

Vol.10 (2020) No. 4

ISSN: 2088-5334

A Fast AES Hardware Security Module for Internet of Things
Applications

Minyoung Leea,1, HyunSeo Lima,2, Yoojeong Yanga,3, and Sunhee Kima,4
aDepartment of System Semiconductor Engineering, Sangmyung University, Dongnam-gu, Cheonan, 31066, Korea

 E-mail: 1lmo9793@naver.com; 2hihi981025@naver.com; 3youjung4680@naver.com; 4happyshkim@smu.ac.kr

Abstract— As the Internet of Things is used in various fields, Internet of Things security has become important. Since most Internet
of Things devices is implemented as embedded systems, they provide a software-implemented encryption algorithm. Most embedded
systems use relatively low-performance CPUs and the software processes data serially, making it difficult to process complex security
algorithms in real-time. Therefore, it is necessary to have a stable encryption module with less impact on system performance. In this
paper, we designed an AES hardware security module. Because it is implemented with dedicated hardware, it can process a strong
encryption algorithm in real time without affecting the performance of the system. The proposed AES hardware module is designed
using Verilog-HDL, tested in ModelSim and implemented in Altera FPGA CycloneⅣ. The designed AES hardware adopts parallel
processing technique and pipeline structure considering the computational complexity and processing order of the algorithm. As a
result, it is faster than AES modules implemented in software. In addition, its latency was reduced to about 280 ns, which is about 16
% of the latency of the previous AES hardware module. Not only did the performance improve, but the number of logic elements and
registers also decreased to 83.6% and 92.8%, respectively. The proposed AES hardware module is verified by applying it to a door
lock system and is expected to be applied to various Internet of Things devices.

Keywords— AES; encryption; internet of things; security.

I. INTRODUCTION

The Internet of Things means that things are sent and
received directly to the Internet in real-time. Recently, the
Internet of Things has been used in various fields and is
rapidly developing [1], [2]. Smart home systems, healthcare
services, sensor-embedded equipment, and storage
containers are typical examples [3]-[6]. As the Internet of
Things is used in many fields, there are many security
problems [7]-[9]. In 2017, a smart toy for children,
CloudPets leaked user information such as email accounts
and voice message data [10]. Besides, as smart homes are
activated a lot, CCTVs and door locks in the house are often
hacked [11]. In order to prevent such hacking cases, many
manufacturers are using encryption techniques to secure
their Internet of Things devices [12]-[16].

One of the issues related to the Internet of Things security
is limited resources [17], [18]. Many Internet of Things
devices cannot afford security, or even simple algorithms
because they usually use low-performance central
processing units or microprocessing units. Therefore, it is
necessary to implement reliable security modules using a
few resources. Besides, since many Internet of Things
devices use manufacturer-specific security algorithms, many
of them are incompatible with each other when connected to

a network [17]. In other words, standardized encryption
algorithms are required for interconnection.

In this paper, we implemented a cryptographic algorithm
for the security of the Internet of Things as a hardware
system. The used encryption algorithm is the Advanced
Encryption Standard (AES) algorithm. The AES algorithm is
a cryptographic algorithm used as a US standard [19]. The
encryption block size is 128 bits, and the block size can be
extended [20], [21]. In addition, unlike the Data Encryption
Standard (DES) algorithm, which is a symmetric-key
algorithm with the 56-bit key size for the encryption of
digital data [22], the AES algorithm has a large block size
and is almost impossible to hack using the brute force
method [23]. The AES algorithm is considered as one of the
suitable algorithms for Internet of Things applications [24]-
[26]. Instead, the AES algorithm requires more processing
than encryption algorithms such as DES, so it must be
designed to operate quickly [27].

Previously, many AES algorithms were designed in
software [28]-[30]. Security algorithms for the Internet of
Things are applied to data transmitted and received in real-
time. However, the encryption algorithm implemented in the
software does not perform well in terms of speed because
data are processed serially [31]. Therefore, we implemented
the AES algorithm in hardware instead of software.

1346

A cryptographic device implemented in hardware can be
faster than a cryptographic device implemented in software
because it can use parallel processing techniques. So, it can
be used without any inconvenience and overloading the
primary system when applied to the Internet of Things.
Reference [32] implemented the AES algorithm in hardware.
Since the encryption module was designed using dedicated
hardware, it did not put a load on the system and was
naturally faster than those implemented in software.
However, in processing the encryption algorithm, not only
was it processed serially but also did not consider the
difference in processing time according to the complexity of
the algorithm. So, the overall speed improvement was not
considerable.

In consideration of these problems, we propose a fast
AES algorithm hardware module that uses pipeline
techniques as well as parallel techniques. In session Ⅱ, we
introduce the AES algorithm and describe the architecture of
the proposed AES hardware. Session Ⅲ shows simulation
and implementation results. The next section draws the
conclusion.

II. MATERIALS AND METHOD

A. AES Algorithm

The AES algorithm consists mainly of initial round, main
round, and final round. Fig. 1 shows how each of the three
rounds is organized and in what order the algorithms are
performed. The initial round includes one AddRoundKey
block. The main round consists of SubBytes, ShiftRows,
Mixcolumns, and AddRoundKey blocks, which in turn
perform their operations. This main round is repeated nine
times in total. The final round consists of SubBytes,
ShiftRows and AddRoundKey blocks.

Fig. 1 Ciphering of AES Algorithm

The SubBytes block replaces input byte data in the
hexadecimal format according to the S-box, as shown in Fig.
2. The entered hexadecimal front bits correspond to the
column in the replacement table, and the back bits
correspond to the row. For example, if a hexadecimal
number ‘53’ is entered, a replacement number is ‘ED’.

Fig. 2 S-box: replacement table for the SubBytes block

To perform the ShiftRows, first, configure 4x4 array in

16-byte unit. And then, ShiftRows shifts each row of 4x4
data to the right, where the Nth row is shifted by N-1.

As shown in Fig. 3, MixColumns uses an array formula
using Galois Field, which multiplies the left S matrix with a
constant matrix and performs an exclusive OR operation of
each term to find the value of the right S' matrix. As a result,
the 4-byte data {s0, s1, s2, s3} are replaced by the following
equation (1)-(4).

 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (1)
 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (2)
 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (3)
 �′�,� � ��02� ∙ ��,�
 ⊕ ��02� ∙ ��,�
 ⊕ ��,� ⊕ ��,� (4)

Fig. 3 Mixcolumns operation

AddRoundKey is the process of performing a bitwise

exclusive OR operation of Roundkey and the output of
MixColumns. The input of AddRoundKey, Round key, is
generated through the KeyExpansion process, as shown in
Fig.4. It takes the CipherKey as input and generates the
RoundKeys by repeating the main round 43 times. The main
round for KeyExpansion consists of RotWord, SubWord,
XORwithRcon, and XORwithW[i-4] processes. RotWord
moves 8 bits from the MSB to LSB of a 32-bit word, and the
remaining bits are shifted to the MSB as many as 8 bits
empty. SubWord functions the same as SubBytes described

1347

above. XORwithRcon is the process of performing a bitwise
exclusive OR operation of Rcon, as shown in Fig. 5, and the
output of SubWord. And then, the output of XORwithW[i-4],
w[i], is the result of a bitwise exclusive OR operation on the
previous value w[i-1] and the four previous value w[i-4].

Fig. 4 KeyExpansion Process

Fig. 5 Rcon

The encryption process ends when the plain text goes

through the first round, the main round with nine repetitions
and the final round, using the CipherKey modified through
the KeyExpansion process.

B. AES Hardware Design

First, the algorithm was designed in C language and
verified using MS Visual Studio before it was implemented
in hardware. Three rounds were implemented as separate

functions. Analysis of functions designed in C language
showed that the Cipherkey generation process, or
KeyExpansion, was expected to be more complex than the
encryption process. Moreover, MixColumns was expected to
be more complex than ShiftRows and SubBytes. Based on
these results, we decided on the architecture of an AES
hardware module.

For the hardware-designed AES module in [32], after the
128-bit Cipher Key Expansion was completed over 47
clocks, the encryption process was performed on plain data
using the CipherKey and the generated RoundKeys over 13
clocks. Thus, a total of 60 clocks were required. As expected,
KeyExpansion has more computational capacity than the
encryption process. Thus, the clock rate of the AES module
in [32] was determined by the clock rate of KeyExpansion,
which takes the longest processing time.

To increase the clock speed while reducing the total
number of clocks required, we have designed the AES
hardware module by applying parallel processing techniques
and pipeline techniques that reflect the computational
complexity and processing order.

In the AES algorithm, the input plain text passes through
each process in the order of SubBytes, ShiftRows, and
MixColumns. Next, an exclusive OR is performed on it with
Roundkey. If the plain text encryption process is run; after
all, RoundKeys are generated, like [32], the overall
processing time will be extended. Thus, as shown in Fig 6,
we proceeded with KeyExpansion and plain text encryption
at the same time.

KeyExpansion consists of a total of 43 rounds, and the
encryption process consists of a total of 11 rounds. The
encryption processes data in 16-byte units, while
KeyExpansion processes data in 4-byte units. So the
encryption only needs to operate one round while
KeyExpansion operates in four rounds. Therefore, the one
main round of the encryption was broken down into the
four-stage pipeline, as shown in Fig. 6.

Fig. 6 AES Block Diagram

The main round of the encryption consists of SubBytes,

ShiftRows, MixColumns, and AddRoundKey. As expected,
MixColumns is more complex than SubBytes and ShiftRows.
Since it is good that all the stages take the same amount of
time to process their work, SubBytes and ShiftRows were
grouped into one stage, and MixColumns was divided into
two stages. This pipelining significantly increased the clock

rate of the encryption. To increase the KeyExpanion clock
rate to a level similar to the encryption, KeyExpansion was
also divided, as shown in Fig. 6. As a result, the proposed
hardware took a total of 43 clocks to encrypt the plain text.

As shown in Fig. 7, the decryption process consists of an
initial round, main round, and final round. The decryption
reverses all processes of the encryption. Since there were no

1348

Mixcolums in the encryption final round, there were no
Inv_Mixcolumns in the initial decryption round.
Inv_AddRoundKey, Inv_MixColumns, Inv_ShiftRows, and
SubBytes of the decryption main round reverse
AddRoundKye, MixColumns, ShiftRows, and SubBytes,
respectively. The decryption main round also reverses the
whole process of the leading encryption round and is
repeated nine times as the first encryption round. Moreover,
the final round includes only one Inv_AddRoundKey, like
the initial round of the encryption.

Fig. 7 Decryption Algorithm

C. Test System Design

A simple door lock system has been designed to show the
adaptability to Internet of Things applications of the
proposed AES hardware module. The door lock system was
designed using Arduino with an 8-bit Atmega328 and
GPIOs. Fig. 8 shows the block diagram of the door lock
system. This system has a keypad and an SPI master block
for communication with FPGA providing an SPI slave block,
storage and the AES algorithm module designed in this
paper.

Fig. 8 Door lock System Block Diagram

When in password setting mode, the Arduino system

passes the password entered via the keypad to the FPGA via
SPI. The AES module encrypts the number, stores an
encrypted password in the storage, and deletes the raw
password. When a number is entered in the door lock system
to verify the password, the SPI master sends the number to
SPI slave that stores it. The AES module encrypts the

number and compares the stored encrypted password with
the newly encrypted password. The AES module sends a
matched/unmatched signal to the Arduino system using SPI.

We also designed the encryption module as well. When a
user enters a number, the stored encrypted password can be
decrypted and compared to the entered number. However, in
order to prevent the raw password from being disclosed, the
stored encrypted password is not decrypted. Instead, the
entered number is encrypted to compare the result with the
stored encrypted password.

III. RESULT AND DISCUSSION

A. Function Simulation Results

We designed an AES module using the Verilog-HDL
language. And then, it was simulated in ModelSim. It was
verified by comparing simulation results with the example
data from the standard, as shown in Fig. 9 [7].

Fig. 9 Example Data from the Standard

Fig. 10 and Fig. 11 show the simulation results of the

encryption module. Signals for encryption are clock, reset,
data_in, restart, data_out, data_in_valid, and data_out_valid
from above. The data_in in Fig. 10 is 128-bit
0x3243f6a8885a308d313198a2 e0370734 and data_in_valid
is 1, which means values of data_in is ready to perform
encryption. The data_out in Fig. 11 is 128-bit
0x3925841d02dc09fbdc118597196a0b32 and data_
out_valid is 1, which means values of data_out is valid
encryption results. The encryption results are the same as the
example values, so the encryption process has been verified
to operate normally.

Fig. 10 Encryption Simulation – Input Data

Fig. 11. Encryption Simulation – Output Data

1349

Fig. 12 and Fig. 13 show simulation results of the
decryption module. Signals for decryption are clock, reset,
data_in, restart, data_out, data_out_valid, and data_in_valid
from above. The data_in in Fig. 12 is 128-bit
0x3925841d02dc09fbdc118597196a0b32 and data_in_valid
is 1, which means values of data_in is ready to perform
decryption. The data_out in Fig. 13 is 128-bit
0x3243f6a8885a308d313198a2e0370734 and
data_out_valid is 1, which means values of data_out is valid
decryption results. The decryption results are the same as the
example values. Therefore, the decryption process has been
verified to operate normally.

Fig 12. Decryption Simulation – Input Data

Fig 13. Decryption Simulation – Output Data

Fig. 14 shows the simulation results of the test door lock

system. Signals for the door lock system are spi_clk,
spi_slavle_sel, spi_master_out_slave_in (SPI_MOSI),
spi_master_in_slave_out (SPI_MISO), system_clk,
ram_data [0]~[7], ram_write_enable, ram_address, enc_start
and cmp_start from above. When in password setting mode,
the spi master sends a setting command and an 8-byte
password (SPI_CLK, SPI_SLAVE_SEL, and SPI_MOSI are
active). The spi slave received and stored the password
(RAM_WEN is active). In this case, the length of a
password is 8 bytes. When enc_start is 1, the AES module
encrypts the password using system_clk that is faster than
spi_clk.

Fig 14. DoorLock Hardware Part Simulation

In verification mode, the spi master sends a compare
command and an 8-byte number. After the number is
received, it is encrypted according to cmp_start. Compare
result is sent to the system via the SPI (SPI_MISO is active).
We checked the overall operation of the door lock system.

B. Implementation Results

We implemented the AES hardware using Quartus Prime
and an Altera CycloneⅣ EP4CE115F29C7. As shown in
Fig. 15, 11,310 logic elements and 2,164 registers were used.

Fig 15. Implementation Summary

Fig. 16 shows the maximum frequency that can be

implemented. The maximum frequency is about 154 MHz.

Fig.16. Maximum Frequency Summary

Table 1 compares the implementation results of the

previous AES hardware with the results of the
implementations of the proposed AES hardware. The
previous design requires 60 clocks to encrypt 128-byte plain
text, and its maximum frequency is 45 Mhz. The proposed
design requires 43 clocks, and its maximum frequency is
153.92 MHz. In other words, the data processing speed of
the previous design was 3.75 cycles/bytes, but the data
processing speed of the proposed design was 2.68
cycles/byte, which is about 140 % improvement. And the
latency decreased by about a sixth from 1,758 ns to 280 ns.
Not only did the performance improve, but the number of
logic elements and registers also decreased to 83.6% and
92.8%, respectively.

1350

The door lock system was implemented and verified, as

shown in Fig. 17. A keypad was connected to the ATmega
328 through GPIOs of the Arduino. The SPI master was
implemented in the ATmega 328 by software, and SPI
input/output signals are allocated to GPIOs of the Arduino.

Fig 17. System Emulation Environments

The SPI slave was implemented in the FPGA, and SPI

input/output signals were assigned to the GPIOs of the
FPGA board and connected to the spi master pins of
Arduino. By connecting the PC with the Arduino as a serial
interface, the status of the door lock system can be checked
on the PC. In addition, a logic analyzer was also used to
check signals of modules implemented in the FPGA,
including SPI signals. The door lock system has been
verified for normal operation by repeating the password
setting mode and verification mode.

IV. CONCLUSIONS

In this paper, we implemented a fast AES hardware
security module for Internet of Things applications. After
designing and analyzing the AES algorithm in C language,
we reflected the result and designed it in hardware using
Verilog-HDL. After functional verification in ModelSim, it
was implemented using Altera CycloneⅣ EP4CE115F29C7.

In order to improve the processing speed of the AES
hardware module, it was designed by applying parallel
processing techniques and pipeline techniques to reflect the
computational complexity and processing order of the
algorithm. The proposed AES hardware module has a
processing speed of 2.68 cycles/byte. The total logic
elements, the total registers, and the clock rate are 11310l,
2164, and 154 Mhz, respectively, on the EP4CE115F29C7.
Thus, while reducing the size to about 90 % compared to the
previous paper, the processing speed is 1.4 times faster and
the latency is reduced to a sixth.

In addition, we confirmed the applicability to the Internet
of Things by implementing the door lock system, including
the designed AES module and an Arduino. The designed
AES module is implemented as separate hardware and is

small in size and fast, so it can be used to protect the
information in various embedded systems, including the
Internet of Things.

REFERENCES
[1] M. Chui, M. Löffler, and R. Roberts. "The internet of

things," McKinsey Quarterly, March 2010.
[2] (2017) IEEE Courses. Computing. [Online]. What Is the Internet of

Things: An Introduction. Available:
https://ieeexplore.ieee.org/courses/ details/EDP486

[3] (2017) IEEE Courses. [Online]. Computing. Exploring IoT Industry
Applications: The Evolution of Internet of Things for Healthcare.
Available: https://ieeexplore.ieee.org/courses/details/EDP483

[4] D. Yang, and H. Ren, “The research on the technology of Internet of
Things and embedded system,” in 2017 8th IEEE International
Conference on Software Engineering and Service Science
(ICSESS) pp. 395-398. Nov. 1999.

[5] M. Hossain, and S.M. RiazulIslam, F. Ali, K.S. Kwak, and R. Hasan,
“An Internet of Things-based health prescription assistant and its
security system design,” Future Generation Computer Systems, vol.
20, pp. 422-439, May. 2018.

[6] C. Z. E. Li, and Z. W. Deng, “The Embedded Modules Solution of
Household Internet of Things System and The Future Development,”
Procedia Computer Science, vol. 166, pp350-356, 2020.

[7] M. Ahmad, and K. K. Salahb, “IoT security: Review, blockchain
solutions, and open challenges,” Future Generation Computer
Systems, vol. 82, pp395-411, May. 2018.

[8] N. Moustafa, B. Turnbull, and K. K. R. Choo, “An Ensemble
Intrusion Detection Technique Based on Proposed Statistical Flow
Features for Protecting Network Traffic of Internet of Things,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp 4815-4830, June. 2019.

[9] E. Bertino, and N. Islam, “Botnets and Internet of Things Security,”
Computer, vol. 50, no.2, pp 76-79, Feb. 2017.

[10] D.S. Kim. (2017) Special Economy. [Online]. Available: http://www.
speconomy.com/news/articleView.html?idxno=86731

[11] CISOMAG. (2019) CISO MAG. [Online]. Available: cisomag.com
/hackers-take-over-smart-home/

[12] P. Marius, C. TOMA, C. Boja, and Z. Alin, “Privacy and Security in
Connected Vehicles Ecosystems,” Informatica Economica, vol. 21,
no.4, pp. 29-40, 2017.

[13] C. Wootton, “Samsung ARTIK Reference: The Definitive
Developers Guide,” Apress, 2016.

[14] H. Naeem, F. Ullah, M. R. Naeem, S. Khalid, D. Vasan, S. Jabbar,
and S. Saeed, “Malware detection in industrial internet of things
based on hybrid image visualization and deep learning model,” Ad
Hoc Networks, vol. 105, pp. 102154, Aug. 2020.

[15] Y. H. Liu, S. Zhang, “Information security and storage of Internet of
Things based on block chains,” Future Generation Computer
Systems, vol 106, pp 296-303, May 2020.

[16] G. D. L. T. Parra, P. Rad, K. K. R. Choo, and N. Beebe, “Detecting
Internet of Things attacks using distributed deep learning,” Journal of
Network and Computer Applications, vol. 163, pp 102662, Aug.
2020.

[17] M. Rouse. (2018) IoT security(internet of things security), the IoT
Agenda website. [Online]. Available: https://internetofthingsagen
da.techtarget.com/definition/IoT-security-Internet-of-Things-security.

[18] M. Hossain, M. Fotouhi, and R. Hasan, “Towards an analysis of
security issues, challenges, and open problems in the internet of
things,” in IEEE 11th World Congress on Services, 2015.

[19] S. K. Rao, and D. Mahto, and D. A. Khan, “A Survey on Advanced
Encryption Standard,” International Journal of Science and Research
(IJSR), vol. 6, no. 1, Jan. 2017.

[20] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.

TABLE I
COMPARISON OF IMPLEMENTATION RESULTS

 cycles/byte Max. Frequency Latency Total logic elements Total registers Implementation Device

Previous design in
[13]

3.75 45 MHz 1,758 ns 13,517 2330
CycloneⅡ

EP2C70F896C8

Proposed design 2.68 153.92 MHz 280 ns 11,310 2164
CycloneⅣ

EP4CE115F29C7

1351

[21] M. F. Mushtaq, S. Jamel, A. H. Disina, Z. A. Pindar, N. S. A. Shakir,
and M. M. Deris, “A Survey on the Cryptographic Encryption
Algorithms,” International Journal of Advanced Computer Science
and Applications(IJACSA), vol. 8, no. 11, pp 333-344, 2017.

[22] (2020) The Wikipedia website. [Online]. Available:
https://en.wikiped ia.org/wiki/Data_Encryption_Standard

[23] N. ALEISA, “A Comparison of the 3DES and AES Encryption
Standards,” International Journal of Security and Its Applications,
vol.8, no. 7, pp. 241-246, 2015.

[24] M. Bahnasawi, A., K. Ibrahim, A. Mohamed, M. Khalifa, A.
Moustafa, K.Abelmonim, Y. ismail, and H. Mostafa, “ASIC-
Oriented Comparative Review of Hardware Security Algorithms for
the Internet of Things Applications,” in IEEE International
Conference on Microelectronics (ICM 2016), pp. 285-288, 2016.

[25] R. Nivedhaa, and J.Jean Justus, “A Secure Erasure Cloud Storage
System Using Advanced Encryption Standard Algorithm and Proxy
Re-Encryption,” in 2018 International Conference on
Communication and Signal Processing (ICCSP), 2018.

[26] M. E. Hameed, M. M. Ibrahim, and N. A. Manap, “Review on
Improvement of Advanced Encryption Standard (AES) Algorithm
based on Time Execution, Differential Cryptanalysis and Level of
Security,” Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 10, no. 1., pp. 139-145, 2018.

[27] S. P. Singh, and R. Maini. "Comparison of data encryption
algorithms." International Journal of Computer Science and
Communication, vol.2, no. 1, pp. 125-127, 2011.

[28] D. Budiyanto, and P. A. W Putro, “Comparison of Implementation
Tiny Encryption Algorithm (TEA) and Advanced Encryption
Standard (AES) Algorithm on Android Based Open Source
Cryptomator Library,” in 2018 International Seminar on Research of
Information Technology and Intelligent Systems (ISRITI), 2018.

[29] D. Nurmalasari, E. Mulyana, and M. Irfan, “Security Implementation
of the Internet of Things Using the Advanced Encryption Standard
(AES) Algorithm,” in 2019 IEEE 5th International Conference on
Wireless and Telematics (ICWT), 2019.

[30] R. Riyaldhi, Rojali, and A. Kurniawan, “Improvement of Advanced
Encryption Standard Algorithm With Shift Row and S.Box
Modification Mapping in Mix Column,” Procedia Computer Science,
vol. 116, pp. 401-407, 2017.

[31] D. J. Bernstein and P. Schwabe, “New AES software speed records,”
in International Conference on Cryptology in India, Berlin,
Heidelberg: Springer, 2008.

[32] H. K. Park and K. Lee, “A Design of an AES-based Security Chip for
IoT Applications using Verilog HDL,” The Transactions of the
Korean Institute of Electrical Engineers, no. 1, pp. 9-14, 2018.

1352

