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Abstract— Gesture interaction is today recognized as a natural, intuitive way to execute commands of an interactive system. For this 
purpose, several stroke gesture recognizers become more efficient in recognizing end-user gestures from a training set. Although the 
rate algorithms propose their rates of return there is a deficiency in knowing which is the most recommended algorithm for its use. In 
the same way, the experiments known by the most successful algorithms have been carried out under different conditions, resulting in 
non-comparable results. To better understand their respective algorithmic efficiency, this paper compares the recognition rate, the 
error rate, and the recognition time of five reference stroke gesture recognition algorithms, i.e., $1, $P, $Q, !FTL, and Penny Pincher, 
on three diverse gesture sets, i.e., NicIcon, HHReco, and Utopiano Alphabet, in a user-independent scenario. Similar conditions were 
applied to all algorithms, to be executed under the same characteristics. For the algorithms studied, the method agreed to evaluate the 
error rate and performance rate, as well as the execution time of each of these algorithms. A software testing environment was 
developed in JavaScript to perform the comparative analysis. The results of this analysis help recommending a recognizer where it 
turns out to be the most efficient. !FTL (NLSD) is the best recognition rate and the most efficient algorithm for the HHreco and 
NicIcon datasets. However, Penny Pincher was the faster algorithm for HHreco datasets. Finally, $1 obtained the best recognition rate 
for the Utopiano Alphabet dataset. 
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I. INTRODUCTION 

Gesture-based User interfaces are often recognized for 
their naturalness and intuitiveness [1], [2], with a wide range 
of applications, such as diagram design, user interface 
prototyping, online food ordering, handwriting recognition, 
in-car interaction, and smart home [3]. Today’s operating 
systems do support programming gesture-based interfaces, 
even suggesting some design guidelines for appropriate 
mapping gestures to functions, which is a complex problem 
[4]. Unfortunately, these guidelines cannot cover all 
potential usages. In order to collect gestures for other 
purposes that are not covered, elicitation techniques [5] can 
be used to inform the design process for new gestures [6]. 
Subsequently, techniques such as machine learning, 
template-based pairing, and pattern recognition are used to 
incorporate these gestures into a gesture recognition process. 
Gesture recognition algorithms typically try to distinguish 
the candidate gesture that was drawn, to compare it with 
reference gestures previously recorded in the system, and to 
return the closest gesture that has been found, if any.  

Nowadays, the main challenge for gesture recognition is 
to produce a recognition algorithm with the best algorithmic 
efficiency, e.g., in terms of execution time, recognition rate, 

and computational complexity. Several such algorithms 
already exist, but they are all programmed in different 
languages and tested on different gesture sets. 

The literature review does not report any analysis in 
which these algorithms are compared under similar 
conditions., thus having consequences on hypotheses and/or 
assumptions about these algorithms. A contribution to 
addressing this problem, therefore, consists of conducting a 
comparative analysis of the most prominent gesture 
recognizers, such as $1 [7], $P [8], $Q [9], !FTL and !NFTL 
[10] and Penny Pincher [11], under the same experimental 
conditions, using as assessment parameters their recognition 
rate and execution time. To comply with this, a case study 
will be carried out that takes as a reference a set of gestures, 
which will be used individually, in the evaluation of the 
algorithms, in order to compare the algorithms, indicated 
above. 

The comparative analysis is performed under the same 
consistent conditions of execution and with the same 
reference sets of gestures. The JavaScript programming 
language is used to guarantee the same execution 
environment. The study is focusing on three gesture sets: 
NicIcon [12], HHreco [13], [14] and Utopiano Alphabet 
[15]. This last dataset was created by us to incorporate other 
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sets of gestures in our comparative evaluation. As a result of 
the study, it is expected to obtain a series of statistical tables 
with the data obtained from the experimentation will be 
presented and analyzed to identify the most appropriate 
platform for the recognition of the proposed gesture. 

The purpose of this article is to report the results of a 
comparative study to contribute with the advances in 
recognition of gestures by being able to make known which 
are the most efficient algorithms, making the selection 
process easier when it is necessary to incorporate natural 
interactions with gestures in software applications. This will 
help in the creation of new systems that allow a much more 
sophisticated and simpler human-computer interaction for 
end users. With correct implementation of a recognition 
algorithm, a system can be made much more efficient and 
time and money will be saved in its development. A special 
approach is towards the implementation of these recognizers 
in systems that help the prototype in the analysis and 
requirements gathering phase, since they will show in real-
time how the interfaces and views will be displayed in the 
application being developed, making that these stages of 
development are much more precise and respond to the 
user’s taste. 

The remainder of this paper is structured as follows: the 
next section reviews some work related to the most known 
gesture recognition algorithms. The third presents the 
comparative evaluation under the same conditions of 
execution. The fourth section concludes the paper by 
summarizing the findings of the experiment and by 
discussing some future avenues of this work. 

II. MATERIALS AND METHOD 

A. Gesture Definition 

In general, a gesture is referred to as anybody movement 
performed to convey some meaning to the audience, such as 
some thoughts, opinions, ideas, feelings, intentions, or to 
combine them with speech. In gesture interaction, a gesture 
is more precisely defined as “any physical movement that a 
digital system can sense and respond to without the aid of 
traditional pointing devices, such as a mouse or stylus” [1]. 
More specifically in the context of 2D gesture recognizers, a 
stroke gesture consists of a sequence of points delineated by 
a starting point and an ending point [2]. There are two types 
of gestures [2]: (1) Uni-stroke are gestures without any 
interruption in their line [7], and (2) Multi-stroke are 
gestures with time/space interruption among their strokes 
[16]. An interruption is detected with the lifting of the input 
device (e.g., a stylus or a mouse) until touching the surface 
again for the next stroke of the gesture [8]. 

A gesture can also have a resampling, which is to 
transform the figure with n number of points to a specific 
number of points p ≤ n. Gestures have several invariance  
properties such as: translation (when  invariant to position), 
scale (when invariant to size), rotation (when invariant to 
angle), and articulation (when invariant to the way the stroke 
have been performed). 

B. Current Status of Stroke gesture Recognition Algorithms 

In this section, we deliver a brief overview of selected 
stroke gesture recognizers to provide the study with some 

background in this field. A pioneer is GrandMa [17], which 
recognizes a candidate gesture from a training set by 
computing 13 geometric features and comparing them with 
the reference gestures contained in the training set. Instead 
of extracting and comparing features, a typical process found 
in machine learning, Levenshtein-based recognition (LVS) 
[18] decomposes a gesture into a suite of small directional 
strokes indicating the eight directions of a compass, and 
compares gestures with the Levenshtein distance. 

$1 [7] showed a quantum leap in the race for the best 
recognizer by forgetting about complex programming 
environments, procedures, and recognition processes to 
simplify the recognition to its maximum. In this way, it 
opened a new series of recognizers. $1 is a template-based 
Uni-Stroke gesture recognizer that offered a very good 
recognition rate while keeping the recognition time low. $P 
[8] extended $1 to recognize multi-stroke gestures by 
adopting a cloud matching approach instead of a pattern, 
thus offering flexibility in the way gestures are compared, 
indifferently from their composition, direction, ordering, and 
number of strokes. $Q [9] is the last member of the $-family, 
which optimizes the recognition time, especially for low-end 
devices which are computationally less efficient. Until now, 
these recognizers are point-to-point pattern matcher in that 
they compare points of the candidate gesture to those of the 
reference gestures. Penny Pincher [11] follows a point-to-
vector pattern matching by transforming points into vectors 
to be compared. !FTL [10] generalizes this approach with a 
vector-to-vector pattern matching: all gestures are vectorized 
and compared based on the Lester distance generalized on 
vectors instead of points. This approach intrinsically satisfy 
position, scale, and rotation invariances since everything is 
computed based on vectors. For these reasons, we chose 
recognizers considered as representative members of these 
three families. 

C. Apparatus 

The evaluations were carried out using a MacBook 
computer with the following characteristics: Processor: 1.1 
GHz Intel Core M. RAM memory: 8 GB. SSD: 251 GB. 
Graphics Card: Intel HD Graphics 5300 1536 MB. 
Operating system version: macOS 10.14.4 (18E226). Kernel 
version: Darwin 18.5.0. 

D. The Software Experimentation Environment 

Figure 1 contains the main screen of the runtime 
environment of !FTL [10]. This environment was developed 
in JavaScript. The figure shows that the main functionalities 
of the experimentation environment are: save a gesture, 
compare a gesture, clean the working area, load gestures, 
export gestures, compare datasets, export files with the 
results. In order to save a candidate gesture, the first thing 
that is done is to draw the gesture within the working area, 
place a name, choose the number of points for resampling, 
select the threshold and click on the button to save the 
gesture. The next step is to compare the gesture, for this 
another gesture is made with which you are going to undergo 
the experimentation, and click on the “Compare Gestures” 
command. This will display the results for each algorithm, 
showing the name of the resulting gesture, the time used to 
obtain the result and the distance, as shown in Figure 1. 
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Fig. 1 The interface of the experimentation environment 

 
 

 
Fig. 2 The datasets used in the experiment: a) NicIcon [12]; b) HHreco [13, 14] and c) Utopiano Alphabet 

 

E. Gesture Recognition Algorithms 

As previously mentioned, the algorithms selected were 
$1, $P, $Q, !FTL and Penny Pincher, since they belong to 
three different families. We are not aware of any software 
environment that incorporates all these gesture recognizers 
at once, except in iGesture [19], which consists of a toolkit 
for integrating stroke gesture interaction in user interfaces, 
but not for comparing algorithms. 

F. Datasets 

To perform the experiment, a set of datasets and a 
common execution environment were used. Figure 2 and 
Table 1 describe the datasets used in the experiment. Note 

that for each dataset a significant number of gestures is 
displayed. 

TABLE I 
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENT 

Dataset 
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 Total Gestures 

NicIcon [12] 14 32 55 14x32x55=24.640 

HHreco[13, 
14] 

13 19 30 13x19x30 = 7.410 

Utopiano 
Alphabet 

22 20 10 22x20x10=4.400 
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G. Quantitative Measures 

1)  Recognition Rate: The recognition rate is an indicator 
that allows to calculating the percentage of effectiveness of 
an algorithm when it is subjected to an evaluation of gestures 
of a candidate dataset with respect to the reference gestures 
previously stored in the system. This means that, in 
comparison, each candidate gesture will be evaluated with 
the recognition algorithms against the reference gestures that 
are previously registered in the system. The result will be 
indicated showing the closest gesture in distance and the 
time it took to compare. Then, the number of times in which 
the algorithm recognized the candidate gestures correctly is 
added. This sum is divided over the number of gestures 
compared and with that, the recognition rate is already 
obtained. 

2)  Error Rate: The error rate is a factor that allows to 
calculate the percentage of deficiency of a specific algorithm 
when it is submitted to the evaluation of the gestures of a 
candidate dataset with respect to the previously stored 
reference gestures. This means that, in the comparison, each 
candidate gesture will be evaluated with the recognition 
algorithms against the gestures that are in the system and the 
result will be indicated, showing the closest gesture in 
distance and the time it took to compare. Then, the number 
of times the algorithm recognized the candidate gestures 
incorrectly is added. This sum will be divided by the number 
of gestures compared, thus enabling to compute the error 
rate. 

3)  Recognition Time: The recognition time is an indicator 
that captures the time in which an algorithm has been 
worked when it is subjected to an evaluation, in which a 
candidate dataset is compared with the datasets stored in the 
system, using the algorithm procedure to indicate the result. 
The recognition time is used to see the performance of each 
algorithm evaluated. This factor is an average value since 
time is measured since the evaluation of a gesture of the 
candidate dataset begins and ends with the result of that 
gesture. This time is added for each gesture and finally the 
average time is computed in milliseconds. 

 

 
Fig. 3 The experimentation procedure 

H. Procedure 

Similar conditions were applied to all algorithms, to be 
executed under the same characteristics. For the algorithms 
studied, the method agreed to evaluate the error rate and 

performance rate, as well as the execution time of each of 
these algorithms. First, a similar execution environment was 
chosen for the comparison process. For these reasons, the $Q 
and Penny Pincher algorithms were implemented in the 
JavaScript language. Next, these algorithms were integrated 
into the !FTL test environment. In parallel, the Utopiano 
dataset was defined. After that, the Utopiano dataset was 
created, with the voluntary participation of 20 people. Once 
the similar conditions were created for each of the 
algorithms, the experimentation was carried out with each 
dataset. For each dataset the experimentation procedure 
performed is summarized in Figure 3. 

III.  RESULTS AND DISCUSSION 

This section presents the results obtained from the 
comparative evaluation of the !FTL, $1, $P, $Q and 
PennyPincher algorithms, performed with the NicIcon, 
HHreco and Utopiano datasets. For each of the datasets, the 
recognition rate, the recognition time and the error range of 
the algorithms were calculated. For each measure, the results 
will be reported and discussed. 

I. Recognition Rate 

NicIcon recognition rate analysis: Table 2 and Figure 4 
show the average results of the recognition rate for the 
NicIcon dataset. We can appreciate from these results, the 
most recognized algorithm was !FTL(LSD), followed by 
!FTL(NLSD). On the other hand, the gestures that had more 
accurate results were Electricity and Roadblock. It is 
important to note that some algorithms did not fully 
recognize certain gestures, such as !FTL(NLSD) and $1 with 
the “Gas” gesture. Similarly, the same situation happens 
with the algorithm which did not recognize the “Flood” 
gesture. 

TABLE II 
NICICON RECOGNITION RATE (EXPRESSED IN PERCENTAGE VALUES) 

 FTL 
(LSD) 

FTL 
(NLSD) 

$1 $P $Q Penny 
Pincher 

Average

Gas 0.20 0.00 0.00 0.91 0.51 2.42 0.67 

Casualty 1.01 0.00 1.92 3.03 0.30 1.31 1.26 

Police 2.93 1.22 0.91 2.83 0.71 0.10 1.45 

Fire 
brigade 

6.79 0.30 6.19 2.98 0.71 1.52 3.08 

Paramedics 4.34 5.56 8.18 1.82 1.41 11.92 5.54 

Accident 6.05 18.63 2.43 5.34 0.85 2.46 5.96 

Car 6.05 18.63 2.43 5.34 0.85 2.46 5.96 

Person 4.24 0.20 3.03 10.0018.99 9.70 7.69 

Fire 8.91 8.91 19.21 5.23 0.20 8.69 8.53 

Injury 9.80 0.10 13.4311.8216.57 11.21 10.49 

Flood 12.73 7.88 8.28 0.81 37.98 0.00 11.28 

Bomb 31.59 35.20 7.10 5.05 0.91 4.35 14.03 

Roadblock 14.06 14.67 7.38 26.1216.42 7.08 14.29 

Electricity 28.33 21.22 21.3215.80 1.52 19.83 18.00 

Average 9.79 9.47 7.27 6.93 6.99 5.93  
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Fig. 4 Recognition rate resulting from the NicIcon dataset 
 
HHreco recognition rate analysis: Table 3 and Figure 5 

present the results obtained after experimentation with the 
HHreco dataset. The most recognized algorithms was 

!FTL(NLSD), followed by $1. The most recognized gestures 
were Ellipse and Arch. 

 

TABLE III 
HHRECO RECOGNITION RATE (EXPRESSED IN PERCENTAGE VALUES) 

 FTL (LSD) FTL (NLSD) $1 $P $Q Penny Pincher Average 
Parallelogram 1.96 15,29 4.71 4.51 5.49 3.14 5.85 
Hexagon 2.94 18.63 10.39 0.78 1.18 1.37 5.88 
Moon 12.35 16.27 4.90 4.12 4.12 4.31 7.68 
Pentagon 6.47 14.12 23.14 0.59 1.57 0.39 7.71 
Cylinder 0.98 16.47 19.80 6.86 4.12 8.04 9.38 
Trapezoid 0.78 12.75 13.14 9.80 11.57 9.41 9.58 
Square 13.92 32.16 8.63 4.31 4.31 4.71 11.34 
Triangle 12.16 34.90 27.45 7.25 5.88 8.04 15.95 
Cube 3.33 15.29 20.00 22.75 11.65 24.12 16.24 
Heart 13.14 16.47 34.12 19.41 23.92 16.08 20.52 
Callout 28.43 34.31 36.27 12.35 11.76 12.94 22.68 
Ellipse 64.12 95.29 15.10 10.00 8.82 4.12 32.91 
Arch 6.27 5.10 28.63 50.20 54.51 54.90 33.27 

Average 12.84 25.16 18.94 11.76 11.48 11.66  
 
 

 
 

Fig. 5 Recognition rate resulting from the HHreco dataset 
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Utopiano recognition rate analysis: Table 4 and Figure 6 
indicate the results obtained after experimentation with the 
Utopiano dataset. You can see that the algorithm that most 

recognized was $1 and !FTL(NLSD). The most recognized 
gestures were the letter N and P. 

 

TABLE IV 
UTOPIANO RECOGNITION RATE (EXPRESSED IN PERCENTAGE VALUES) 

 FTL (LSD) FTL (NLSD) $1 $P $Q Penny Pincher Average 
B 
E 
S 
Y 
V 
M 
X 
K 
D 
T 
F 
R 
C 
A 
I 
O 
L 
H 
G 
N 
P 
Q 

1.60 
16.50 
2.50 
2.00 
5.50 
5.00 
7.50 
23.16 
30.50 
4.50 
43.50 
9.00 
16.50 
23.50 
24.50 
33.50 
31.00 
20.00 
17.83 
20.00 
33.50 
40.50 

3.85 
23.00 
6.50 
17.33 
13.50 
7.00 
16.50 
12.11 
38.00 
15.00 
46.50 
6.50 
47.00 
32.00 
26.50 
39.50 
68.00 
32.50 
35.17 
35.00 
19.50 
37.00 

3.90 
19.00 
44.00 
32.67 
30.50 
43.00 
39.00 
54.21 
18.50 
44.50 
26.00 
62.00 
44.00 
65.50 
37.50 
62.50 
56.00 
67.00 
78.67 
67.00 
74.00 
70.50 

1.10 
7.00 
10.00 
12.67 
14.50 
17.50 
13.00 
7.89 
15.00 
23.50 
9.50 
25.00 
14.00 
13.50 
25.50 
14.50 
12.50 
20.50 
20.17 
28.50 
35.00 
32.00 

0.85 
7.00 
13.00 
10.67 
15.00 
11.00 
13.50 
11.05 
11.50 
18.50 
9.50 
22.00 
18.00 
10.50 
24.00 
11.50 
5.50 
22.00 
20.83 
17.00 
28.50 
34.00 

0.95 
7.00 
13.00 
10.67 
15.00 
11.00 
13.50 
11.05 
11.50 
18.50 
9.50 
22.00 
18.00 
10.50 
24.00 
11.50 
5.50 
22.00 
20.83 
17.00 
28.50 
34.00 

2.04 
13.00 
14.33 
14.44 
15.67 
16.83 
17.17 
19.30 
21.75 
21.83 
24.58 
24.75 
25.83 
26.33 
27.25 
29.33 
30.58 
31.08 
32.47 
32.67 
37.58 
40.75 

Average 18.73 26.27 47.27 16.95 15.25 17.24  
 
 

 
 

Fig. 6 Recognition rate resulting from the Utopiano dataset 
 

J. Recognition Time 

NicIcon recognition time analysis: Figure 7 shows the 
average recognition time results of the NicIcon dataset. 
Technically it is observed that the Penny Pincher algorithms, 
followed by !FTL(NLSD), are the fastest to recognize 
NicIcon gestures. Gas and Police were the gestures with the 

best recognition times, that is, the lowest. Despite the speed 
of these algorithms, it should be borne in mind that some of 
the cases, these algorithms do not fully recognize gestures, 
as is the case of Penny Pincher with the Flood and Police 
gesture. While in the case of !FTL(NLSD), the unrecognized 
gestures are Gas and Casualty. 
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Fig. 7 Average recognition time resulting from the NicIcon dataset 

 
HHreco recognition time analysis: Figure 8 presents the 

results of the average recognition time of the HHreco 
dataset. It is indicated that the Penny Pincher algorithms, 
followed by !FTL(LSD), are the fastest to recognize HHreco 
gestures. The fastest representations to be recognized were 

Pentagon and Hexagon. Despite the result obtained by these 
algorithms, their recognition rate was not very high, 
therefore, these algorithms cannot be considered very 
efficient. On the contrary, this shows that they had the least 
ability to recognize gestures. 

 
 

 
Fig. 8 Average recognition time resulting from the HHreco dataset 

 
Utopiano recognition time analysis: Figure 9 shows the 

results of the average recognition time of the Utopiano 
dataset. It is indicated that !FTL(NLSD) algorithms, followed 

by Penny Pincher, are the fastest to recognize NicIcon 
gestures. The fastest representations to be recognized were 
the letters F and K. 

 

 
Fig. 9 Average recognition time resulting from the Utopiano dataset 
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Table 5 shows a compilation of the results obtained from 
the comparative evaluation presented in previous section. 
The table indicates the two best algorithms, according to the 

recognition rate and the recognition time for each of the 
datasets.  

 
TABLE V 

SUMMARY OF THE RESULTS (EXPRESSED IN PERCENTAGE VALUES) 

Datasets 
Measures NicIcon HHreco Utopiano 

 
Recognition rate 

Position Recognizer Score Position Recognizer Score Position Recognizer Score 
1st 
2nd 

!FTL(LSD) 
!FTL(NLSD) 

9.79% 
9.47% 

1st 
2nd 

!FTL(NLSD) 
$1 

25.26% 
18.94% 

1st 
2nd 

$1 
!FTL(NLSD) 

47.27% 
26.27% 

 
Recognition time 

Position Recognizer Score Position Recognizer Score Position Recognizer Score 
1st 
2nd 

Penny Pincher 
!FTL(NLSD) 

0.216ms 
0.372ms 

1st 
2nd 

Penny Pincher 
!FTL(LSD) 

0.34ms 
0.361ms 

1st 
2nd 

!FTL(NLSD) 
Penny Pincher 

0.518ms 
0.757ms 

 
In the first dataset, NicIcon, !FTL(LSD) is distinguished 

as the algorithm with the highest recognition rate with 
9.79%. The next algorithm is !FTL(NLSD) with a 9.47% 
recognition rate, that is, only 0.32% lower than !FTL(LSD). 
In the case of Electricity and Roadblock, the two gestures 
with the greatest number of successes, the algorithms did not 
meet the expectations, since it was proposed to have only an 
error rate of 21.43%, in both gestures, and a 90.21% and 
90.53% error with !FTL(NLSD), while !FTL (LSD) showed 
71.67% and 85.94% of failed acknowledgments. Likewise, 
the Penny Pincher algorithm is the fastest for the NicIcon 
dataset with 0.22 ms, but its recognition rate is only 5.93%. 
The next fastest is !FTL(NLSD) with 0.37 ms, that is 0.15 ms 
more. Because of its recognition rate and speed, it makes the 
! FTL (NLSD) algorithm the most efficient for the NicIcon 
dataset. 

In HHreco, we can see that !FTL(NLSD) as the algorithm 
with the best recognition rate with 25.26 %. The algorithm 
that obtained second place was $1 with an 18.94% 
recognition rate, that is, it is 6.32% lower than! FTL 
(NLSD). In the case of Ellipse and Arch, which are the two 
most successful gestures, the proposal was complied with, 
since Ellipse with !FTL(NLSD) had 95.29% assertiveness, 
while with Arch he obtained 5.10% of hits over 15.34% of 
the proposed error rate. On the other hand, with $1 and 
Ellipse it resulted in 15.10% of assertiveness over the 
estimated 70%, and with Arch it achieved 28.63%, 
exceeding the indicated error rate of 15.34%. From the point 
of view of recognition time, the Penny Pincher algorithm 
was the fastest for the HHreco dataset with 0.34 ms, only 
that its recognition rate only reached 11.66%. The next 
fastest algorithm was !FTL(NLSD) with 0.36 ms, that is 0.02 
ms more than the Penny Pincher time. This demonstrates its 
efficiency again. 

Finally, in the Utopiano Alphabet dataset, it is shown that 
the $1 algorithm has the best recognition rate with 47.27%. 
The second algorithm with the highest number of hits was 
!FTL(NLSD) with 26.27%, that is, it is 21% less than $1. In 
the case of the letter P and N, which are the two gestures 
with the highest recognition rate, the letter P with $ 1 had 
74% of assertiveness, while with the letter N it got 67% of 
hits on the 18.18% of the error rate that was defined in both 
letters. !FTL(NLSD) and the letter P obtained 19% over the 
18.18% that was estimated to be correct, and with the letter 
N it achieved 35% of assertiveness, exceeding the error rate 
indicated above. Regarding the recognition time, the 

!FTL(NLSD) algorithm was the fastest in the Utopiano 
dataset with 0.52 ms, followed by Penny Pincher with 0.77 
ms, that is, only a difference of 0.25 ms. And for the third 
time, !FTL(NLSD) was once again the fastest and one of the 
most accurate algorithms. 

IV.  CONCLUSION 

This paper presented a comparative analysis of the 
algorithmic efficiency of different algorithms on two 
existing datasets and a dataset generated for this purpose. 
Although the algorithms were evaluated under the same 
experimental conditions, i.e., with the same data sets on the 
same computer, the recognition rates are lower than 
expected. Although the experiment was performed on the 
same computer, there were peaks of times that varied due to 
the events that the browser decided to allocate more time to 
perform. For this reason, it is recommended to make the time 
allocation for each process more uniform. One proposal is to 
implement a service with low-level language such as C, to 
perform the evaluation of the algorithms within a 
microcontroller. 

The evaluation process was semi-automatic since the 
candidate gestures had to be done manually for each dataset 
and compared with the dataset gestures. Therefore, it is 
suggested to automate the evaluation [20] that can be taken 
as a reference a gesture of the dataset randomly and evaluate 
the remaining gestures against this selected gesture. This 
process would be repeated for each gesture in the dataset: 
while there was an unassessed gesture, it would be selected 
and evaluated against the remaining gesture group. With this 
form of evaluation, candidate gestures by the user would be 
avoided. In the same line of automatic evaluation, gestures 
stored in the experiment environment could be subject to 
evaluation of design guidelines in terms of articulation, 
including their operationalization in HTML (as in [21]) for 
instance. 

One of the main drawbacks encountered in making the 
comparative analysis has to do with the different formats for 
data that exist by dataset. Each dataset has a different way of 
saving the repetitions of the gestures, in other words, the 
way to store the name of the repetition that was performed, 
the way to display the coordinates of the points and how 
each file is saved with all repetitions according to user or 
representation. Therefore, it is suggested that a protocol be 
made for algorithms to run in similar environments. 
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The use of datasets helped save gesture diversification 
time for the evaluation process, and as mentioned earlier, 
there are several datasets that could not be used in this 
project. For this reason, it is recommended to collect and use 
other datasets in the future. There are datasets that have 
characteristics that challenge recognition algorithms, such as 
datasets with 3D figures. This opens the opportunity to 
evaluate more algorithms that specialize in these gestures, as 
is the case of $3, which can recognize figures in third 
dimension. 
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