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Abstract— In industrial contexts to date, there are several solutions to monitor and intervene in case of anomalies and/or failures. 
Using a classic approach to cover all the requirements needed in the industrial field, different solutions should be implemented for 
different monitoring platforms, covering the required end-to-end. The classic cause-effect association process in the field of industrial 
monitoring requires thorough understanding of the monitored ecosystem and the main characteristics triggering the detected 
anomalies. In these cases, complex decision-making systems are in place often providing poor results. This paper introduces a new 
approach based on an innovative industrial monitoring platform, which has been denominated SMILE. It allows offering an 
automatic service of global modern industry performance monitoring, giving the possibility to create, by setting goals, its own 
machine/deep learning models through a web dashboard from which one can view the collected data and the produced results.  
Thanks to an unsupervised approach the SMILE platform can understand which the linear and non-linear correlations are 
representing the overall state of the system to predict and, therefore, report abnormal behavior. 
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I. INTRODUCTION 

To date, industrial smart monitoring solutions are based 
on threshold systems, applied only to the monitored device, 
or based on supervised machine learning techniques [1], [2]. 
In the case of single-board systems, each device can be 
associated with an alerting system if the individual 
component does not behave as expected, thus informing the 
system reactively, resulting in a halt to the production 
process. Techniques that rely on the use of supervised 
machine learning techniques proactively solve cases of 
failure and malfunction, but require considerable application 
time and skills, resulting in increased costs; the extraction 
phase of the features turns out to be the most time-
consuming process, making this solution applicable only in a 
few cases.  

The innovation suggested in this study is the proposal of a 
Smart Monitoring IoT Learning Ecosystem (SMILE) for the 
intelligent monitoring and control of an ecosystem of 
processes that characterize the corporate "life" of a factory 
by using automatic prescriptive techniques combined with 
supervised and non-supervised machine and deep learning 
techniques, artificial intelligence and innovative IoT sensors 
equipped with advanced communication algorithms. In 
addition, SMILE aims to automate information extraction by 
lowering the costs of implementing this process and, 

moreover, offering greater accuracy in the detection of 
anomaly, thanks to the innovative use of deep neural 
networks. An innovative dashboard will allow visualizing 
the characteristics learned from neural networks related to 
the operation of a given process or system, as well as linear 
and non-linear correlations, thus highlighting the parameters 
that affect the individual device which belongs to the 
network.  

The following types of analysis can be carried out on the 
platform: 

• descriptive, with the aim of representing the state and 
correlations between the data; 

• diagnostics, with the aim of detecting the causes of 
abnormal behavior; 

• predictive, to predict when anomalous behavior will 
occur; 

• prescriptive, to know when to intervene to avoid 
abnormal behavior and downtime. 

The SMILE platform will focus on two application 
scenarios of interest: 

• Prescriptive maintenance for quasi-unmanned 
environment;  

• Architecture for remote control as a service.  
• The heart of the SMILE project includes: 
• development of an integrated advanced IoT sensor 

monitoring and control system; development of 
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predictive and prescriptive maintenance process-
independent systems based on the use of unsupervised 
and supervised machine learning algorithms, with the 
aim of making maintenance and production phases 
more efficient; acceleration of the learning phases for 
anomaly detection and prediction models through the 
analysis of inter-factory data, that is, homogeneous 
data measured in different factories; 

• alert communication system (sms, email, telegram, 
etc); 

• developing a dashboard through which the user can 
manage the entire platform;  

• design and development of innovative IoT sensors 
(responsive power, monitoring network parameters, 
rain estimation, etc.) to improve the quality of 
monitored data; 

• monitoring the reliability of a given sensor (life time 
prediction) and the validity of the measured data (dirty 
sensor, etc.), applying machine learning techniques.  

All this will allow moving towards a model of the 
process-independent monitoring and prescriptive analysis as 
a service. 

II. MATERIAL AND METHODS 

A. Platform Architecture Overview 

The proposed architecture aims to create a platform for 
intelligent monitoring of an industry that is as customizable 
and of general purpose as possible, offering the possibility to 
verticalize the platform according to one’s needs. The 
platform aims to monitor complex systems that allow 
triggers to run when previously defined conditions occur. 
Specifically, an open-source enterprise product for 
monitoring IT infrastructure, services, applications and 
resources in the cloud, i.e. Zabbix, was identified. Zabbix is 
highly customizable for any type of company with the most 
diverse practical applications [3]. The Zabbix platform finds 
excellent application in distributed systems, managing to 
work together with other Zabbix systems through 
configuration that conveys data in a server-to-server or 
proxy-to-server mode. Thanks to these features, it is possible 
to interface with systems that already use Zabbix or other 
monitoring platforms allowing the SMILE platform to 
provide an intelligent monitoring service, aimed at any type 
of industry that will add value to the normal features of 
Zabbix.  In addition, the great readiness for distributed 
environments will allow the SMILE platform to aggregate 
and process homogeneous data from different installations to 
accelerate the analysis and prediction processes by 
implementing what are described as processes of inter-
factory and intra-factory analysis. 

The diagram outlined in Fig. 1 shows a possible 
configuration in case the required verticalization does not 
involve previous installation of a monitoring tool: through 
the installation of specific applications, called agents, the 
SMILE platform will provide data for processing. Fig. 2, on 
the other hand, shows how the platform will be configured in 
the event of a pre-existing monitoring tool from which all 
the data needed for the analysis is sent to SMILE. In this 
case, the SMILE platform will develop a special agent called 
a "platform agent" that will allow the data to be conveyed 

from one platform to another. Thanks to these two 
configurations each industry will be able to interface with 
the SMILE platform to take advantage of the offered 
services, whereas the platform itself will arrange all the 
necessary components. Once the infrastructure is configured, 
a period of system observation will begin where, via the web 
interface, the user will be able to define the business 
objectives based on the produced data: then, once the set 
data is received, the user will have the opportunity to define 
what constraints the system must comply with and the events 
that must be recorded during observation. Hence the SMILE 
platform will be able to find correlations between the data 
and classify, as well as predict, events in the system. 
 

 
Fig. 1 SMILE architecture: stand-alone. 

 

 
Fig. 2 SMILE architecture: Integration with third-party monitoring systems. 

 
Possible uses involve:  

• detection and prediction of anomalies and/or failures 
of industrial plants;  

• detection and prediction of abnormal environmental 
conditions such as fire and/or increased pollution;  

• detection and prediction of anomalies and/or failures 
in data centers/cloud environments.  

The results of the analyses will be shown in the dashboard 
and made available to the monitoring system from which one 
can, for example, configure triggers to interact with the 
system for specific notifications and/or actions. This is what 
the SMILE platform refers to as a "smart agent": an 
intelligent application agent capable of evaluating, predicting 
and acting appropriately in the specified events. 

B. Process-independent Smart Monitoring Algorithms 

This section proposes a method for the creation of an 
optimized and composed neural network for the process of 
detecting and predicting anomalies (defined based on 
industrial objectives) in the generic context of industrial 
machinery. In this way, prescriptive maintenance can be 
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carried out, minimizing, for example, the costs of periodic 
maintenance of the machinery, which appear to have a 
significant economic impact in the industrial context. There 
are several studies on the prediction of anomalies in the 
smart industries, based on supervised and unsupervised 
machine learning techniques [4]–[6]. Today, industries 
usually use supervised machine learning techniques for 
intelligent industrial monitoring. Supervised learning 
methods such as the Na've Bayes [7], The Support Vector 
Machine [8], etc. can be used to implement data 
classification and regression, but only after the phase of 
automatic feature creation. The solution to this is provided 
by the introduction of deep learning techniques that solve the 
problem of feature engineering and extraction, as deep 
neural networks have hidden multi-layered structures that 
allow representing the data in a more abstract way, allowing 
to find linear and non-linear correlations between 
information of different types, generated from multiple 
sources belonging to the monitored industrial system [9], 
[10]. 

The idea is to find a set of deep neural networks to 
automatically perform the process of selecting and extracting 
features. The fundamental difference between the networking 
context (paragraph C) and the more generic one (smart 
monitoring of machinery via IoT sensors) lies in the 
heterogeneity of the data provided by the IoT sensor 
ecosystem, which was first installed in the machines: due to 
different nature of the machines, different physical quantities 
are monitored, which therefore require a pre-processing 
process (homogenization) before being provided as an input 
to deep networks for the extraction of salient features. Once 
the features are extrapolated through unsupervised methods 
implemented by deep networks, the classification is defined 
in relation to the operating objective (defined by the industry 
itself), for the detection of any errors and/or anomalies, if the 
industrial ecosystem does not behave as defined by objective. 
To date, various deep learning architectures have been 
developed and research topics relevant to the industrial field 
are growing rapidly. Several typical deep learning 
architectures are discussed below. 

1) Convolutional Neural Networks (CNN): It is a 
multilayer feed forward artificial neural network that is 
initially proposed for two-dimensional image processing. 
One-dimensional sequential analysis of data, including 
natural language processing and speech recognition has also 
recently been studied.  In CNN, feature learning is achieved 
by alternating and stacking convolutional levels and grouping 
operations. After learning multi-layered features, fully 
connected layers convert a two-dimensional feature map into 
a one-dimensional vector that powers it, resulting in a 
SoftMax function for model construction. Studies have been 
conducted on the applicability of CNN  [11] to solve this 
problem, where by modelling the signal received with Fast 
Fourier Transform and wavelet transform, the processed 
signal can be sent as a 2D input for CNN and bi-directional 
LSTM to make a prediction that takes into account the energy 
correlations of the machines in the long term, thus being able 
to predict a malfunction in relation to the default goal. 

2) Restricted Boltzmann Machine (RBM): It is an energy-
based model in which the visible layer of the neural network 
is used to insert data, while the hidden layer is used to extract 

features, leading to the latter different representations of the 
visible layer, that is, the input. RBM takes advantage of 
automatic feature extraction required by training datasets, 
avoiding the local minimum value.  

3) Auto-Encoder (AE): Auto Encoder (AE) is an 
unsupervised learning algorithm that extracts functionality 
from input data without the need for outgoing label 
information. It consists mainly of two parts, including 
encoders and decoders. The encoder can perform data 
compression especially when processing high-dimensional 
input by mapping the input to a hidden layer. The decoder 
can reconstruct the approximation of the input.  The goal of 
this approach is the optimal combination of deep neural 
network and machine learning method, predisposed to the 
"as-a-service" formula and the continuous changes that take 
place in complex systems such as those in question. 

C. Smart Monitoring Network Algorithms for Predictive 
and Perspective Maintenance 

The goal is to build an AI-based networking framework 
to optimize the anomaly detection and prediction process 
(based on a predefined goal), for example, minimizing 
business downtime, or maximizing routing performance 
based on the load in the system. The networking framework 
will need to be optimized to provide industry-specified key 
performance index (KPI) delivery methods, including the 
application of unsupervised machine learning for extracting 
significant features, combined with machine learning 
techniques to classify and/or predict predetermined goals 
(e.g. optimization of run-time routing). 

The application of complex neural networks, which have 
more levels of complexity than traditional neural networks, 
allows for a more precise training phase.  Various deep neural 
networks are expected in the various forms and with the 
appropriate changes (to solve the selection and extraction of 
features) in combination with the various types of known 
classifiers in order to choose the configuration between deep 
network and technical machine learning and achieve optimal 
accuracy. The proposed framework will use software defined 
network (SDN) paradigms, network function virtualization 
(NFV) [13] and multi-access edge computing (MEC) [14] 
and consists of three levels: 

1) Physical Deployment layer: A communication 
network with SDN switches, divided into Ingress Switch (IS) 
and Core Network (CS) switches. The communication 
infrastructure will therefore allow separating the data plan, 
made with the SDN switches, from the control one, which is 
generated by the SDN Controller. According to the SDN 
standard, and with the use of the OpenFlow communication 
protocol between the SDN Controller and the SDN switch, 
the SDN Controller will be able to programmatically decide 
on the run-time for the flow routing in order to fulfil 
performance requirements as to the flow routing with special 
reliability and delay needs for appropriate routes. 

2) Network-Level Support Engine: It is responsible for 
configuring the network path for each stream to ensure the 
KPIs specified for it. It is made with Network-Level Agent 
(NL-A) obtained as Virtual-Network Functions (VNFs) 
running on servers directly connected to the Ingress Switches. 
Their goal is to analyze inbound traffic to switches with a 
Deep Packet Inspection (DPI) function and predict the 
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current state and future behavior of the device that generated 
it. This prediction is made with a combined system based on 
machine learning, supervised and not, able to analyze 
observable sequences and infer from them a model that can 
consider any correlations between different flows generated 
by machines that interact with each other. 

3) Application-Level Support Engine: Its task is to 
intervene promptly in the control of the machinery if the 
commands coming from the remote-control system do not 
arrive on time, that is, with times below the predetermined 
levels for each flow. This is achieved by the presence of 
Application-Level Agents installed as Virtual Network 
Functions (VNFs) on network access nodes, close to the 
industrial machines to be controlled. 

D. “Smart Agents” 

The “smart agent” is a software module that acts as a 
connection interface between the monitoring platform and 
deep learning and machine learning algorithms that will 
provide predictions about anomalies and possible triggers. 
The “smart agent” should also be able to assess the learning 
status of the algorithms and provide detailed information 
which will appear on the dashboard concerning possible 
shortcomings (e.g. lack of data). Once the accuracy 
evaluation process provided by machine learning algorithms 
is complete, the "smart agent" can make decisions and take 
actions such as alerting or triggering previously defined 
triggers. In addition, at regular intervals the new data 
received will be aggregated and added to the dataset to refine 
the created models (by fine tuning and continuous 
improvement). In this way the “smart agent” will respond to 
possible structural changes in the system in a transparent 
manner with minimal or no intervention by the user. The 
processed data will be sent to SMILE, which will be tasked 
with storing and viewing it on the dashboard. Innovative 
sensors need specific “smart agents”. Their purpose is to 
collect data from innovative sensors (paragraph E) and 
determine its reliability in terms of quality and residual life 
time. This module should be able to take the data flow from 
the aggregation platform provided by the open source 
software Zabbix and determine the degree of reliability of 
measurements from one or more sensors in real time. 

This is necessary for the validation of the information 
learning process as poor data quality brings about multiple 
false positives or negatives resulting in platform’s goal not 
being achieved. For this reason, it is essential to ensure the 
accuracy and quality of the data received by the sensor itself. 
This assessment will allow the SMILE platform to evaluate 
the sensor's remaining lifespan in consideration to take 
preventive/prescriptive action. The quality assessment agent 
of the acquired data will also have to initiate an alerting 
procedure alerting the user, through the systems described 
above, about the malfunction resulting from a faulty sensor 
and therefore the need for maintenance. 

E. Innovative Sensors 

SMILE involves the integration of innovative sensors to 
increase the heterogeneity of the monitored data, identify 
correlations that may be difficult to obtain and provide an 
innovative tool to detect the reliability of the sensors, both in 
terms of size and the remaining life time. Innovative sensors 

will be geared towards monitoring different aspects of the 
smart factory interest. The data sampled from these sensors, 
added to those already in place, will provide a more 
comprehensive overall picture of the state of the factory, 
thus contributing to a more accurate detection of the 
anomalies and their underlying causes. The areas in which 
innovative sensors will be introduced are: 

• environmental monitoring (air quality, rain, outdoor 
and internal temperature sensors) [15][16][17] [18] 
[19];  

• monitoring equipment and systems (consumption, 
breakdowns, etc.);  

• security monitoring (personal, etc.) [20] [21];   
• data network monitoring [22].  

F. Reliability and “Smart Agent” 

IoT sensors are the real heart of a monitoring system: it is 
impossible, in fact, to unleash the true strength of predictive 
maintenance without being able to rely on qualified sources 
of data. For these reasons, the objective is to establish, with 
a certain degree of accuracy, the quality of the measured 
data (e.g. a dirty sensor may detect incorrect values) and the 
reliability of the sensors, i.e. to obtain an estimate of the 
remaining lifetime. This, of course, will improve the 
predictive model and consequently the quality of 
notifications that allow operators to differentiate anomalies 
due to a sensor malfunction from those due to a faulty device 
integrated into the factory's mission-critical processes. 

The large amount of data collected by sensors is used by 
decision-making systems that, using intelligent paradigms 
for the processing of measurement signals or machine 
learning (ML) techniques provide feedback on the status of 
systems and personnel. Malfunctions of these devices can 
seriously compromise the operation of entire industrial 
structures or, in the worst cases, even put workers' lives at 
risk. The science of predicting and detecting device 
malfunction is called reliability. Reliability refers to the 
sensor/system's ability to meet "nominal" operating 
specifications over time. SMILE considers different 
reliability analysis techniques based on: 

• Principal Component Analysis (PCA) for process 
monitoring and validation of received sensory data: 
after modelling the process as a PCA model, model 
residues are used to detect the presence of faulty 
sensors;  

• use of time series linear models that allow creating 
models without prior knowledge of the types of 
anomalies that sensor data might contain;  

• clustering algorithms for error detection;  
• decision-making trees. 

G. Dashboard and Alerting System 

The Smart Dashboard will be useful for integrating and 
viewing the SMILE platform. In particular, the required 
features are: 

• visualization of sensor data and system state;  
• goal-setting;  
• definition of actions (triggers);  
• predictions generated by “smart agents”. 

For features 1, 2 and 3, the SMILE platform will need to 
interface with Zabbix and/or equivalent platform using APIs 
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that have the necessary services to develop applications that 
use the platform as a data aggregator and trigger. Fig. 3 
shows the interaction between the various modules that 
make up SMILE and the external platforms (Zabbix). “Smart 
agents” will receive the flow of data from Zabbix, which 
will be processed continuously according to the specific task 
they are used for (e.g. sensor reliability or process anomaly 
predictions), and will communicate the prediction to SMILE 
which in turn can initiate, using the alerting module, 
notifications to operators via SMS, email or social media. If 
there is a solution to the problem, the SMILE platform can 
define actions to minimize and resolve the detected anomaly. 

Finally, the communication of any "IoT alerts" that allow 
the SMILE system to manage the potential anomalies of the 
various sensors that carry out the measurements is possible 
both by interacting on them directly, through specific 
methods contained within the Zabbix API, or indirectly, 
posting alerts via social media and configuring IoT sensors 
to receive them. 

 

 
Fig. 3 SMILE alerting system 

III.  RESULT AND DISCUSSION 

SMILE will focus on two application scenarios of interest: 
• Prescriptive Maintenance for Quasi-Unmanned 

Environments; 
• Architecture for Remote Control as a Service. 

A. Prescriptive Maintenance for Quasi-unmanned 
environments 

The planned network infrastructure consists of a network 
of sensors that periodically collects information and makes it 
available through a gateway to the SMILE platform that will 
process it appropriately and apply intelligence through 
prescriptive maintenance algorithms. The architecture is 
shown in Fig. 4.  

 

 
Fig. 4 Architecture of LoRaWan sensors and ML algorithms for prescriptive 
maintenance 

 
The sensor nodes use LoRaWAN [23] technology, well 

known for its high range of transmission available, which 
also allows excellent indoor propagation because of the use 
of 868 MHz frequencies. It will then be possible to 
communicate at long distances and with long device lifetime. 
If necessary, such networks could also become mesh 

networks with 6LoW devices to ensure a wider pool of 
infrastructure-compatible devices. 

The collected information is then sent to one or more 
LoRaWAN gateways, which will provide it to the cloud. On 
the cloud side, inbound features are managed by a 
prescriptive maintenance algorithm. As outlined in Fig. 5, 
the algorithm consists of two sub machine learning modules 
that cooperate with each other.  

 

 
Fig. 5 ML algorithm data flow for autonomous maintenance 

 
The first will perform an unsupervised learning of the 

incoming features, periodically assessing from the available 
data the presence of outliers and, if so, determining the 
presence of possible system anomalies. The presence of an 
unsupervised algorithm ensures the abstraction of the model, 
resulting in the possibility of being applied in different 
industrial contexts with different parameters to monitor. 

The outgoing data from the first algorithm is then 
provided as an input to the second, which will take care of 
carrying out specific actions following a reported anomaly 
during the previous phase. The learning technique to be 
adopted this time is supervised learning, such as recurrent 
neural networks (RNNs) that allow operating according to 
what has happened previously. The cloud, or the SMILE 
platform, consists of “smart agents” that contain the smart 
monitoring techniques developed and verticalized in the 
networking context. 

B. Remote Control Architecture as a Service 

Another application is that of a remote-control center, 
which along with a modular approach presents itself 
architecturally as described in Figure 6.  

 

 
Fig. 6 Software modules for Remote Control as a Service 

 
The modules involved are therefore as follows:  
• Identification and management of access: management 

and control of access to the system to be set up, with 
differentiation in terms of the scopes of the services 
offered and the operational capabilities;  

• Dashboard and data processing: managing the flow of 
data from the underlying layers and displaying output 
via front end that contains, in addition to a 
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visualization of the data obtained from the sensor 
network, also the statistics of the key values 
characterizing the reference system; 

• Event management and statistics: Generating statistics 
from sensor data, for example, this category includes 
the evaluation of the analyzed data for the purpose of 
applying the various machine learning algorithms for 
prescriptive maintenance. This data and events are 
provided to this architectural block by the “smart 
agent” algorithms that will provide structured 
predictive and possibly prescriptive data, if “smart 
agents” act;  

• Device management: sensor management, with any 
changes to their behavior to achieve the desired trend 
of the system;  

• Info Broker: collects data from sensors and provides it 
to the front end;  

• Message dispatcher/MQTT: communication between 
the various IoT devices. 
 

By cooperation between the various modules, the creation 
of a remote-control station is proposed, replacing/alongside 
localized interventions on the spot, such as the maintenance 
of machinery within an industrial context. This allows 
optimizing resources and increasing the productivity of the 
relevant sector. The dashboard will be displayed in the 
suitable environment, equipped with an audio/video station 
for remote control that will handle the entire process in the 
manner described in the previous paragraphs. 

IV.  CONCLUSION 

All SMILE functional features are linked with radical 
changes in production processes, as they increase the quality 
and performance of the process (e.g. Data Center, Smart 
Road, etc.).  The central and innovative concept of SMILE is 
that of a "horizontal" platform of intelligent monitoring, 
according to an as a service logic, with the ability to 
verticalize any production process but with reduced logic 
and development times and masking the difficulties of 
having to directly manage the configuration of complex 
modules by the operator. This, without any doubt, highlights 
a great innovation in process control. 

The most innovative part is automatic and, in part, 
unsupervised monitoring of the processes and sensors that 
characterize a smart factory, with the considerable and 
strategic advantage of maintaining the company's 
performance always at the highest level, preventing 
anomalies, avoiding disruptions, improving the performance 
indices of the product/service production process. This will 
be accomplished through the study and implementation of 
advanced machine learning techniques. Finally, a further 
degree of innovation also stems from the introduction of 
innovative sensors, such as sensors that predict electrical 
malfunctions of devices, or systems in general, based on the 
analysis of reactive power. 
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