2 0.000 28.2 7.1 0.000
SC 73.9 49.0 0.000 47.5 54.9 0.162 42.0 50.4 0.042
EO 76.1 19.5 0.000 52.5 9.5 0.000 60.6 30.9 0.000
AO 83.0 45.6 0.000 56.4 29.8 0.000 85.1 84.0 0.708
AC 2.3 9.2 0.031 2.0 9.7 0.010 2.7 19.5 0.000
SP 17.0 3.7 0.000 18.8 3.3 0.000 8.5 14.0 0.046
SI 13.6 67.0 0.000 26.7 89.4 0.000 5.3 15.0 0.000

We have observed most open-source defect reports,
regardless of different defect types, contain software context
and the actual outcome, and by contrast, relatively few
defect reports describe the impact, assumed cause and have a
solution proposal. Our findings confirm our previous
findings [12], where reporters seldom provide the assumed
cause. Since existing defect report forms in Bugzilla defect
repositories do not have separate fields for each of these
attributes, the provision of this information relies on the
reporters’ ability to explain in the free format textual
description.

According to software developers [12], the presence of
assumed cause is much appreciated as they can directly
investigate what caused the problems, rather than guessing
and investigating the problems from scratch. This is
evidence, where the non-usability defect reports containing
assumed cause has been resolved faster than those without
this information. This is likely because logs and stack traces
in non-usability defect reports provide technical information
to directly determine the root cause of the problems, rather
than textual information that needs subjective interpretation
and assumption. From our observations, we found assumed
cause often originated from the changes made to the
previous code. Reporters often include the defect report
number of other defect reports in which they suspect the
fixed causes of the current defects. For steps to reproduce,
even software developers considered them to be useful for
fixing software defects [12], [13], in real-world practice,
however, we observed this information is much less reported
for both usability and non-usability defect reports.

As expected, the attachment of snapshots, stack traces,
logs, external links and explanation of recovery steps appear
to be very helpful for software developers in order to fix
defects, as this kind of information contains objective
evidence for defects. However, supplementary information
was only found for less than 15% of usability defect reports
– mostly in the form of screenshots and video. A closer
inspection of usability defect reports showed that many
reporters like to attach screenshots, video and logs in the
later comments section. This is likely since such materials
are not readily available when a defect is submitted. In
Bugzilla, for example, there are insufficient features to

collect hypermedia data automatically, thus making it a
convoluted exercise for reporters to provide such
information when a defect is first reported [14]. We
postulate that more convenient defect reporting tools to
support usability defect reporting issues could be developed
for editing attachments, capturing UI event traces, user
interactions, usage context and problematic screens, and
recording current user roles and tasks.

B. Usability Defect Resolution

To investigate the influences of defect resolution time, we
studied three aspects: (1) the content of defect reports, (2)
types of defects and projects, and (3) the relationship
between types of defects and defect severity. The
aforementioned are addressed n the following research
questions: “RQ2: Does the presence of certain defect
attributes influence the defect resolution time?”, “RQ3: Do
different defect types and projects influence the defect
resolution time, wait time and actual fix time?”, and “RQ4:
Is there any relationship between defect types and defect
severity?”

Defect resolution time is a time taken for actual time spent
to correct a defect and the wait time [15],. In many cases, the
time needed to correct a defect is short, but the resolution
time is longer due to the long waiting time to find a resource
and the urgency of the defect to be fixed. To examine RQ2
and RQ3, we used the following three metrics to measure
defect resolution time:

• Total resolution time (TRT) in days – the total time
taken to resolve an issue includes the actual time spent
on defect resolution and the wait time. We measured
the defect resolution time of each closed defect as
ResolutionTime = DateResolved – DateOpened.

• Wait time (WT) in days – the time a reported defect
awaits the assignment of a resource. We measured the
defect wait time as the difference between the time a
defect is reported and the defect get assign before they
fixed, WaitTime = DateAssigned – DateOpened.

• Actual fix time (AFT) in days - the time the assigned
resource takes to start working on the defect until the
defect is closed as resolve, ActualFixTime =
DateResolved – DateAssigned.

101

To answer RQ2, as shown in Table IV, Spearman’s Rho
correlation results show that at significance level p =0.05,
there is a positive relationship between TRT and IMP, EO
and AO for both defect types. At the same level of
significance, we also see a negative relationship between
TRT, AFT and SI for non-usability defects and negative
relationships between TRT, WT, AFT and SI for usability

defects. Meanwhile, the positive relationships suggest that
the presence of IMP, EO and AO makes the resolution time
slower. For non-usability defects, there are also positive
relationships between ST and IMP, and between AFT and
STR, EO, AO and SP. While for usability defects, a positive
relationship between WT and IMP is also observed.

TABLE IV
SPEARMAN’S RHO CORRELATION TO INVESTIGATE THE INFLUENCE OF DEFECT INFORMATION ON TRT, WT, AND AFT

 STR IMP SC EO AO AC SP SI
Non-usability defects
TRT 0.092* 0.080** 0.051* 0.088** 0.165** 0.026 0.044 -0.187**
WT 0.042 0.095** 0.041 -0.008 -0.008 -0.055* -0.032 0.005
AFT 0.081** 0.011 0.018 0.094** 0.213** 0.072* 0.067** -0.224**
Usability defects
TRT 0.120* 0.217** 0.025 0.142** 0.150** -0.026 0.003 -0.152**
WT 0.070 0.181** -0.048 0.096 0.100 -0.021 0.000 -0.135**
AFT 0.050 0.085 0.097 0.109* 0.036 0.010 0.001 -0.135**
* Correlation is significant at the 0.05 level (2-tailed)
** Correlation is significant at the level 0.01 level (2 tailed)

TABLE V
DISTRIBUTION OF TRT, WT, AND AFT FOR USABILITY AND NON\-USABILITY DEFECTS

Project
TRT WT AFT

Usability Non-usability Usability Non-usability Usability Non-usability
Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Mozilla
Thunderbird

717.84 423.00 96.77 12.00 560.68 248.50 69.65 4.00 157.16 22.50 27.12 1.00

Firefox for
Android

204.23 51.00 51.56 10.00 153.14 26.00 38.34 3.00 51.09 11.00 13.23 3.00

Eclipse Platform 367.40 166.00 181.87 42.00 224.84 105.00 68.42 2.00 142.56 39.00 113.45 19.00

TABLE VI
CONTIGENCY TABLE. DEFECTS TYPES BY PROBABILITY OF RECEIVING DEFECT SEVERITY

Defect Type
Defect Severity

Blocker Critical Major Minor Normal Trivia Enhancement Total
Usability 0.3 (1) 1.9 (7) 9.3 (35) 65.8 (248) 4.2 (16) 2.4 (9) 16.2 (61) 100.00
Non-usability 1.3 (25) 39.8 (742) 8.7 (163) 47.4 (883) 0.6 (12) 0.00 (0) 2.1 (39) 100.00
Total 1.2 (26) 33.4 (749) 8.8 (198) 50.5 (1131) 1.2 (28) 0.4 (9) 4.5 (100) (2241)
χ2 (6) = 375.920, p=0.000,
Cramer’s V = 0.410
Note: Number in parentheses is the frequency of defects in each of severity.

For RQ3, we calculated the mean and median of TRT, WT,
and AFT for both usability and non-usability defects. Table
V shows the results. These numbers show that the resolution
time for the usability defect is the longest. The wait time for
usability defects takes the most amount of time in defect
resolution for all three open-source projects. Considering
the actual time, the developer spends to correct a defect, we
find that non-usability defects take less time to correct than
usability defects. A Kruskal-Wallis H test showed that the
total resolution time (χ2 (1) = 263.408, p=0.000), wait time
(χ2 (1) = 273.269, p=0.000) and actual fix χ2 (1) = 69.464,
p=0.000) time differed significantly between the different
types of defects.

We also considered the median time to see how fast the
response of different open source project communities is in
terms of correcting a defect. As shown in Table V, the
Thunderbird project took the largest time to resolve usability
defects, followed by the Eclipse platform and Firefox for
Android. In terms of actual time used by the software
developer to correct usability defects, Firefox for Android

shows the shortest time. We also observed that non-usability
defects are resolved slower in the Eclipse Platform. Across
the three open-source projects, Firefox for Android project
takes less time to resolve usability and performance defects.
A Kruskal-Wallis H test showed a significant difference
between the project types and TRT (χ2 (2) = 183.273,
p=0.000), WT (χ2 (2) = 16.143, p=0.000), and AFT (χ2 (2) =
222.928, p=0.000).

For RQ4, Table VI summarizes the distribution of defects
types and severity. It shows that usability defects are
dominantly rated low-severity compared to non-usability
defects. The percentage of low-severity for usability defects
is 88.6%, much larger than the 50.1% for non-usability
defects. Similarly, the high-severity impacts that were rated
for non-usability defects, i.e. blocker, critical and major,
account for 49.8% as compared to 11.5% for usability
defects, which is a considerable difference. Also, we found
usability defects are more likely to be reported as
enhancements (16.2%). To further understand the influence
of defect types on the severity, we present the Chi-square

102

test results in Table VI. The relation between defect types
and severity was significant, χ2 (6) = 375.92, p= 0.000 <
0.05. Cramer’s V value between 0.4 and 0.6 indicates that
the relationship between defect types and severity is
moderate.

Fixing usability defects is often take a much longer time
than fixing non-usability defects [4]. Common reasons were
due to incomplete information in defect reports, low severity
rating to consider usability defects as significant issues, and
misunderstanding and misinterpretation about the usability
issues by developers [4], [13]. In this research, we examined
the influence of defect resolution time from three
perspectives: (1) types of defects and projects, (2) defect
severity, and (3) the presence of specific defect attributes.

From our study, we found usability defects in Mozilla
Thunderbird, Firefox for Android, and Eclipse Platform take
a longer time to resolve than non-usability defects. In all
these projects, the waiting time for both usability defects and
non-usability defects took the most significant time in the
resolution process. Based on our observations on the studied
defect report comments, most of the waiting time is used to
reproduce the defects, discuss the rationale of the issues,
propose ideas, and await the assignment of a resource.
Possibly, as open-source projects involve volunteers with a
variety of different commitment levels, levels of
involvement and degree of technical expertise, no dedicated
resources and fix-time can be assigned to work on each
defect.

The other possible explanation for a long resolution time
of usability defects is due to the low-severity rate. We
observed about 90% of usability defects are rated as low-
severity (minor, trivia, and enhancement). Within limited
resources and time constraints, high-severity defects will
very likely to get more attention. When software crashes or a
user interface is hanging, for example, software developers
will fix the issue as soon as they can so that the software is
usable again. Conversely, when someone experiences
difficulty to find certain menus or is confuses in performing
certain tasks, that issue may not be an important issue to the
software developers. The software developers may see these
kinds of usability defects as a low priority issue since the
software can still be used. In many cases, unconvincing
issues often closed as WORKSFORME [3]. Perhaps,
reporters should develop a strategy to write better usability
defect descriptions in more convincing and informative ways,
so that software developers can treat usability defects as
important as functional defects. We discuss this further in
the next section.

In contrast to our expectation, the presence of textual
information such as actual output expected output and
impact do not appear to speed up the defect resolution
process. Similarly, previous studies [16], [17] also found that
there is no significant influence between the number of
defect attributes with the resolution time. Karim et al. [17],
for example, who studied high-impact defects (i.e., security,
performance, breakage, and dormant defects) found there is
no stable relationship exists between provided defect
attribute and the defect fixing time even though defect fixing
time can be reduced when defect report contains at least four
main attributes. One possible reason for that may be due to
“reporters’ effect” as they do not know what to describe for

each textual defect attribute in the defect form and how to
explain them efficiently, especially for non-technical users.

While it is quite easy to collect information related to non-
usability defects, it is usually much more difficult to foresee
information needs for usability defects. From our
observations, most of the defect reports do not follow the
defect template and do not have a sufficient level of detail to
explain the subjective nature of usability defects. For
example, the report for defect #718960 in Firefox for
Android reports:

“The only way I found to show the "Add to Home
Screen" functionality is to long-tap on an awesome
bar list item. I'm not sure this is very discoverable.
Moreover, with the main screen being about: home,
I initially thought this would add to the site to about:
home, which would have been nice feature”.

This report content suggests that the reporter understands
the problem context, and knows that something is not
matching his expectation, but they did not justify the impact
and user difficulties that they have experienced as a
consequence of this problem. This defect was rated as a low-
level severity and took 1090 days to be resolved. The very
long resolution time is likely due to the fact that software
developers do not understand how to correct the user
interface in order to improve the user experiences –
especially when they thought that the user interface is
already well designed. This is evidenced in the comments
section, where software developers discussed redesigning
the feature to be more visible. Perhaps as a consequence of
this, more guided-reporting defect forms could be used to
collect textual data, especially in describing the issues and
user's expectations. For example, we could develop a catalog
of usability defects categories, user difficulties, feelings, and
impact to support reporters with relevant usability-related
vocabulary when describing usability issues. Also, in order
to capture user expectations, actual routine task and
suggestions to improve usability, a defect form should
specifically prompt users for this kind of information. This
will particularly benefit reporters with limited usability
knowledge to submit higher quality defect reports, and help
software developers to understand and evaluate usability
defects as being as crucial as functional defects.

C. Community Involvement

We define two research questions to investigate the open-
source community involvement in responding to usability
and non-usability defects: “RQ5: How fast open source
communities respond to usability defects in comparison to
performance defects?” and “RQ6: Do different defect types
and projects affect the number of comments?” We measured
the community involvement using the following two metrics.

• First comment response time (FCRT) in days – the
time it took the first comment to be added to a defect
report [18], CommentResponseTime = DateOpened –
FirstCommentDate.

• Total comments (TC) – the total number of comments
on a defect report. This data is automatically extracted
from the defect CSV file.

Table VII shows the total number of comments on a
defect report, and the time it took for defect reports to

103

receive a first comment. In response to RQ5, we found
usability defects are responded slower than non-usability
defects. A Kruskal-Wallis H test showed that there was a
statistically significant difference in FRCT between the
different types of defects, χ2 (1) = 132.14, p= 0.000, and
projects, χ2 (2) = 63.528, p=0.000. The most significant
response time difference between usability and non-usability

defects is observed in the Mozilla Thunderbird, in which
usability defects took about twenty times longer to get a first
comment. We also found open source communities are more
responsive to non-usability defects than usability defects, as
the median response time, in days is 0, and in most projects
(Mozilla Thunderbird and Firefox for Android) the mean
response time is less than a week.

TABLE VII
COMMENT RESPONSE TIME AND NUMBER OF COMMENTS OF USABILITY VS NON-USABILITY DEFECTS

Project FCRT (days) TC
Usability Non-usability Usability Non-usability

Mean Median Mean Median Mean Median Mean Median
Mozilla Thunderbird 100.70 0.00 4.99 0.00 38.14 23.50 31.60 16.00
Firefox for Android 20.84 1.00 6.76 0.00 26.88 19.00 24.90 14.00
Eclipse Platform 69.82 14.00 21.03 0.00 9.68 6.00 10.5 7.00

Among the three projects, community response to
usability defects is the slowest in the Mozilla Thunderbird,
while non-usability defects are the slowest in the Eclipse
Platform. Besides, Spearman’s correlation between the
number of comments and defect resolution indicates a
significant positive relationship between the number of
comments and resolution time (p=0.00 < 0.05).

In terms of the number of comments received for each
type of defect (RQ6), the Kruskal-Wallis H test showed that
there is no significant difference between TC and defect
types, χ2 (1) = 0.185, p = 0.667 > 0.05. However, the
significant difference of the Kruskal-Wallis H test was
observed between TC and project types, χ2 (1) = 430.944,
p=0.000 < 0.05. As shown in Table VII in most projects
(Thunderbird and Firefox for Android) non-usability
defects received few comments. However, we found that the
Thunderbird project attracts more comments than other
projects. The significant difference of total comments
received among the three projects suggested that the
contributor community of the Thunderbird project is the
most active, followed by Firefox for Android and Eclipse
Platform. One possible explanation why Eclipse Platform
has less comment may be due to the contribution of the
technical users that provide more informative information
and less discussion.

Based on the previous research [18], and our findings, we
acknowledged that open source communities are very
responsive to high-risk defects (e.g., performance and
security) defects than usability defects. Even though in our
study usability defects received more comments than non-
usability defects, the difference was not significant. However,
we found that regardless of different defect types and
projects, the defect resolution time will increase when there
are more comments. We postulate that when more comments
are submitted during the discussions of defects, more
questions, suggestions and debates will take place. Even
though this process will delay the time to fix usability
defects, the solution outcomes of these discussions could be
more practical, ideal and less risky. In most cases, a defect
report contains more than five comments.

In order to manage the active discussion, we recommend
exploring community-centric improvements to defect
repositories for discussion management. The existing linear
sequence of comments may be suitable for a defect with
relatively few comments and straightforward discussion, but

not for complex usability defect discussions. For instance, to
monitor how many users experienced a particular usability
defect, we could use a one-click response (such as “Like”
and thumb button) with a nested comment section to
describe the corresponding reproducibility steps. For
usability defects, the frequency of users that experienced the
problems can provide evidence that the identified problem
was true. Besides, developers could also systematically track
specific information rather than repeatedly having to scrolls
through the whole comments section.

IV. CONCLUSIONS

In this paper, we have compared the descriptions of
usability and non-usability defects and investigated how the
open-source communities treat these two types of defects.
We analyzed the 377 and 1864 of usability and non-usability
defect reports respectively from Mozilla Thunderbird,
Firefox for Android and Eclipse Platform project. In this
paper, we presented insights into the essence of report
content, length of the defect resolution process, and
community engagement on different types of defects in these
projects.

In all three projects, we observed statistically significant
differences in the means and medians of the resolution time
for usability and non-usability defects. We found usability
defects are resolved slower than non-usability defects in all
three projects. We also observed that usability defects
reported for open source projects usually consist of output
details, and software context, while non-usability defects are
preferably explained using supplementary information.
Besides, both usability and non-usability defects are
significantly influenced by a textual description of the
impact, expected output and actual output. However, the
positive Spearman’s correlation between them and resolution
time shows the presence of such information does not help to
increase the resolution process. Our findings also show
usability defects can be fixed faster when reporters provide
more evidence, such as snapshots, video, recovery steps and
external links. Results also suggest that community response
to non-usability defects is much faster than usability defects.
However, there is no significant difference in terms of
number of comments received for both types of defects. We
also found that most usability defects are treated as low
severity and considered as enhancements.

104

The implication of this research is twofold. Firstly, these
research findings extend the knowledge of software defect
repositories mining specifically on usability defects, that to
our knowledge has not been studied in detail. The valuable
information of unstructured textual defect description
presented in this paper also highlights the opportunities for
other researchers to explore defect prediction models using
the textual content of the reports, rather than typically used
categorical data. Secondly, our findings may help
practitioners, especially software testers, to report relevant
usability defect information for software developers.
Subsequently, this could facilitate software developers and
management to prioritize defect fix task accordingly.

In the future, we plan to extend our text analysis approach
using an automatic text analysis tool to improve the
efficiency of text preprocessing methods. For example, we
could conduct Natural Language Processing (NLP)
techniques and bag-of-words representation to categorize the
different categories of usability defects. This information
would complement defect reports and may help software
developers to understand the subjective nature of usability
defects better.

Since we have obtained promising findings in this
usability defects study, we also plan to improve the existing
way of reporting software defects. Perhaps, a new defect
report template could be designed to reflect different defect
types and project-specific needs. In this way, we could
enable users to submit clear defect information according to
available information and technical knowledge limitations.

ACKNOWLEDGMENT

Support for the first author from the Fundamental
Research Grant Scheme (FRGS) under Contracts
FRGS/1/2018/ICT 01/UITM/02/1, Universiti Teknologi
MARA (UiTM). We also would like to thank Prof Denny
Meyer from Swinburne University of Technology
Melbourne for her valuable advice on statistical matters used
in this paper.

REFERENCES
[1] R. A. Majid, N. L. M. Noor, and W. A. W. Adnan, “An assessment

tool for measuring human centered design adoption in software
development process,” in Advances in Intelligent Systems and
Computing, 2018.

[2] N. H. Basri, W. A. W. Adnan, and H. Baharin, “E-participation
service in Malaysian e-government website: the user experience
evaluation,” Proc. 10th Int. Conf. E-Education, E-Business, E-
Management E-Learning, pp. 342–346, 2019.

[3] D. M. Nichols and M. B. Twidale, “Usability processes in open
source projects,” Softw. Process Improv. Pract., vol. 11, no. 2, pp.
149–162, Mar. 2006.

[4] C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability
issues: to bug or not to bug?” Interactions, pp. 15–19, 2001.

[5] R. Stefan, A. Giris, and C. Yilmaz, “How to Provide Developers only
with Relevant Information?” in 2016 7th International Workshop on
Empirical Software Engineering in Practice (IWESEP), 2016, pp. 1–6.

[6] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects: A Systematic Literature Review,” IEEE Trans. Softw. Eng.,
vol. 43, no. 9, pp. 848–867, 2017.

[7] S. Zaman, B. Adams, and A. E. Hassan, “Security Versus
Performance Bugs: A Case Study on Firefox,” in Proceedings of the
8th Working Conference on Mining Software Repositories, 2011.

[8] V. Garousi, E. G. Ergezer, and K. Herkilo, “Usage, usefulness and
quality of defect reports: an industrial case study,” in Proceedings of
the 20th International Conference on Evaluation and Assessment in
Software Engineering, 2016.

[9] N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “Analysis
of the Textual Content of Mined Open Source Usability Defect
Reports,” in 24th Asia-Pasific Software Engineering Conference
(APSEC), 2017.

[10] J. Uddin, R. Ghazali, M. M. Deris, and R. Naseem, “A survey on bug
prioritization,” Artif. Intell. Rev., vol. 47, no. April, 2016.

[11] M. G. Capra, “Usability Problem Description and the Evaluator Effect
in Usability Testing,” 2006.

[12] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects – Do Reporters Report What Software Developers Need?” in
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering, 2016.

[13] E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction of Defect
Reporting in Industrial Software Development,” in International
Symposium on Empirical Software Engineering and Measurement,
2011, pp. 197–206.

[14] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects: Limitations of Open Source Defect Repositories and
Suggestions for Improvement,” in Proceedings of the 24th
Australasian Software Engineering Conference, 2015, pp. 38–43.

[15] U. Raja, “All complaints are not created equal: text analysis of open
source software defect reports,” Empir. Softw. Eng., vol. 18, no. 1, pp.
117–138, Jan. 2012.

[16] T. D. Sasso, A. Mocci, and M. Lanza, “What Makes a Satisficing Bug
Report?” in IEEE International Conference on Software Quality,
Reliability and Security (QRS), 2016.

[17] M. R. Karim, A. Ihara, X. Yang, E. Choi, H. Iida, and K. Matsumoto,
“Improving the High-Impact Bug Reports: A Case Study of Apache
Projects,” 2016.

[18] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
empirical analysis of bug reports and bug fixing in open source
Android apps,” in Proceedings of the European Conference on
Software Maintenance and Reengineering, CSMR, 2013, pp. 133–143.

105

