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Abstract— This paper presents the modeling strategies of a micro-grid to control the power supply of a battery bank by adopting a 
Model Predictive Controller (MPC). The grid was sized to light two tennis courts at a university sports complex, which is not 
connected to the national power grid and thus must be a stand-alone setup. The paper starts with an introduction that defines the 
statement of purpose and the state of the art. Then continue with the power generators and storage modeling: photovoltaic (PV) 
modules, wind turbine, buck converter (takes power from the rectified national grid) and the battery bank. The MPC was designed to 
effectively manage the energy supplied to the batteries, depending on the state of charge, hence the controller output is the signal used 
to regulate the charging current. The data used for prediction is the meteorological measures taken during three years using an in-
situ weather station that collected irradiance, wind speed and direction, temperature, and pressure. Finally, as the entire control 
system was simulated step by step using MATLAB/Simulink, the components and systems behavior graphs are shown to lead to 
analysis and conclusion remarks. 
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I. INTRODUCTION 

The current methods for energy production are not 
sustainable, mainly due to environmental reasons and the 
lack of responsible use of resources [1]. Therefore, the 
demand for renewable energy, smart electrification, and 
rational use of electricity are important factors that will 
provide answers to the global energy challenge. Also, the 
scheme currently used for the generation of energy is made 
from fossil fuels, hydroelectric, or nuclear reactors, which 
are centralized, and the distribution includes losses of up to 
69%. 

In Colombia, 66% of the territory is not connected to the 
National Grid. The areas are called Off-Grid Zones (OGZ), 
and their energy requirements are obtained from traditional 
fuels such as diesel or biomass, or few Renewable Energy 
Sources projects (RES), mainly small hydro projects. 
However, social and economic constraints still cause the 
lack of available energy or its low-quality services for these 
regions. On the other hand, the energy sector in Colombia is 
based on free-market policies since 1994, which have caused 
that current RES initiatives are without potential size and 
scope because of the lack of economic incentives and the 
absence of private stakeholders. Furthermore, the Institute of 
Planning and Promotion of Energy Solutions for Off-Grid 
Zones (IPSE, by the Spanish acronym) is in charge of 

creating such projects. It has a Financial Office (FANZI) 
which have allocated more than USD 85 million since 2003. 
It is also a victim of a weak legal framework that has been 
reformed several times and have directed a lot of efforts and 
resources to administrative and legal processes [2]. 

In contrast, renewable energy generation does not pollute, 
is decentralized, and has innovated with concepts such as 
"smart grid." Smart grids constitute the framework of future 
sustainable energy systems, allowing the integration of large 
amounts of renewable energy, improving reliability, quality 
of supply, and ensuring safety. Therefore, and due to the 
significant advantages and developments on renewable 
energy, it is necessary to analyze how energy should be used 
in a micro-grid with RES, considering that usually the power 
is supplied without regard if it comes from the network or 
renewable supply [3]. In this context, it is vital to perform 
research and development projects related to emerging 
technologies in such a manner that they achieve greater 
electrical energy efficiency and lower emissions. Hence, this 
work model and simulates a DC grid that can get power 
from different centralized and renewable sources, optimizing 
generation, and consumption. Therefore, this paper focuses 
on the value of energy storage devices when operating in 
combination with intermittent supply from renewable energy 
sources. Since forecasts never are perfect, a Model 
Predictive Control (MPC) strategy is used for keeping the 
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consequences of forecast uncertainties at acceptable levels, 
as well as for determining the timing of the operation [4]. 
Instead of compensating forecast uncertainties with fast-
acting backup generators or balancing energy [5]–[10]. 
Besides, the a priori remaining energy can be resupplied to 
the primary grid to benefit consumer’s common needs. 

II. MATERIALS AND METHOD 

The proposed micro-grid prototype is shown in Fig. 1, 
which was designed to provide efficient electric supply to 
the sports complex in Universidad Militar Nueva Granada 
(UMNG) at Cajicá Campus. This system has a set of twelve 
PV Modules of 60W (Bosh c-Si-M60 - M260), a generic 
wind turbine, a battery bank, and the corresponding 
converters. The power regulation is performed by the MPC 
controller designed by the Davinci Research Group. 

 
Fig. 1 The system used as a prototype for modeling 

 
The first developed models were the power generators 

and the storage device, i.e., photovoltaic panels, wind 
turbines, and batteries. Also, to ensure consistent power to 
the batteries, it was designed a rectifier with a Buck 
converter, which is described below. 

A. Photovoltaic module model 

A photovoltaic (PV) module can be represented as an 
electrical circuit based on the sunlight-generated current ��� 
as the source (called photocurrent), with a diode connected 
in anti-parallel and its current ��, as well as a parallel resistor ��  with current ��  and a series resistor ��  with the circuit 
output current �, as proposed by previous studies [11],[12]. 
The equation that describes the PV model dynamics can be 
obtained via Kirchhoff’s current law, as shown in Eq. 1. 

 � � ��� � �� � �� (1) 
 

These mathematical approaches have the nonlinearity of 
the diode and three sets of parameters provided by the 
manufacturer. Electrochemical constants can be assumed 
according to climatic and electromechanical conditions. 
Constants which can be calculated from measures and 
equations are related to the intrinsic PV physical behavior. 
Most of the authors use to simplify the mathematical model 
to reduce the number of unknown parameters via 
assumptions on the physical cell behavior [11], which are 
necessary to make the model more accessible and faster to 
compute. However, parameters based on experimental 
measures were preserved to assure accuracy and suitability 
when including real on-site conditions information, similar 

to the work developed in [13]. This makes it suitable to be 
used in an integrated energy system, even when it does not 
take the loss of power into account. 

Ohm´s law can define the parallel resistance current, and ��� as a relative value considering the effect of temperature 
variations in the cells (Eq. 2 and 3). 

 �� � 	 
 �����  (2) 

��� � ���
� ����,�
� 
 ���∆�� (3) 

 
where V is the voltage on the diode, � is irradiance, ��
� 

is irradiance at Standard Test Conditions (STC), ���,�
�   is 
the photocurrent at STC, ��  is the temperature of the cell, 
thus �� �  �� � ��,�
�   ���,�
�  � 298 �� , and ���  is the 
temperature coefficient of short circuit current (from 
manufacturer).  

The current ��  is based on the Shockley ideal diode, 
which sets I-V behavior in either forward or reverses setup 
(Eq. 4). 

 �� � �� �� ! "	 
 ���# $ � 1& # � '(�	) (4) 

 
A is the ideality factor for monocrystalline silicon cells, (� is the number of PV cells connected in series and 	) is 

the thermal factor, defined in Eq. (5) in terms of the 
Boltzmann constant k, electron charge *,  and cell 
temperature ��. In Eq. (6) it is defined the reverse saturation 
or leakage current ��. 

 	) � + ��*  (5) 

�� � ��,�
� , ����,�
�-. � ! /"*0�'+ $ , 1��,�
� � 1��-1 (6) 

 
The equation shown above depends on electrochemical 

constants, including the material (silicon) bandgap energy 0� , as well as the temperature and the reference leakage 
current ��,�
�, defined in Eq. (7) in terms of the voltage at 
open circuit (� � 0, 	 � 	�� ) and the short-circuit current 
(	 � 0, � � ���) at STC conditions. 

 ��,�
� � ���� ! "�	��,�
�# $ (7) 

 
Finally, device-owned parameters (from manufacturer) 

were taken from a silicon cell PV module as reference 
(Bosch c-Si M60-M260).  In Table 1, 34�, �4� and 	4� are 
max power, current for max power, and voltage for max 
power, respectively (tested by manufacturer). 

The block diagram of all equations was implemented in 
Matlab/Simulink and is shown in Fig. 2 (blocks 5, ��_�
�, ��, ��� , � and ��  calculate those parameters). However, ��  and �� need to be obtained. The first by using Eq. 8. 
 �� � �� 
 �4������,�
�7 � 34�	4�

 ; 
(8) 

1092



7 � 1 � � ! �	4� 
 ���4� � 	��# & 
 � ! "�	��# $ 

 

TABLE 1 
PHOTOVOLTAIC MODULE PARAMETERS 

Devised-owned 
parameters 

Constants at STC 

Parameter Value Parameter Value (� 60 k 1.381x10-23 34� 260 q 1.602x10-19 	4� 30.71 ��
� 1000 �4� 8.47 ��,�
� 298 ��� 9.02 Variables to be obtained 	�� 38.1 �� �� ��� 3.1 ��� �� ' 1.2 Inputs 0� 1.12 G �� 
 

 
Fig. 2. Simulation of the PV module in Matlab/Simulink 

 
Several values of �� were proposed to compute the most 

appropriate value of ��  for reaching the maximum power 
established by the manufacturer. Fig. 3 shows the current vs. 
voltage behavior of the presented model at different values 
of ��, being �� � 0.25Ω the value to reach max current and 
voltage, named by the manufacturer as �4� and 	4� in Table 
1. 

 
Fig. 3. Photovoltaic module simulation with different values of �� . 
Horizontal and vertical dashed lines correspond to Imp and Vmp,  respectively 

Once defined the most suitable values of �� and ��, the 
entire PV model was simulated with the given values of 34�, �4� and 	4�. The results are shown in Fig. 4. 

 

 
 

Fig. 4. PV module simulation. Charts of current-voltage and Power-voltage. 

B. Wind Turbine Model 

This section describes the modeling of a wind turbine and 
the simplified model of the blades. To model a wind turbine, 
it must be considered a load to which the blades can react in 
various ways and then have more than twenty degrees of 
freedom in their reaction. Therefore, it is necessary to obtain 
its behavior using techniques of modal analysis [14]. These 
models used to be too complicated for design purposes, so a 
model simplification must be made to obtain a good 
representation of the device dynamics, using the main 
dynamical features and parameters, as shown in Table 2 [15]. 

TABLE II 
WIND TURBINE MODEL PARAMETERS 

Parameter Description Value 	< Wind Speed (m/s) 5 

Generator Parameters = The specific density of air (Kg/ 
m3) 

1.23 

>� The radius of rotor (m) 1 

N Gearbox ratio 4 �? Generator inertia (Nms2) 2.5x10-4 @� Rotor moment of inertia (Nms2) 3x10-2 ���A Rotor electric resistance (Ohm) 9.91x10-4 B� Rotor damping (Nms) 2.4x10-2 B? Generator damping (Nms) 5.5x10-3 �� Rotor Hardness (Nm) 1.5x10-4 �? Generator Hardness (Nm) 1.5x10-4 CD Rotor electric inductance (H) 1.526x10-3 C? Armature electric inductance (H) 8.21x10-5 '� Rotor area (m2) 3.14 @�
 Reflected inertia 1.9x10-3 B
E Equivalent damping 7x10-3 �
E Equivalent Hardness 1.59x104 

Dynamic coefficients of the blades FG Coefficient 5.176x10-1 FH Coefficient 116 F. Coefficient 0.4 FI Coefficient 5 FJ Coefficient 21 FK Coefficient 6.8x10-3 L Blade pitch angle -5 

 
The tip-speed ratio (TSR), denoted as M , is the ratio 

between the linear speed of the blade tip and the wind speed 
[1] and sets the fraction of available power extracted from 
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the wind by the turbine rotor. In a fixed-speed wind turbine, 
the blade tip speed is relatively constant since the rotor is 
connected to the induction generator via a gearbox, and the 
generator is the one directly connected to the grid. This can 
be calculated via the rotor radius and angular speed Eq. 9. M � >�N�	O  (9) 

The TSR and the user-defined blade pitch angle L, are 
used to calculate the rotor power coefficient, denoted by F� 
[16]. This coefficient is a measure of the rotor efficiency and 
is calculated via Eq. 10, 11, and 12. 

 F� � FG "FHMD � F.L � FI$ �PQRST 
 FKM (10) 1MD � 1M 
 0,08L � 0,035L. 
 1 (11) 

F� � 3�3O (12) 

 
To define the aerodynamic torque, it is necessary to 

calculate the kinetic energy V Eq. 13, the mass flow 7W  Eq. 
14, the power of the wind 3< through an area ' Eq. 15 and 
power of rotor 3� Eq. 16, which are given by [17]. 

 V � 12 7	OH (13) 7W � ='	O (14) �� � 12 ='	O. (15) 

3� � 12 =F�X>�H	O. (16) 

 
The aerodynamic torque can be obtained via Eq. 17 or 18. 
 �� � 3�N� (17) 

�� � 12 =F�X>�H	O.N�  (18) 

 
The gear drive system of the wind turbine can be 

represented by a two-mass model connected by one shaft [1].  
 

The rotational system is described by Eq. 19 and 20, but 
Eq. 21-23 are used to simplify it. These equations give the 
equivalence of the low-speed shaft to the high-speed shaft. 

 @�
YZ�
 � �B
E[YW�
 � YW?\ � �
E[Y�
 � Y?\ 
 ��
(  (19) @?YZ? � �B
E[YW? � YW�
\ � �
E[Y? � Y�
\ 
 �? (20) @�
 � @�(H (21) N�
 � (N�  (22) ��
 � ��(  (23) 

 
Finally, the state variables are obtained from the dynamic 

model, as shown in Eq. 24.  
 YW�
 � N�
 , YZ�
 � NW �
 , YW? � N?, YZ? � NW?  (24) 

 
Besides, Eq. 25 describes a turbine generator model. 

C?]?W � CDN�
 � ���A^? (25) 

 
The dynamic characteristics were not taken into account 

for the simulation. The system model is represented in 
matrix form in Eq. 26 and simulated in Matlab/Simulink (Fig. 
5 shows the block diagram and Fig. 6 shows the time 
response). 

_NW �
YW�
]?W ` �
⎣⎢
⎢⎢
⎡� B�@� 0 01 0 0CDC? 0 � ���AC? ⎦⎥

⎥⎥
⎤ gN�
Y�
^? h 
 i 1��00 j k��l

m � k0 0 1l gN�
Y�
^? h
 (26) 

 

 
 

Fig. 5. Wind turbine model in Matlab/Simulink. 

 
 

Fig. 6. Time Response of the wind turbine model in Matlab/Simulink. 

C. Battery Model  

The Battery block implements a generic dynamic model 
parameterized to represent the most popular types of 
rechargeable batteries. The parameters of the equivalent 
circuit can be modified to represent a particular battery type, 
based on its discharge characteristics. The model can be 
expressed by the open-circuit voltage (OCV) or 
electromotive force (EMF) Vn,  the voltage in the battery 
terminals 	A, internal resistance �D, discharge current I and 
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state of charge (SOC) o. This model describes the battery 
electrochemical behavior and is described in Eq. 27, 28, and 
29 (parameters in Table 3). 
 V � Vn � � oo � p ^qr 
 '�Ps p D�A (27) 	A � V � �D^ (28) VstAA � Vn � � oo � ^A ^A � �^ � � oo � ^r ^∗ 
 '�PsDA (29) 

 

TABLE III 
BATTERY MODEL PARAMETERS 

Param. Description Value VstAA Battery voltage (V)  Vn Nominal battery voltage or open circuit (V) 48 

K Polarization voltage constant (Ah−1) or 
polarization resistance (ohms) 

 

^∗ Filtered current (A)  

i Battery current (A)  ^A Current battery charge (Ah)  

Q Maximum battery capacity (Ah) 140 ' Exponential zone amplitude (V) 0.45 B Exponential zone time constant inverse 
capacity (Ah) −1 

1.11 

� Internal resistance (ohms) 3.692x10-2 V !�r� Exponential zone dynamics (V)  v�r� Battery mode: 0 in discharge and 1 in charge  

 
Where the exponential term of Eq. 29 is determined by 

the type of battery, here Li-Ion, which is simulated and 
selected in the block configuration in Simulink®. This term 
describes the non-linear phenomenon of charge and 
discharge modes, expressed by Eq. 30, where � !�r� is the 
exponential zone voltages, ^�r� is battery current, and v�r� is 
the charging mode (charge/discharge) [14],[18]. 

 � !�r� � B |^�r�|��� !�r� 
 'v�r�� (30) 
 

Eq. 31 and 32 show the battery voltage at a charge �^∗ x 0� and the discharge mode �^∗ y 0�, respectively. 
 VstAA � Vn � � oo � ^A ^A � �^ � � oo � ^A ^∗ 
 V !�r� (31) 

VstAA � Vn � � oo � ^A ^A � �^ � � o|^�r�| � 0,1o ^∗ 
 � !�r� (32) 

 
To solve the slow dynamic behavior in the response of 

voltage and current flow, the filtered current ^∗  is used in the 
algebraic loop, generated in the Simulink simulations [19]. A 
typical discharge curve is shown in Fig. 7 and exposes the 
nonlinear behavior of the battery voltage [18] - [20]. 

 

 
Fig. 7. Battery discharge curve. 

D. Buck Converter Model:  

The typology of a conventional Buck converter is a 
parallel RLC circuit, which a power switch z, inductor C, 
capacitor F  and resistance �  representing the load on the 
battery circuit, simulated as a time-varying sine-wave. The 
dynamic process of the circuit can be described by ordinary 
differential Eq. 33 and 34. 
 C q^qr ^r � �{ 
 Vv (33) 

F q{qr � ^ 
 �{ (34) 

 
The state variables are  G � ^,   H � { and therefore the 

state space equations are Eq. 35 and 36 [21], [22]. 
  WG � � 1C  H 
 VC v (35) 

 WH � � 1F  G 
 �F  H (36) 

 
To ensure the DC bus voltage of the batteries, a controller 

is implemented in state-space representation. See Fig. 8 [23].  
 

 
Fig. 8 Block diagram of the system in state-space with a controller 

 
This controller must be reactively robust, responding to 

disturbances produced by the load resistance to reach a 
reference current. Hence, a digital servo-controller with state 
feedback was designed. It was necessary to determine the 
integral gain constant +G and feedback gain matrix of +H to 
obtain a response with dead oscillations, all shown in Fig. 9.  
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Fig. 9. Block diagram of the digital control 

 
The discrete servo-system constants were calculated by 

the Ackerman method using packed storage matrices and 
two design parameters: damping ratio | � 0.7 , response 
time r � 10 s . It is important to clarify that the system 
representation was not done with the conventional state-
space blocks included in Matlab because they do not allow 
to include the lag resistance � as a time-variable signal to 
the state matrix '. 

The output signal can be obtained from the resistance sine 
wave, in terms of voltage and current (Fig. 10). The system 
responds according to charge variations, varying the supply 
current, and maintaining the voltage level required. 

 

 
Fig. 10. Buck converter response with the controller. 

 

E. System Simulation with Model Predictive Controller 

The purpose of this work is to ensure the proper batteries 
and continuous energy supply to the lighting system. Thus, a 
Model Predictive Controller – MPC was implemented. This 
control system defines the state of charge (SOC) as the 
controlled variable, while the reference is the DC bus 
voltage, and the manipulated variable is the rectifier (see Fig. 
11). 

An MPC is capable of determining which renewable 
energy source charges the batteries according to the value of 
supply, i.e., during periods of high solar irradiance, the 
batteries charging depends on the PV modules' power.  

 

 
Fig. 11. Renewable energy system with Model Predictive Controller 

 
In contrast, in high wind speed, it depends on the wind 

turbine, and in the absence of power supply from renewable 
resources, the charging process depends on the rectified 
local grid. Fig. 12 shows data of a daily solar irradiance and 
wind speed during a random day. 

 

 
Fig. 12. Weather data collected in UMNG Campus 

 
The main advantage of using MPC is the fact that it 

allows the current time slot to be optimized while keeping 
future ones into account [6], [8]–[10]. This is achieved by 
optimizing a finite time-horizon, but only implementing the 
current time slot. Only the first step of the control strategy is 
implemented, then the plant state is sampled again, and the 
calculations are repeated starting from the new current state, 
yielding a new control and a new predicted state path. 
Prediction horizon keeps being shifted forward, and thus it is 
also called receding horizon control [5]. The optimization 
cost function is given by Eq. 37, considering design 
boundaries (lower/upper). 

 

� WG WH& � i0 � 1C1F � �Fj � G H� 
 gVC0h kvl
m � k0 1l � G H�

 (37) 

 
With  D � ^ � rℎ  as the controlled variable (batteries 

SOC), >D � ^ � rℎ as the reference variable (required voltage 
of the bus), vD � ^ � rℎ as the manipulated variable (rectifier 
current), N�D  as the weighting coefficient reflecting the 
relative importance of  D , N�D  as the weighting coefficient 
penalizing relative big changes in vD. 

III.  RESULTS AND DISCUSSION 

Fig. 13 shows how the MPC responds to load variations 
caused by energy demands by ensuring the DC bus voltage. 
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Fig. 13 The voltage of the DC bus 

 
These variations in energy produce changes in the battery 

SOC (Fig. 14). A quick charging process can be seen at the 
beginning of the chart, followed by several compensations to 
maintain the reference of 80% of SOC. 
 

 
Fig. 14. Batteries State of Charge 

 
Despite these changes, the control signal compensates for 

the impedance maintaining a level of 4Ω (Fig. 15). 
 

 
Fig. 15 The control signal generated by the MPC 

 
This compensation is made from the control signal and 

employing a current rectifier (Fig. 16). In the graph, the 
current reaches a max value of 500 A (saturated), to emulate 
the protection system and behavior of the Powerex® R620 
General Purpose Rectifier (500 A). This also causes the 
dynamic response of the system to present delays. Fig. 17 
shows the PWM signal of the DC converter. 

 

 
Fig. 16. Rectifier current 

 

 
Fig. 17. PWM signal of the DC converter. 

IV.  CONCLUSION 

A nonlinear equation of current approximates the 
abstraction of the photovoltaic module in terms of two 
weather variables (irradiance and temperature) and the 
desired output voltage. The non-linearity is mainly given by 
the exponential dynamics of the antiparallel diode. Therefore, 
the � � 	 chart shows a decreasing curve that begins when 
short-circuit �	 � 0, � � ���� and at open circuit �� � 0, 	 �	���. Also, although the PV module works with a nominal 
voltage of 	 � 24V, the maximum power point occurs when 	 � 	4� � 30.71 V , which implies � � �4� � 9.02 A  and 
thus 3 � 34� � 260 W just as tested by the manufacturer.  

The environmental resources at the installation site of 
power microgrid were measured by a weather station and 
used as input parameters of the simulation, which concluded 
that there is not a significant contribution from wind power 
(low average wind speed). Thus the wind turbine model was 
sized as a small DC power generator. Therefore, the only 
feasible and fully available power resource will be generated 
by photovoltaic panels, making it the primary source. 
Nevertheless, the energy produced by the wind turbine is not 
underestimated, in fact, it is included as a disturbance to the 
energy generated on the grid, so still contributing to the total 
generation. This means that this DC microgrid also includes 
several low production energy sources to charge the batteries, 
adding them as disturbances to the control system for energy 
production and thus increase the energy supplied to the load. 

Besides, as the main result of this work, it was realized 
that the implemented Model Predictive Controller could 
significantly reduce the energy consumption in conventional 
and non-renewable energy sources, such as those based on 
Diesel fuel, which is a major power source in stand-alone 
grids in non-interconnected zones. This considering that 
diesel turbines still are needed to be used as the rectified 
power sources for the Buck converter of the proposed grid. 
Still, it can be enhanced by harnessing the weather 
forecasting and the predictive controller itself to pre-heat the 

1097



turbine and thus increasing efficiency, i.e., turning the 
reactive controller of a regular diesel turbine into a 
predictive controlled one. 
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