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Abstract—In the following pages, we exhibit an analytical solution of a two-dimensional temperature field in a hollow sphere under  

total periodic boundary condition.  The material is assumed to be homogeneous and isotropic with time-independent thermal 

properties .Till now periodic boundary condition was derived with a harmonic vibration, whereas there is a noticeable difference in 

the practical conditions with harmonic vibration .In this essay, by means of Fourier analysis, we imagine the outside total periodic 

boundary condition, as aggregate of harmonic vibrations .To solve the problem, first we imagine the boundary condition as constant 

values and with separation of variables; we can obtain temperature distribution in the  sphere. Then Duhamel’s theorem is used to 

calculate temperature field under fully periodic boundary condition. For confirmation of accurate solution, we can compare the result 

for a harmonic vibration and those reported by others. Also, solutions for a hollow sphere were compared with other present 

references. At last we can obtain thermal stresses which is caused by temperature field in the hollow sphere  
 
Keywords— Hollow Sphere, Fourier Series , conduction 

I INTRODUCTION 

There are several heat conduction problems that can be 
modeled by a sphere of constant properties, for example, 
food freezing and the hydrocooling of spherical fruits or 
vegetables [1]. The solution of some cases of heat 
conduction problems can be found in heat transfer literature. 
Heat conduction problems with periodic boundary condition 
have some applications in engineering such as 
penetration of the daily and annual temperature cycles 

into the earth’s surface, heating up and cooling down phases 
in the Siemens Martin glass melting furnaces, wall 
temperature oscillation of internal combustion engines, 
experimental methods for specifying the thermal diffusivity 
of materials [2] and the temperature field [3,4], and also the 
thermal stresses caused by temperature distribution. Trostel 
calculated thermal stresses caused by thermal loads in a solid 
sphere [5]. Zubair and Chaudhry discussed the solution for 
temperature and heat flux in a semi-infinite solid subject to 
periodic-type surface heat fluxes [6]. The calculation of 
temperature distribution in a solid sphere under a periodic 
boundary condition is presented in [4] that is simulated by 
harmonic 
oscillation of the ambient temperature. The purpose of 

this paper is to derive an analytical solution for a two-

dimensional heat conduction in a hollow sphere, subjected to 
a periodic boundary condition. As for the validity of the 
results, 
a comparison between the temperature distribution in a 

solid sphere with the theoretical ones [4] is presented for the 
same boundary condition. The results can be used for 
approximation to the real problems with periodic boundary 
condition. They can also be utilized to verify the time 
consuming complex computer calculations.  
 

II MATHEMATICAL MODEL 

The heat conduction equation in spherical coordinates for 
an isotropic material that has temperature and time-
independent properties, and without heat source under 
axisymmetric condition, is ,: 
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The initial temperature of the ambient and the hollow 

sphere are zero. The inner boundary condition is insulated 
and the outer one is assumed to be boundary condition of 
type 3: 
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We consider that   )()(),( ψψ oM ftgt =Θ  where   )(tg    is 

assumed to be a periodic function that is decomposed using 
Fourier series: 
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and   )(ψof

   is an arbitrary function. 

An easy way to comply with the conference paper 
formatting requirements is to use this document as a 
template and simply type your text into it. 

and   )(ψof    is an arbitrary function. 

A. Analytical Solution 

                  
The problem cannot be solved directly because of the 
dependency of nonhomogeneous term, ),( tM ψΘ , on time [5]. 

The solution of a heat-conduction problem with time-
dependent boundary condition can be related to the solution 
of the same problem with time-independent boundary 
condition by means of Duhamel’s theorem. Thus, first of all, 
the equation should be solved with the 
assumption that the boundary condition is time 

independent. In this situation the boundary and initial 
conditions are: 
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      0)0,,( =ψθ r                                                                    (5) 

                      
In this case, use was made of the superposition principle; the 
solution is the sum of a steady solution, ),(0 ψθ r , and a 

transient solution ),,(1 tr ψθ . The differential heat 

conduction equation in steady form is: 
 

    2 2
0 0 0 0
2 2 2
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where the boundary condition is given by Eq. (4). The 

transient differential equation is:                                
                                                                                         (7) 
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and the following conditions must be satisfied 
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B. Steady-State Problem. 

 To solve Eq. (6), the method of separation of variables is 
used. Two differential equations are obtained, a Euler type 
and a Legendre type. Then, by applying Eq. (4), the solution 
of the steady state is: 
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C. Transient Problem 

 Use was made of the method of separation of variables to 
solve Eq. (7). The boundary equation, Eq. (8), and Eq. (9) 

should be satisfied. When eigenvalues, knω  are calculated, 

the final solution of the transient problem can be expressed 
as: 
                                                                                        (14) 
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D. Temperature Field Under Time Varying Boundary 

Condition.  

 As we mentioned before, the temperature distribution 
under a constant boundary condition is the summation of 
steady and transient states: 
                                                                                        (17) 
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Equation (17) expresses the temperature field under time 

independent boundary condition. In the case, the boundary 
values depend on time; they have the variations in the forms:  
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It can be assumed that 

τd
dCn are constant at some time,τ  

Therefore the  temperature distribution after τ−t seconds 
after the beginning of the influences can be expressed in the 
form (7): 
                                                                                        (19) 
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Thus, the temperature field can be obtained by summation 

of 
ndC  during τd and the influence of 0)0( =nC The 

following equation is proven by the method of integration by 
parts: 
                                                                                       (20) 
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Making use of Eq. (20), the temperature field can be  

obtained in the simplified form: 
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The heat flux of the outer surface of the sphere can be 

calculated by: 
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Hence, the heat flux has the form: 
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By defining the dimensionless radius and time as, 
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Eq. (21) can be rewritten in terms of Biot and Fourier 
numbers; 
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Since )(ψof  is an arbitrary function, for example, we 

considered: 
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As ∞→t  all exponential terms should vanish, hence 

)(tTkn
takes 

the form: 
                                                                                        (31) 
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where the dimensionless quantities M and knφ are defined 

as: 
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Thus, the temperature distribution in a hollow sphere for a 
periodic boundary condition when the inner boundary is 
insulated and the outer one dissipates heat into the ambient 
can be expressed in the form: 
                                                                                        (34) 
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Substituting the eigenvalues into Eq. (34), the temperature 

distribution at the outer surface can be obtained in the form: 
                                                                                        (35) 
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Where mA  is the ratio of the oscillation amplitude of 

temperature distribution in the sphere and the ambient 
temperature with the 

same frequency and knφ  is the phase difference. By 

calculating and plotting Eq. (35), the maximum amplitude of 
summation of harmonic waves and the phase difference can 
be obtained. 
 
III Results and Discussion 

 

To check our series solution, as a special case, we solved 
the problem of a solid sphere with a harmonic boundary 
condition with our method and compared the results with the 
corresponding ones in the literature [5]. As presented in Figs. 
1 and 2, they are in excellent agreement. 
It is evident from Figs. 1 and 2 that for small values of M 

(slow oscillations of the outer ambient temperature), the 
dimensionless amplitude A is almost 1 and the phase 
difference ) is approximately zero. For the large values of M 

(fast  oscillations of the outer ambient temperature), values 
of A decrease from its maximum at the outer boundary to its 
minimum at the inner boundary and the phase difference 
values are negative. For the large enough values of M, only a 
thin boundary region of the sphere follows the ambient 

temperature oscillation. For increasing ir at constant Bi/M, 
the minimum of the phase difference decreases and occurs at 
larger M. 
Figures 3–8 show the oscillation amplitude and the phase 

difference for the hollow sphere under a periodic boundary 
condition, which is decomposed using Fourier series with 
different radii and polar angles. 

 
 

Fig. 1 Comparison between the result of the amplitude of a one-dimensional 
temperature field of a solid sphere [8] and the results for a solid sphere 
presented in [4] under the same boundary condition 

 
 

 
 
Fig. 2 Comparison between the result of the phase difference of a one-
dimensional temperature field of a solid sphere [8] and the results for a solid 
sphere presented in [4] under the same boundary condition 
 

 

Fig. 3 Dimensionless amplitude, A, when 0,0 == ψir  
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Fig. 4 Dimensionless phase difference, 
φ

, when 
0,0 == ψir  

 
 

 

FIG. 5 DIMENSIONLESS AMPLITUDE, A, WHEN 60,0 == ψir  

 

Fig. 6 Dimensionless phase difference, 
φ

, when 
60,0 == ψir  

 

 

Fig. 7 Dimensionless amplitude, A, when 
0,8.0 == ψir  

 
Fig. 8 Dimensionless phase difference, φ , when 0,8.0 == ψir  

Figures 9 and 10 show the effect of ir  on the variations of A 

and φ  for the different values of M. For 5.0<ir , A and φ  
variations are not considerable but for 5.0>ir , the effect 

of ir     is significant. When ir  tends to 1, A and φ  tend to 
1 and 0, respectively. One can observe from Figs. 9 and 10 

that with increasing ir , A and φ  do not increase necessarily, 
but for some values of ir  they decrease. 
Figure 11 shows the effect of Biot number on the variation 

of 
p

t

Q
Q  for M=2,    5.0=ir under the periodic boundary 

condition. When the Biot number increases, the heat flux 
becomes larger and its value is positive in a half of a period 
and negative in another half. Figure 12 shows the effect of 

ir on the variation of  
p

t

Q
Q  for M=2, Bi=1 under  the 

periodic boundary condition. As Fig. 12 shows, when the 
thickness of the sphere decreases, the heat flux from the 
outer surface increases.  
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Nomenclature 
2a = inverse of thermal diffusivity, s /m2 

c = specific heat capacity, J/kg.K 
h = convection heat transfer coefficient, W/m2.K 
k = thermal conductivity, W/m.K 
p = period of the ambient temperature, s 
r = radius, m 
t=Time , s 
A = dimensionless amplitude 
Bi = Biot number 
Fo = Fourier number 
M = defined by Eq. (32) 
Q = heat flux, W 
V = volume of the hollow sphere, m3 
 

 
 

Fig. 9 Dimensionless amplitude, A, when 
30,2 == ψM

 

 
 

Fig. 10 Dimensionless phase difference, φ , when 30,2 == ψM  

 

 

FIG. 11 

( )

( )

Q t

Q p  when M=2, Bi=1 under periodic boundary Condition 

 

Fig. 12 
( )

( )

Q t

Q p
 when M=2 under periodic boundary condition 

Greek letters 

θ =temperature, K 
ω = eigenvalue 

φ = phase difference, rad 
ψφ,,r  = spherical coordinate 

ρ  = density, kg/m3 

ζ =defined by Eq. (10) 

η =function defined by Eq. (12) 
Φ  = eigenfunction 
Subscripts 

a = ambient 
i = inner 
o = outer 
s = steady state 
t = transient 
Superscript 

- (overbar) = dimensionless quantity 
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