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Abstract— As the Internet of Things is used in various fields, Internet of Things security has become important. Since most Internet 
of Things devices is implemented as embedded systems, they provide a software-implemented encryption algorithm. Most embedded 
systems use relatively low-performance CPUs and the software processes data serially, making it difficult to process complex security 
algorithms in real-time. Therefore, it is necessary to have a stable encryption module with less impact on system performance. In this 
paper, we designed an AES hardware security module. Because it is implemented with dedicated hardware, it can process a strong 
encryption algorithm in real time without affecting the performance of the system. The proposed AES hardware module is designed 
using Verilog-HDL, tested in ModelSim and implemented in Altera FPGA CycloneⅣ. The designed AES hardware adopts parallel 
processing technique and pipeline structure considering the computational complexity and processing order of the algorithm. As a 
result, it is faster than AES modules implemented in software. In addition, its latency was reduced to about 280 ns, which is about 16 
% of the latency of the previous AES hardware module. Not only did the performance improve, but the number of logic elements and 
registers also decreased to 83.6% and 92.8%, respectively. The proposed AES hardware module is verified by applying it to a door 
lock system and is expected to be applied to various Internet of Things devices. 
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I. INTRODUCTION 

The Internet of Things means that things are sent and 
received directly to the Internet in real-time. Recently, the 
Internet of Things has been used in various fields and is 
rapidly developing [1], [2]. Smart home systems, healthcare 
services, sensor-embedded equipment, and storage 
containers are typical examples [3]-[6]. As the Internet of 
Things is used in many fields, there are many security 
problems [7]-[9]. In 2017, a smart toy for children, 
CloudPets leaked user information such as email accounts 
and voice message data [10]. Besides, as smart homes are 
activated a lot, CCTVs and door locks in the house are often 
hacked [11]. In order to prevent such hacking cases, many 
manufacturers are using encryption techniques to secure 
their Internet of Things devices [12]-[16]. 

One of the issues related to the Internet of Things security 
is limited resources [17], [18]. Many Internet of Things 
devices cannot afford security, or even simple algorithms 
because they usually use low-performance central 
processing units or microprocessing units. Therefore, it is 
necessary to implement reliable security modules using a 
few resources. Besides, since many Internet of Things 
devices use manufacturer-specific security algorithms, many 
of them are incompatible with each other when connected to 

a network [17]. In other words, standardized encryption 
algorithms are required for interconnection. 

In this paper, we implemented a cryptographic algorithm 
for the security of the Internet of Things as a hardware 
system. The used encryption algorithm is the Advanced 
Encryption Standard (AES) algorithm. The AES algorithm is 
a cryptographic algorithm used as a US standard [19]. The 
encryption block size is 128 bits, and the block size can be 
extended [20], [21]. In addition, unlike the Data Encryption 
Standard (DES) algorithm, which is a symmetric-key 
algorithm with the 56-bit key size for the encryption of 
digital data [22], the AES algorithm has a large block size 
and is almost impossible to hack using the brute force 
method [23]. The AES algorithm is considered as one of the 
suitable algorithms for Internet of Things applications [24]-
[26]. Instead, the AES algorithm requires more processing 
than encryption algorithms such as DES, so it must be 
designed to operate quickly [27].  

Previously, many AES algorithms were designed in 
software [28]-[30]. Security algorithms for the Internet of 
Things are applied to data transmitted and received in real-
time. However, the encryption algorithm implemented in the 
software does not perform well in terms of speed because 
data are processed serially [31]. Therefore, we implemented 
the AES algorithm in hardware instead of software. 
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A cryptographic device implemented in hardware can be 
faster than a cryptographic device implemented in software 
because it can use parallel processing techniques. So, it can 
be used without any inconvenience and overloading the 
primary system when applied to the Internet of Things. 
Reference [32] implemented the AES algorithm in hardware. 
Since the encryption module was designed using dedicated 
hardware, it did not put a load on the system and was 
naturally faster than those implemented in software. 
However, in processing the encryption algorithm, not only 
was it processed serially but also did not consider the 
difference in processing time according to the complexity of 
the algorithm. So, the overall speed improvement was not 
considerable.  

In consideration of these problems, we propose a fast 
AES algorithm hardware module that uses pipeline 
techniques as well as parallel techniques. In session Ⅱ, we 
introduce the AES algorithm and describe the architecture of 
the proposed AES hardware. Session Ⅲ shows simulation 
and implementation results. The next section draws the 
conclusion. 

II. MATERIALS AND METHOD 

A. AES Algorithm 

The AES algorithm consists mainly of initial round, main 
round, and final round. Fig. 1 shows how each of the three 
rounds is organized and in what order the algorithms are 
performed. The initial round includes one AddRoundKey 
block. The main round consists of SubBytes, ShiftRows, 
Mixcolumns, and AddRoundKey blocks, which in turn 
perform their operations. This main round is repeated nine 
times in total. The final round consists of SubBytes, 
ShiftRows and AddRoundKey blocks. 

 

 

Fig. 1 Ciphering of AES Algorithm 

The SubBytes block replaces input byte data in the 
hexadecimal format according to the S-box, as shown in Fig. 
2. The entered hexadecimal front bits correspond to the 
column in the replacement table, and the back bits 
correspond to the row. For example, if a hexadecimal 
number ‘53’ is entered, a replacement number is ‘ED’.   

 

 
Fig. 2  S-box: replacement table for the SubBytes block 

 
To perform the ShiftRows, first, configure 4x4 array in 

16-byte unit. And then, ShiftRows shifts each row of 4x4 
data to the right, where the Nth row is shifted by N-1. 

As shown in Fig. 3, MixColumns uses an array formula 
using Galois Field, which multiplies the left S matrix with a 
constant matrix and performs an exclusive OR operation of 
each term to find the value of the right S' matrix. As a result, 
the 4-byte data {s0, s1, s2, s3} are replaced by the following 
equation (1)-(4). 

 
 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (1) 
 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (2) 
 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (3) 
 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (4) 
 

 
Fig. 3  Mixcolumns operation 

 
AddRoundKey is the process of performing a bitwise 

exclusive OR operation of Roundkey and the output of 
MixColumns. The input of AddRoundKey, Round key, is 
generated through the KeyExpansion process, as shown in 
Fig.4. It takes the CipherKey as input and generates the 
RoundKeys by repeating the main round 43 times. The main 
round for KeyExpansion consists of RotWord, SubWord, 
XORwithRcon, and XORwithW[i-4] processes. RotWord 
moves 8 bits from the MSB to LSB of a 32-bit word, and the 
remaining bits are shifted to the MSB as many as 8 bits 
empty. SubWord functions the same as SubBytes described 
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above. XORwithRcon is the process of performing a bitwise 
exclusive OR operation of Rcon, as shown in Fig. 5, and the 
output of SubWord. And then, the output of XORwithW[i-4], 
w[i], is the result of a bitwise exclusive OR operation on the 
previous value w[i-1] and the four previous value w[i-4].  

 

 
Fig. 4 KeyExpansion Process 

 

 
Fig. 5 Rcon 

 
The encryption process ends when the plain text goes 

through the first round, the main round with nine repetitions 
and the final round, using the CipherKey modified through 
the KeyExpansion process. 

B. AES Hardware Design 

First, the algorithm was designed in C language and 
verified using MS Visual Studio before it was implemented 
in hardware. Three rounds were implemented as separate 

functions. Analysis of functions designed in C language 
showed that the Cipherkey generation process, or 
KeyExpansion, was expected to be more complex than the 
encryption process. Moreover, MixColumns was expected to 
be more complex than ShiftRows and SubBytes. Based on 
these results, we decided on the architecture of an AES 
hardware module. 

For the hardware-designed AES module in [32], after the 
128-bit Cipher Key Expansion was completed over 47 
clocks, the encryption process was performed on plain data 
using the CipherKey and the generated RoundKeys over 13 
clocks. Thus, a total of 60 clocks were required. As expected, 
KeyExpansion has more computational capacity than the 
encryption process. Thus, the clock rate of the AES module 
in [32] was determined by the clock rate of KeyExpansion, 
which takes the longest processing time. 

To increase the clock speed while reducing the total 
number of clocks required, we have designed the AES 
hardware module by applying parallel processing techniques 
and pipeline techniques that reflect the computational 
complexity and processing order. 

In the AES algorithm, the input plain text passes through 
each process in the order of SubBytes, ShiftRows, and 
MixColumns. Next, an exclusive OR is performed on it with 
Roundkey. If the plain text encryption process is run; after 
all, RoundKeys are generated, like [32], the overall 
processing time will be extended. Thus, as shown in Fig 6, 
we proceeded with KeyExpansion and plain text encryption 
at the same time.  

KeyExpansion consists of a total of 43 rounds, and the 
encryption process consists of a total of 11 rounds. The 
encryption processes data in 16-byte units, while 
KeyExpansion processes data in 4-byte units. So the 
encryption only needs to operate one round while 
KeyExpansion operates in four rounds. Therefore, the one 
main round of the encryption was broken down into the 
four-stage pipeline, as shown in Fig. 6.  

 

Fig. 6 AES Block Diagram 
 
The main round of the encryption consists of SubBytes, 

ShiftRows, MixColumns, and AddRoundKey. As expected, 
MixColumns is more complex than SubBytes and ShiftRows. 
Since it is good that all the stages take the same amount of 
time to process their work, SubBytes and ShiftRows were 
grouped into one stage, and MixColumns was divided into 
two stages. This pipelining significantly increased the clock 

rate of the encryption. To increase the KeyExpanion clock 
rate to a level similar to the encryption, KeyExpansion was 
also divided, as shown in Fig. 6. As a result, the proposed 
hardware took a total of 43 clocks to encrypt the plain text. 

As shown in Fig. 7, the decryption process consists of an 
initial round, main round, and final round. The decryption 
reverses all processes of the encryption. Since there were no 
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Mixcolums in the encryption final round, there were no 
Inv_Mixcolumns in the initial decryption round. 
Inv_AddRoundKey, Inv_MixColumns, Inv_ShiftRows, and 
SubBytes of the decryption main round reverse 
AddRoundKye, MixColumns, ShiftRows, and SubBytes, 
respectively. The decryption main round also reverses the 
whole process of the leading encryption round and is 
repeated nine times as the first encryption round. Moreover, 
the final round includes only one Inv_AddRoundKey, like 
the initial round of the encryption.  

 

 
Fig. 7 Decryption Algorithm 

C. Test System Design 

A simple door lock system has been designed to show the 
adaptability to Internet of Things applications of the 
proposed AES hardware module. The door lock system was 
designed using Arduino with an 8-bit Atmega328 and 
GPIOs. Fig. 8 shows the block diagram of the door lock 
system. This system has a keypad and an SPI master block 
for communication with FPGA providing an SPI slave block, 
storage and the AES algorithm module designed in this 
paper.  

 

 
Fig. 8 Door lock System Block Diagram 

 
When in password setting mode, the Arduino system 

passes the password entered via the keypad to the FPGA via 
SPI. The AES module encrypts the number, stores an 
encrypted password in the storage, and deletes the raw 
password. When a number is entered in the door lock system 
to verify the password, the SPI master sends the number to 
SPI slave that stores it. The AES module encrypts the 

number and compares the stored encrypted password with 
the newly encrypted password. The AES module sends a 
matched/unmatched signal to the Arduino system using SPI.  

We also designed the encryption module as well. When a 
user enters a number, the stored encrypted password can be 
decrypted and compared to the entered number. However, in 
order to prevent the raw password from being disclosed, the 
stored encrypted password is not decrypted. Instead, the 
entered number is encrypted to compare the result with the 
stored encrypted password. 

III.  RESULT AND DISCUSSION 

A. Function Simulation Results 

We designed an AES module using the Verilog-HDL 
language. And then, it was simulated in ModelSim. It was 
verified by comparing simulation results with the example 
data from the standard, as shown in Fig. 9 [7]. 

 

 
Fig. 9 Example Data from the Standard 

 
Fig. 10 and Fig. 11 show the simulation results of the 

encryption module. Signals for encryption are clock, reset, 
data_in, restart, data_out, data_in_valid, and data_out_valid 
from above. The data_in in Fig. 10 is 128-bit 
0x3243f6a8885a308d313198a2 e0370734 and data_in_valid 
is 1, which means values of data_in is ready to perform 
encryption. The data_out in Fig. 11 is 128-bit 
0x3925841d02dc09fbdc118597196a0b32 and data_ 
out_valid is 1, which means values of data_out is valid 
encryption results. The encryption results are the same as the 
example values, so the encryption process has been verified 
to operate normally. 

 

 
Fig. 10 Encryption Simulation – Input Data 

 

 
Fig. 11. Encryption Simulation – Output Data 
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Fig. 12 and Fig. 13 show simulation results of the 
decryption module. Signals for decryption are clock, reset, 
data_in, restart, data_out, data_out_valid, and data_in_valid 
from above. The data_in in Fig. 12 is 128-bit 
0x3925841d02dc09fbdc118597196a0b32 and data_in_valid 
is 1, which means values of data_in is ready to perform 
decryption. The data_out in Fig. 13 is 128-bit 
0x3243f6a8885a308d313198a2e0370734 and 
data_out_valid is 1, which means values of data_out is valid 
decryption results. The decryption results are the same as the 
example values. Therefore, the decryption process has been 
verified to operate normally. 

 

 
Fig 12. Decryption Simulation – Input Data 

 

 
Fig 13. Decryption Simulation – Output Data 

 
Fig. 14 shows the simulation results of the test door lock 

system. Signals for the door lock system are spi_clk, 
spi_slavle_sel, spi_master_out_slave_in (SPI_MOSI), 
spi_master_in_slave_out (SPI_MISO), system_clk, 
ram_data [0]~[7], ram_write_enable, ram_address, enc_start 
and cmp_start from above. When in password setting mode, 
the spi master sends a setting command and an 8-byte 
password (SPI_CLK, SPI_SLAVE_SEL, and SPI_MOSI are 
active). The spi slave received and stored the password 
(RAM_WEN is active). In this case, the length of a 
password is 8 bytes. When enc_start is 1, the AES module 
encrypts the password using system_clk that is faster than 
spi_clk. 

 

 
Fig 14. DoorLock Hardware Part Simulation 

 

In verification mode, the spi master sends a compare 
command and an 8-byte number. After the number is 
received, it is encrypted according to cmp_start. Compare 
result is sent to the system via the SPI (SPI_MISO is active). 
We checked the overall operation of the door lock system. 

B.  Implementation Results 

We implemented the AES hardware using Quartus Prime 
and an Altera CycloneⅣ EP4CE115F29C7. As shown in 
Fig. 15, 11,310 logic elements and 2,164 registers were used.  

 

 
Fig 15. Implementation Summary 

 
Fig. 16 shows the maximum frequency that can be 

implemented. The maximum frequency is about 154 MHz. 
 

 
Fig.16. Maximum Frequency Summary 

 
Table 1 compares the implementation results of the 

previous AES hardware with the results of the 
implementations of the proposed AES hardware. The 
previous design requires 60 clocks to encrypt 128-byte plain 
text, and its maximum frequency is 45 Mhz. The proposed 
design requires 43 clocks, and its maximum frequency is 
153.92 MHz. In other words, the data processing speed of 
the previous design was 3.75 cycles/bytes, but the data 
processing speed of the proposed design was 2.68 
cycles/byte, which is about 140 % improvement. And the 
latency decreased by about a sixth from 1,758 ns to 280 ns. 
Not only did the performance improve, but the number of 
logic elements and registers also decreased to 83.6% and 
92.8%, respectively. 
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The door lock system was implemented and verified, as 

shown in Fig. 17. A keypad was connected to the ATmega 
328 through GPIOs of the Arduino. The SPI master was 
implemented in the ATmega 328 by software, and SPI 
input/output signals are allocated to GPIOs of the Arduino. 

 

 
Fig 17. System Emulation Environments 

 
The SPI slave was implemented in the FPGA, and SPI 

input/output signals were assigned to the GPIOs of the 
FPGA board and connected to the spi master pins of 
Arduino. By connecting the PC with the Arduino as a serial 
interface, the status of the door lock system can be checked 
on the PC. In addition, a logic analyzer was also used to 
check signals of modules implemented in the FPGA, 
including SPI signals. The door lock system has been 
verified for normal operation by repeating the password 
setting mode and verification mode. 

IV.  CONCLUSIONS 

In this paper, we implemented a fast AES hardware 
security module for Internet of Things applications. After 
designing and analyzing the AES algorithm in C language, 
we reflected the result and designed it in hardware using 
Verilog-HDL. After functional verification in ModelSim, it 
was implemented using Altera CycloneⅣ EP4CE115F29C7.  

In order to improve the processing speed of the AES 
hardware module, it was designed by applying parallel 
processing techniques and pipeline techniques to reflect the 
computational complexity and processing order of the 
algorithm. The proposed AES hardware module has a 
processing speed of 2.68 cycles/byte. The total logic 
elements, the total registers, and the clock rate are 11310l, 
2164, and 154 Mhz, respectively, on the EP4CE115F29C7. 
Thus, while reducing the size to about 90 % compared to the 
previous paper, the processing speed is 1.4 times faster and 
the latency is reduced to a sixth.  

In addition, we confirmed the applicability to the Internet 
of Things by implementing the door lock system, including 
the designed AES module and an Arduino. The designed 
AES module is implemented as separate hardware and is 

small in size and fast, so it can be used to protect the 
information in various embedded systems, including the 
Internet of Things. 
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