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Abstract—In this paper, the method of estimating the Generalized Additive Models (GAM) was highlighted, and a proposed robust 
weighted composition was found by combining the robust M method with the smoothing splines to estimate the Robust Generalized 
Additive Model and its notation is (RGAM). This estimator is used to deal with the effect of outliers' presence in the data that do not 
fit into the overall data pattern by relying on some of the weight functions of the robust M method. Wavelet Shrinkage technique is 
used as well, which has been proposed as a smoothing of data using several types of wavelet filters in calculating the discrete wavelet 
transformation and relying on it in estimating the wavelet generalized additive model symbolized by (WGAM). In using the 
simulation method, when data is contaminated with distributions ((t) Dis., Exp. Dis.) And with contamination rates (5%, 15%, 35%) 
and with sample sizes (50,150,300) it is noted that the smoothing method is with the Bisequare weight (BRGAM). It had a better 
performance compared to the rest of the methods for the simulated scenarios covered. The GCV criterion showed a marked 
advantage over other criteria, especially when estimating the proposed robust M (RGAM) model. Some statistical criteria have been 
adopted. These criteria of the Generalized Additive Model (GAM) is used to compare estimation methods, the proposed methods were 
tested on simulation experiments as well as on real data collected from Ibn Sina Learning Hospital on cases of short stature. The 
RGAM method gave the best results compared to the ordinary GAM and WGAM methods, and that by obtaining the smallest GCV 
value, this is because it is responsible for selecting the most suitable smoothing parameter for the smoothing spline estimator. 
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I. INTRODUCTION  

The additive model (GAM) is one of the methods of Non-
Parametric (or semi-parametric) regression. It is one of the 
practical solutions, especially when it is combined with the 
method of backfitting to deal with the problem of 
dimensionality that makes the researchers suffer using 
multiple Non-Parametric regression. It is restricted from the 
possibility of generalizing the case of univariate regression 
to a multivariate case [1]. When an approximate estimator of 
two or more variables is found, it is difficult to make a 
matrix of variables measured in different units and other 
problems related directly and indirectly. The additive 
method works in accumulation (sum of one-dimensional 
compounds) to interpret various phenomena. The GAM is a 
compromise between multiple regression and the matching 
of a surface with several dimensions, using Partial 
Residuals,  

and it can also be considered promoted Non-Parametric state 
of the Generalized Linear Model (GLM) and is obtained by 
replacing (∑ �������� ) Linear Predictor with other Non-
Parametric terms as additive Predictor (∑ ��(��)���� ); 
therefore, the Non-Parametric additive model [2] is shown 
below. 
 
 y� = α + ∑ ��(������ ) + ε� (1) 
 ��: is a vector of estimated function vector of data that 
expresses the explanatory variable �� and can be estimated 
by smoothing splines. There are several methods for 
obtaining a GAM estimate. The most important of them is 
the Backfitting algorithm [3].  

This paper aims to make data smoothing (filtering) from 
outliers using some fortified weighting functions of robust 
M-estimators in estimating the generalized additive model to 
obtain an estimator symbolized as (RGAM) [4]. This paper 
aims as well to use some types of wavelets as a filter in 
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calculating the discrete wavelet transformation and using the 
smoothed data to estimate the proposed generalized additive 
model (WGAM). Finally, the results' efficiency is tested 
using some statistical comparison criteria to determine the 
best estimation method among the ordinary GAM models 
and the proposed RGAM methods, and the proposed 
WGAM methods using simulation and real data analysis. 

The first step to introduce the backfilling algorithm [5] 
depends on the iterative method. Fitting the equation (1), the 
conditional expectation of the response variable for each K 
of x ^ 's will be as follows: 

 E(Y X =⁄ ��, ��, … , ��) = �(��, ��, … , ��)= ��(��) + ��(��) + ⋯ + ��(��) 
 

The first step for estimating this equation is done by 
starting with initial values as an initial step (°) in  �� =��°   , i = 1,2, … , p         
As for the second step, it is carried out by doing the i-th 
iteration: 
 � � = !�"# − % − ∑ �& ��⁄�&�� ' (2) 
 
S is a smoothing transformation matrix (n × n). 
 !� = (( + )�*�)+� *� = ,�-�+�,�. 
 *� is recalculated for each / of the explanatory variables. 
To find new estimates of the functions, these operations are 
repeated by smoothing the errors until the partial functions 
converge and stopping when the smoothing functions ��(x�) 
remain converges [6]: 

  

∆"��2 , ��2+�' = 3"��2, ��2+�'��
���  

 
Partial residuals are defined as the identical values for 

each function plus the total residuals from the additive 
model provided that: 4"��(��)' = 0 

          
The  !� smoothing matrix is replaced by another matrix !�∗, this is called the Centered Smoother so that: 

  !�∗ = (( − 11.)!�  
Since 1 is a vector (nxn) all its elements equal one, and when 
generalizing equation (3), the GAM will be obtained: 
 

 ∑ (y� − 8 − �(��))� +���� ∑ λ : �..(��)� dx<=>���  (3) 
 

Whereas λ represents the smoothing parameter, it is noted 
from equation (3) that it is a penalty parameter with a 
separate constant λ� for each term, and equation (3) can be 
written in a matrix form [7] as follows: 
 
  (y� − 8 − ∑ ��>��� ).(y� − 8 − ∑ ��>��� ) (4) 
 k� is a penalty matrix for each ��, and by taking the 
differentiation for equation (4) with respect to ��, and make 
the results equals zero, we obtain: 

 � � = !&(# − 8 − ∑ � �>��� ) (5) 

 
Whereas !& = (( + λ&K&)+�, the amount (# − 8 − ∑ � �>��� ) 
 is called the partial residuals from the smoothing, and then 
the smoothing process is repeated or repeated for the partial 
residuals until we get the required convergence. 

To choose the smoothing parameter (λ), automated 
method is used, and one of the most known criteria for 
selecting the smoothing parameter is the Generalized Cross 
Validation criterion ((ABCD) Generalized Cross-Validation), 
and this is done by reducing this criterion, which in turn 
depends on the residuals, as it leaves the data to determine 
by itself the optimal value of the smoothing parameter [8]. 

II. MATERIALS AND METHOD  

A.  The Concept of Robust Regression 

The problem of the existence of outliers in the data has 
received significant attention in recent years. Many 
researchers' awareness with extreme values in the data are 
often associated with a violation of the assumptions of errors 
that are supposed to be distributed normally. The idea of 
robust statistics based on statistical treatments deals with 
some deviations from the premises of the ideal model that 
are sometimes associated with outlying values in the data. 
Robust methods usually reduce the impact of those extreme 
values on the estimate, as the robust method used to 
diagnose, isolate, and prevent it from withdrawing (pulling) 
the model estimated towards it [9]–[11]. 

B.  The Robust M-estimate with Smoothing Splines 

Huber introduced the robust M method in 1964. It is one 
of the robust methods of estimation, which gives less weight 
to extreme observations in the dependent variable to reduce 
its effect (effect of large residuals). The M-estimator 
corresponds to the estimates of the maximum likelihood 
because the function ρ (.) becomes a likelihood function 
when choosing a suitable distribution of residuals [12]. The 
penalized likelihood estimator can be obtained as the 
following criterion is maximized [13]. Penalized Likelihood 
is considered a generalization of the penalized squares 
method's concept if the probability distributions are from the 
exponential family. The exponential distributions are the 
basis upon which all derivations depend. Because of the 
characteristics that make it distinct in the inferential part, 
which makes most researchers inclined to this type of 
probability functions, the general form for these distributions 
is shown in equation 6 [14] below. 

 E(�, F, G) = H�I JKL+M(L)NO + P(#, G)Q (6) 

as: -F: normal parameter. G: Scale Parameter. P, R: functions 
that the shape of the distribution depends on. We find the log 
of the maximum likelihood as follows:  

 S(�, G) = ∑ JKTU(VT)+M(U(VT))NO + P(#� , G)Q>���  (7) 

�(��): It represents an unknown smoothing function that 
requires estimation based on the sample observations and 
will be considered the Canonical Parameter. �  is considered 
as the solution that maximizes the logarithm of the 

2345



likelihood function of equation (7), and then the penalized 
maximum likelihood estimator can be obtained, and the 
following criterion is maximized [15]. 

 S(�, G) − �� ) : �..(��)�W�) (8) 

To maximize the log of the penalized likelihood function, 
we multiply equation (7) by %G: 

 ∑ X#��(��) − R(�(��))Y>���  (9) 

Then maximizing equation (9) will be equivalent to 
minimizing equation (3). Then Minimizer of Penalized Least 
Squares (MPLS) will be obtained. This will be used in 
equation (9) to balance between the amount of smoothing for 
the fitted curve m which is the minimum values for non-
smoothed penalty, and between the accuracy of the data, 
which are the higher values for the log likelihood. And when 
the estimation of the extremes is to be robustified, it is 
preferable to use the robust M method with the smoothing 
splines in the Non-Parametric analysis, because M-
estimators method possesses the property of Scale Invariant, 
and by taking the standardized residuals using equation (10) 
as follows: 

 H� = "KT+Z+U(VT)'[  (10) 
Estimates are determined by a specific objective function 

on all values of m, and by minimizing the criterion: 

 �/\ )� : �..(��)�W��]  (11) 

Or by using the matrix formula: 

 ∑ _̂� `aH�b����� + ∑ )�  ��.>��� c��� = 0 (12) 

Let Ψ = ρ ^ 'represent the derivative of ρ, where Ψ is 
called the Influence curve, and to minimize function (12) we 
derive it partially with respect to the parameters m and make 
the resulted amount equal to zero:  

− _̂d + 3 )�  ��.
>

��� c��� = 0 

 
Whereas, ρ is a function concerning errors, and the M 

value does not have to be a fixed estimator; that is, the 
estimators may be affected by the size of the errors. To find 
σ ̂, which represents the measurement parameter, it is 
estimated only once before starting the iteration, using the 
initial values, and there are several formulas for estimating _̂ 
including [16]. 
Since H� represents the residuals and that the value of ^ is 
approximately due to an unbiased estimator of the standard 
deviation of errors when \ is large, and the error is a 
normally distributed, and that the function ∑ `(KTef+U(VT)[>��� ) is a lower bound by the first partial 

derivative of ̀ (. ). 
As d(�)  represents the influence function, that is, it 

measures the extent of the effect of observation I, and the 
researchers have proposed a few functions `(. ) and their 
derivatives d(. ) So that they make the estimator robust and 
not affected by the presence of outliers. The weight function 
can be defined as: 

 h(�) = i(V)V   (13) 

 h� = h(H�) = i(jT)jT   (14) 

Accordingly, the new estimator will be as follows: 

  ! = (k + )�*�)+�k (15) 

 �/\ ∑ h "H�(l+�)' H��>���  (16) 

Where m indicates the index of the iteration. The weight h "H�(l+�)' is recalculated after each iteration in order to use 
it in the next iteration. 

C.  Some M Robust Weighting Function 

Here are some commonly used weight weights. 

1) Huber function: M-estimators are based on the Huber 
function with mathematical advantages [17]. However, it is 
sensitive to the Leverage Point, and increase linearly at the |�| > P level, where a 95% approximation efficiency is 
obtained when errors are distributed normally with the 
Tuning Constant P = 1.345. 

 dstMju(jT,v) = w1               /E      |H�| ≤ Pv|jT|          /E            y. h  (17) 

2) Hampel function [18]: as the default values for the 
cutoff constants a=2    ,  b=4   , c=8 

  d(jT,v) =
⎩⎪⎨
⎪⎧ 1                         /E                  |H�| ≤ 8Z|jT|                     /E        8 ≤ |H�| ≤ R

Z(v+|jT|)|jT|(Z+M)           /E             R ≤ |H�| ≤ P    0                                             |H�| ≥ P
 (18) 

3) Bisquare or Tukey Beaton function is sometimes 
called a double squared weight function (Tukey, Biweight) 
[19], which reaches 95% efficiency when errors are 
distributed normally. 

 d(jT,v) = ��1 − �jTv ��   ��      /E           |H�| ≤ P0                        /E             0           (19) 

D.  Wavelet Transform  

Wavelet transformation is one of the types of 
mathematical functions. It divides the original signal (data) 
or partitioning a given function into different frequency 
compounds and studying each compound with the 
appropriate resolution at each measurement. In other words, 
dividing the functions into several frequential components 
using different Windows sizes, and then studying these 
components separately, taking into account the match of the 
range (Scale) and the used wavelet. 

Wavelet transformation analyzes the function or the time 
series within the range of time and frequency. Wavelet 
transformation is used with short time and high-frequency 
signals, which gives good time accuracy and weak frequency 
accuracy, as well as used with a long time and low 
frequency, which gives low time accuracy and good 
frequency accuracy. The wavelet can be defined 
mathematically as a real value function defined on an entire 
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real axis and oscillating up and down regularly around zero. 
The wavelet is also considered a distinctive tool, being an 
effective and powerful technique for representing and 
analyzing data. The wavelet was developed mathematically 
to be wavelet for its smallness [20]. It is a signal of limited 
continuity with a mean equal to zero, unlike the big wave 
signal such as the sine wave and the cosine wave that 
extends (-∞ and ∞). The wavelet compounds can be 
described as follows: 

1) The Scaling Function ∅(. ), Which is also known as 
the Father Function [21], which represents the dilation 
equation, and is considered the approximate part of the data 
(which is proportional to the data mean), which we obtain 
from the following formula:  

 f(�) = ∑ B(k)f(2� − k)���]  (20) 
Whereas, C (k): represents the parameters of the Low-Pass 
Filter. 

2) The Wavelet function Ψ (.), Which is also known as 
the Mother function [22], which represents the Wavelet 
equation, which we get from the following formula: - 

 w(�) = ∑ d(k)f(2� − k)���]  (21) 
Whereas, d (k) represents the High-Pass Filter parameters, as 
it acts as a prototype, in which all used windows to process 
the time series signal are generated from it. 

E.  Haar Wavelet 

Haar Wavelet [23] is an example of the Orthonormal 
system in the interval [1.0], and it is considered one of the 
simplest and oldest types of wavelets and is best for 
educational purposes, and it is the basis for generating other 
types of wavelets. The Haar wavelet consists of two 
functions, the wavelet function Ψ(X) and the scaling 
function ∅(X) (Scaling Function). 

III.  RESULTS AND DISCUSSION  

A.  Used Generation Functions 

The functions vary in the diversity of the phenomena that 
they represent, as these functions are characterized by being 
designed to display a set of phenomena that often occur in 
real life, and two accredited functions have been employed 
in most research papers, namely: - 

• Linear Function of higher degrees: f�(x) =0.2*x^11 ∗(10 ∗ (1 − x))^6 + 10*(10*x)^3*(1-x)^10 
• Doppler function [24] 
 E�(�) = a�(1 − �)b�/��/\a2�(1 + �)/(� + �)b    ,   � =0.05 

B.  Simulation Trials Algorithm 

Several scenarios were applied to simulation experiments, 
as the explanatory variables were contaminated at one time 
and y at other times with different distributions ((t) dis., 
Exp.dist.), And for different sample sizes (50, 150, 300) and 
with contamination ratios (5, 15, 35%), then repeat each 
experiment once and to obtain consistent results and to give 
a comprehensive picture of the efficiency of the methods, 
different parameters were chosen for the probability 
distributions as follows: 

• Generate four explanatory variables Standard Uniform 
Distribution. 

• Generate random errors from a normal distribution 
with a mean of zero and variance ^�. 

• Generate the random variable y directly through the 
model used in simulation experiments, using the 
regression function in terms of the explanatory 
variables generated above and random error. 

• Estimating the Generalized Additive Model GAM 
model and then smoothing the data with wavelet 
functions (Db, Haar, Least A., Coiflets) to estimate the 
proposed Wavelet Generalized Additive Model 
(WGAM) to obtain the smoothed estimators 
(DWGAM, HWGAM, LWGAM, CWGAM). 

• Estimating the proposed Robust Generalized Additive 
Model (RGAM) using some weight functions of the 
robust M-estimators method (Huber, Hampel, 
Bisquare) to obtain the smoothed estimators 
(HRGAM, HaRGAM, BRGAM). 

• Make a Comparison between GAM, WGAM, and 
RGAM for the smoothed estimators in points (4) and 
(5) through some comparison criteria (GCV, Con., 
BIC, AIC). 

C.  Simulation Results 

Four examples of Tables (1,2,3,4) have been developed 
due to the limited space in the paper. The rest of the tables 
are available (ready upon request) and for the rates of 
contamination and samples' sizes. Different probability 
distributions to display and compare classical and proposed 
estimation methods will be discussed within the Table. 

 

TABLE I 
 THE COMPARISON BETWEEN (GAM, WGAM, RGAM) REPRESENTS THE FIRST MODEL, WHEN Y CONTAMINATED WITH T DISTRIBUTION, WITH DIFFERENT RATES  

OF CONTAMINATION AND DIFFERENT SAMPLE SIZES 

BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  

0.35  0.15  0.5  

521.1 512.8 1.74E-27 1767 536.5 529.4 1.03E-28 2290.0 540.3 533.0 2.78E-28 2666.2 GAM 
261.4 256.9 3.32E-29 1686 268.8 264.0 3.06E-29 2240.6 271.4 266.7 2.44E-29 2516.7 DWGAM 
262.0 257.4 1.00E-28 1740 269.5 264.7 9.75E-29 2283.4 272.0 267.4 7.40E-29 2569.9 HWGAM  
261.5 257.0 1.01E-27 1696 268.9 264.2 2.82E-28 2242.5 271.9 266.9 1.22E-27 2527.1 LWGAM 
261.0 258.2 8.09E-28 1760 268.9 265.6 1.19E-28 2284.5 271.6 266.9 2.39E-28 2544.2 CWGAM  

at 35% contamination rate and n = 50, the 
best method was the DWGAM, although 
the BIC is smaller for a CWGAM. 

at 15% contamination rate and n= 50 ,the 
best method was the DWGAM. 

at 5% contamination rate and n=50 ,the best 
method was the DWGAM method  

 

1550. 1537. 1.26E-27 1751 1612. 1600. 5.19E-28 3498.3 1605. 1592 4.48E-28 2578.5 GAM 
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780.2 770.6 1.04E-27 1619 810.0 801.4 8.09E-29 2531.9 807.8 799.1 9.77E-29 2456.8 DWGAM 
780.6 771.2 6.32E-28 1729 810.3 801.7 8.57E-29 2530.6 806.7 797.7 1.51E-28 2411.5 HWGAM  
780.3 771.6 2.33E-28 1721 810.2 801.5 8.17E-29 2530.8 807.9 798.7 4.97E-28 2442.8 LWGAM 
779.9 771.3 2.85E-29 1716 810.1 801.5 1.35E-28 2530.7 807.5 798.5 1.83E-28 2435.7 CWGAM  

at a 35% contamination rate and n = 150, 
the best method was the DWGAM 
method, although the Con. index had a 
smaller value for a CWGAM. 

at 15% contamination rate and n = 150, the 
best smoothing method was the (DWGAM) 
method, although the GCV Index had a 
smaller value for a (HWGAM). 

at 5% contamination rate and n = 150, the 
best method was HWGAM,although BIC is 
smaller for CWGAM. 

 

3095 3078 1.02E-27 1672 3169 3152 2.50E-27 2138.2 3203 3187. 2.51E-27 2481.0 GAM 
1550 1539 8.75E-28 1675 1589 1578 3.86E-28 2101.0 1606 1595.0 1.27E-28 2424.5 DWGAM 
1552 1540 6.49E-27 1683 1587 1575 1.95E-28 2106.5 1607 1595.1 4.86E-27 2428.8 HWGAM  
1551 1589 1.60E-26 1676 1588 1576.1 1.58E-26 2115.3 1607 1595.6 4.65E-28 2428.5 LWGAM 
1553 1579 1.60E-26 1676 1588 1576.6 9.31E-28 2143.6 1607 1595.5 3.43E-28 2426.3 CWGAM  

at a 35% contamination rate and n = 300, 
the best method was the (DWGAM) 
method 

at 15% contamination rate and n = 300, the 
best smoothing method was the (DWGAM) 
method, although the GCV Index had a 
smaller value for a (HWGAM). 

at 5% contamination rate and n = 300, the 
best smoothing method was the (DWGAM) 

 

540.0 532.7 1.82E-28 1641 557.0 549.6 5.96E-28 2245.0 564.4 556.84 3.16E-28 2579.7 GAM  
389.6 382.6 4.48E-28 29.35 462.8 455.5 2.10E-28 46.062 495.2 487.28 1.68E-28 92.407 HRGAM 
428.0 421.2 3.18E-28 208.3 499.6 492.7 1.71E-28 427.53 511.8 505.12 2.39E-29 532.38 HaRGAM  
356.7 324.7 3.88E-29 4.684 456.2 421.8 1.24E-29 8.9252 399.5 401.32 1.30E-29 14.69 BRGAM 

at a 35% contamination rate and n = 50, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

at a 15% contamination rate and n = 50, the 
best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

at a 5% contamination rate and n = 50, the 
best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

 

1550 1537 1.26E-27 1651. 1612 1600 5.19E-28 2498.3 1605 1592.8 4.48E-27 2378.5 GAM  

1090 1076 8.67E-28 26.69 1407 1395 8.64E-28 50.535 1379 1367.2 1.17E-28 48.207 HRGAM 
1211 1199 7.93E-28 192.6 1506 1495 7.52E-28 517.74 1481 1470.6 1.72E-28 479.69 HaRGAM  
1021 1043 1.55E-29 3.489 1399 1325 1.49E-29 6.1992 1312 1321.5 1.08E-29 5.7324 BRGAM 

at a 35% contamination rate and n = 150, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

at a 15% contamination rate and n = 150, 
the best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

at a 5% contamination rate and n = 150, the 
best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

 

3092 3074 1.10E-27 1648. 3169 3152 2.50E-27 2138.2 3203 3187.1 2.51E-27 2401.0 GAM  
2161 2138 1.32E-27 25.85 2645 2629 4.37E-28 42.342 2764 2748.8 1.77E-27 48.116 HRGAM 
2414 2397 1.22E-27 191.1 2883 2868 3.71E-28 411.35 2971 2957.2 2.13E-27 456.53 HaRGAM  
2074 2054 1.44E-29 3.060 2621 2601 1.98E-29 4.5370 2645 2711.6 1.00E-28 5.3927 BRGAM 

at a 35% contamination rate and n = 300, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

at a 15% contamination rate and n = 300, 
the best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

at a 5% contamination rate and n = 300, the 
best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

 

  

TABLE II 
REPRESENTS THE COMPARISON BETWEEN (GAM, WGAM, RGAM) OF THE FIRST MODEL AND WHEN CONTAMINATING X WITH EXP. DISTRIBUTION.  

CONTAMINATION RATES AND SIZES OF SAMPLES ARE DIFFERENT 

BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  

0.35  0.15  0.5  n                        Cont. 
Per.     

541.3 534.0 3.93E-
27 

2912.0 542.91 535.3 9.00E-27 2879.1 541.96 534.83 2.89E-
28 

2534.7 GAM 

50       

272.3 267.6 1.29E-
27 

2575.6 274.23 269.8 7.13E-29 2722.1 273.39 269.50 3.92E-
29 

2286.6 DWGAM 

271.6 266.8 1.03E-
28 

2405.8 273.87 268.9 7.95E-27 2707.8 273.02 268.43 3.35E-
28 

2239.6 HWGAM  

271.8 267.1 2.79E-
28 

2556.7 274.33 269.9 1.43E-28 2774.7 273.87 269.00 8.48E-
29 

2290.7 LWGAM 

271.8 267.2 1.82E-
28 

2563.2 274.84 269.9 6.72E-28 2752.9 273.55 269.03 1.98E-
29 

2241.2 CWGAM  

at 35% contamination rate and n = 50, 
the best smoothing method was the 
(HWGAM). 

at 15% contamination rate and n = 50, the 
best smoothing method was the 
(HWGAM), although the Con. criterion 
had a smaller value for a (DWGAM). 

at 5% contamination rate and n = 50, the 
best smoothing method was the 
(HWGAM), although the Con. criterion 
had a smaller value for a (CWGAM). 

   

1616 1603 8.23E-
28 

2599.3 1616.5 1604. 5.41E-26 2568.6 1612.7 1600.0 2.56E-
27 

2597.0 GAM 

15
0

  
    

811.8 802.9 2.86E-
27 

2577.1 811.3 803.1 1.12E-28 2563.7 810.44 801.66 6.43E-
28 

2538.0 DWGAM 

811.8 800.0 1.51E-
28 

2568.6 810.2 802.8 1.03E-28 2512.3 800.50 800.31 3.61E-
29 

2494.8 HWGAM  

811.9 803.0 8.05E-
28 

2577.6 811.7 803.0 6.12E-27 2582.6 811.36 801.32 3.91E-
28 

2548.6 LWGAM 

811.9 802.9 2.02E-2577.5 811.6 803.0 3.65E-27 2584.6 802.88 801.12 1.25E-2539.8 CWGAM  
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TABLE III 
THE COMPARISON BETWEEN (GAM , WGAM, RGAM) REPRESENTS THE SECOND MODEL, WHEN Y CONTAMINATED WITH T DISTRIBUTION, WITH THE DIFFERENT 

RATES OF CONTAMINATION AND DIFFERENT SAMPLE SIZES 

    BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  

0.35  0.15  0.5  

520.48 512.5 1.92E-27 1757 536.1 529.2 7.34E-27 2278 540.3 533.0 2.78E-28 2666.2 GAM  
261.03 256.4 1.22E-28 1660 268.1 263.8 3.02E-29 2222.9 271.0 266.1 2.44E-29 2516.7 DWGAM 
261.74 257.2 9.05E-28 1716 269.4 264.7 9.00E-29 2278.0 272.0 267.4 7.40E-29 2569.9 HWGAM  
261.07 256.5 1.05E-27 1666 268.5 264.1 3.00E-28 2227.7 271.4 266.9 1.22E-28 2527.1 LWGAM 
262.57 256.7 9.35E-28 1680 268.9 264.4 1.60E-28 2283.1 271.4 266.9 2.39E-28 2544.2 CWGAM  

at 35% contamination rate and n = 50, the 
best smoothing method was the (DWGAM) 

at 15% contamination rate and n = 50, the 
best smoothing method was the (DWGAM) 

at 5% contamination rate and n = 50, the best 
smoothing method was the (DWGAM). 

  

1547.8 1536 1.62E-28 1740 1610 1599 4.59E-27 2584.9 1602 1592 9.33E-28 2564.0 GAM  
779.30 770.5 1.73E-27 1696 809.4 800.8 8.06E-28 2511.0 807.1 798.4 5.90E-29 2434.9 DWGAM 
779.13 770.9 5.20E-28 1709 809.1 800.3 1.06E-28 2501.0 805.9 796.9 1.63E-29 2386.7 HWGAM 

28 28 
at 35% contamination rate and n = 
150, the best smoothing method was 
the (HWGAM). 

at 15% contamination rate and n = 150, the 
best smoothing method was the 
(HWGAM) 

at 5% contamination rate and n = 150, 
the best smoothing method was the 
(HWGAM)  

   

7357 7320 2.51E-
25 

199.39 5832 5798.7 8.17E-24 199.04 9885.3 9853.5 9.57E-
24 

422.54 GAM 

30
0

  
    

4035 4015 2.24E-
26 

196.14 3312.9 3294.7 9.76E-27 195.03 9759.0 9727.1 1.75E-
25 

419.41 DWGAM 

3912 3889 6.86E-
27 

181.76 3229.6 3209.4 4.97E-27 174.92 9728.7 9696.8 3.76E-
25 

413.58 HWGAM  

3982 3961 7.07E-
26 

191.59 3273.3 3255.7 2.04E-26 201.21 9885.3 9853.5 9.57E-
26 

422.54 LWGAM 

3952 3931 8.26E-
26 

191.82 3249.7 3230.9 3.29E-26 202.02 9872.5 9840.2 9.08E-
24 

463.02 CWGAM  

at 35% contamination rate and n = 
300, the best smoothing method was 
the (HWGAM). 

at 15% contamination rate and n = 300, the 
best smoothing method was the 
(HWGAM) 

at 5% contamination rate and n = 300, 
the best smoothing method was the 
(HWGAM), although the Con. criterion 
had a smaller value for a (LWGAM). 

   

540.8 533.8 1.05E-
28 

2491.5 541.10 533.9 3.04E-28 2497.6 565.01 557.41 1.83E-
27 

2611.1 GAM  

50     

425.5 418.9 1.11E-
28 

53.07 472.20 459.1 0.64048 59.328 484.91 477.48 2.65E-
28 

53.217 HRGAM 

455.9 449.6 1.27E-
28 

533.68 492.77 486.1 4.44E-28 515.16 518.54 511.59 4.44E-
28 

536.08 HaRGAM  

402.8 387.4 7.50E-
29 

18.614 402.65 398.5 1.89E-29 10.76 468.54 454.12 5.06E-
29 

11.432 BRGAM 

at a 35% contamination rate and n = 
50, the best method was the smoothing 
method with weighted function of 
Robust M estimator (BRGAM). 

at a 15% contamination rate and n = 50, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

at a 5% contamination rate and n = 50, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

   

1612 1599 5.05E-
27 

2494.3 1613.1 1600 1.66E-26 2499.5 1612.7 1600.0 2.56E-
27 

2497 GAM  

15
0

  

1315 1302 1.77E-
27 

61.895 1395.6 1383 1.01E-27 50.982 1407.1 1395.1 2.35E-
27 

50.811 HRGAM 

1389 1378 1.56E-
27 

538.04 1493.5 1482 7.24E-28 522.48 1506.4 1494.9 1.83E-
27 

523.21 HaRGAM  

1296 1287 1.35E-
28 

7.899 1376.8 1356 4.31E-29 7.688 1364.5 1359.4 1.53E-
29 

5.939 BRGAM 

at a 35% contamination rate and n = 
150, the best method was the 
smoothing method with weighted 
function of Robust M estimator 
(BRGAM) 

at a 15% contamination rate and n = 150, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

at a 5% contamination rate and n = 150, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

   

3223 3205 9.08E-
27 

2553.7 3223.4 3205 1.57E-27 2553.1 3223 3205.8 1.43E-
26 

2554.1 GAM  

30
0

  
      

2570 2554 2.29E-
27 

51.029 2813.9 2796 4.48E-28 51.27 2832 2814.8 1.28E-
27 

51.216 HRGAM 

2756 274 3.07E-
27 

541.06 3010.9 2994 4.91E-28 538.57 3028.6 3013.3 1.07E-
27 

536.43 HaRGAM  

2572 2516 7.02E-
28 

5.414 2687.4 2711 1.79E-28 5.579 2805.4 2794.4 1.79E-
28 

5.412 BRGAM 

at a 35% contamination rate and n = 
300, the best method was the 
smoothing method with weighted 
function of Robust M estimator 
(BRGAM) 

at a 15% contamination rate and n = 300, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 

at a 5% contamination rate and n = 300, 
the best method was the smoothing 
method with weighted function of Robust 
M estimator (BRGAM) 
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779.33 770.5 1.86E-28 1697 809.7 800.9 1.29E-28 2512.8 806.9 798.0 2.11E-28 2419.7 LWGAM 
779.78 770.3 3.11E-29 1693 809.7 800.9 1.58E-28 2513.4 806.7 797.8 8.84E-28 2413.0 CWGAM 

at 35% contamination rate and n = 150, the 
best smoothing method was the (CWGAM), 
although the BIC criterion had a smaller 
value for a (HWGAM). 

at 15% contamination rate and n = 150, the 
best smoothing method was the (HWGAM) 

at 5% contamination rate and n = 150, the 
best smoothing method was the (HWGAM). 

  

3090.4 3076 1.17E-27 1663 3165 3151 1.20E-27 2128.4 1602 1592 1.33E-27 2464.0 GAM  

1548.9 1537 9.73E-27 1656.3 1588 1577 3.24E-28 2144.9 804.1 796.4 5.90E-29 2434.9 DWGAM 

1550.7 1538 6.10E-27 1661.3 1587.8 1576 1.96E-28 2133.6 805.9 796.9 1.63E-28 2386.7 HWGAM 

1549.5 1537 1.68E-27 1656.1 1587.9 1576 8.60E-27 2131.4 806.9 798.0 2.11E-28 2419.7 LWGAM 

1549.2 1537 4.44E-28 1656.0 1587.4 1575 1.15E-28 2128.2 806.7 797.8 8.84E-28 2413.0 CWGAM 

at 35% contamination rate and n = 300, the 
best smoothing method was the (CWGAM) 

at 15% contamination rate and n = 300, the 
best smoothing method was the (CWGAM) 

at 5% contamination rate and n = 300, the 
best smoothing method was the (DWGAM), 
although the GCV criterion had a smaller 
value for a (HWGAM). 

521.59 514.4 3.22E-28 1705 535.2 528.1 3.56E-28 2233.2 541.0 534.1 2.31E-28 2512.9 GAM  
366.64 360.3 2.51E-29 28.38 433.7 427.1 1.31E-28 44.227 457.4 450.4 9.65E-29 51.598 HRGAM 
403.07 396.8 3.08E-29 199.6 468.5 461.9 7.21E-29 397.34 489.0 482.4 3.02E-29 494.26 HaRGAM  
346.47 337.1 3.55E-28 4.366 423.4 402.8 3.07E-28 9.303 442.3 440.1 9.08E-28 10.772 BRGAM 

at a 35% contamination rate and n = 50, the 
best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM), although the Con. 
Index had a smaller value for a (HRGAM). 

at a 15% contamination rate and n = 50, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM), although the Con. Index had a 
smaller value for a (HRGAM). 

at a 5% contamination rate and n = 50, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM), although the Con. The index had 
a smaller value for a (HRGAM). 

 

1546.4 1535. 9.48E-29 1625. 1586 1575 9.55E-28 2124.4 1602 1592 1.33E-28 2364.0 GAM  
1037.2 1027. 2.34E-29 24.17 1299 1288 4.30E-28 41.624 1372 1362 3.78E-29 47.657 HRGAM 
1162.6 1152 3.19E-29 170.3 1412 1402 2.63E-28 390.88 1470 1459 2.85E-29 380.49 HaRGAM 
1014.8 1004 2.14E-30 2.730 1205 1182 7.65E-29 4.146 1337 1314 1.87E-29 5.376 BRGAM 

at a 35% contamination rate and n = 150, 
the best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

at a 15% contamination rate and n = 150, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

at a 5% contamination rate and n = 150, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

 

3081.9 3068 1.23E-27 1618.4 3164 3150 2.77E-27 2128.2 3199 3185 3.09E-26 2388.9 GAM  
2068.2 2056 9.95E-30 24.081 2582 2569 1.35E-28 40.655 2754 2740 3.66E-27 47.627 HRGAM 
2332.7 2321 3.24E-30 176.96 2817 2805 1.07E-28 384.37 2963 2949 2.89E-27 481.66 HaRGAM 
1998.4 1987 1.08E-30 2.348 2487 2465 4.29E-29 3.906 4568 2601 3.91E-29 4.854 BRGAM 

at a 35% contamination rate and n = 300, 
the best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

at a 15% contamination rate and n = 300, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

at a 5% contamination rate and n = 300, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

 

  

TABLE IV 
REPRESENTS THE COMPARISON BETWEEN (GAM , WGAM, RGAM) OF THE SECOND MODEL AND WHEN CONTAMINATING X WITH EXP. DISTRIBUTION. 

CONTAMINATION RATES AND SIZES OF SAMPLES ARE DIFFERENT 

  BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  BIC AIC  Con.  GCV  
0.35  0.15  0.5  

542.8 536.0 3.57E-27 2690 540.6 533.8 3.53E-28 2793.2 542.1 535.1 6.94E-26 2862.0  GAM  
272.9 268.4 5.73E-28 2636 273.0 268.6 2.46E-29 2669.7 273.51 269.0 1.38E-28 2714.1 DWGAM 
273.0 268.5 5.97E-28 2654 272.9 268.3 3.48E-28 2721.97 2721.97 3.48E-28 

 

273.50 268.5 5.79E-28 2668.2 HWGAM  
273.9 268.5 6.12E-28 2657 272.9 268.7 6.89E-29 2680.1 273.52 269.0 2.90E-28 2725.9 LWGAM 
273.8 268.8 5.94E-28 2637 272.5 268.8 2.50E-29 2672.6 273.56 269.0 3.28E-27 2725.9 CWGAM  

at 35% contamination rate and n = 50, the 
best smoothing method was the (HWGAM) 

at 15% contamination rate and n = 50, the 
best smoothing method was the (DWGAM) 
for Gam and Con. and LWGAM for AIC 
Criterion and is smaller value for a 
(DWGAM) in BIC Criterion 

at 5% contamination rate and n = 50, the best 
smoothing method was the (HWGAM), 
although the Con. Index had a smaller value 
for a (DWGAM). 

  

1613 1602. 7.71E-26 2631 1614 1603. 3.75E-28 2654.3 1609. 1599 1.75E-28 2591  GAM  
810.4 802.0 1.92E-28 2545 810.6 802.3 1.21E-29 2558.2 809.3 800.4 8.99E-28 2499 DWGAM 
810.5 802.4 1.27E-27 2556 811.8 803.3 1.55E-28 2595.2 808.3 799.3 4.13E-29 2463 HWGAM 
810.8 802.2 9.90E-28 2551 810.9 802.6 4.04E-29 2561.8 808.9 800.2 6.38E-29 2499 LWGAM 
810.8 802.2 1.83E-28 2551 810.9 802.5 1.72E-28 2565.8 808.7 800.0 1.11E-28 2488 CWGAM 

at 35% contamination rate and n = 150, the 
best smoothing method was the (DWGAM) 

at 15% contamination rate and n = 150, the 
best smoothing method was the (DWGAM) 

at 5% contamination rate and n = 150, the 
best smoothing method was the (HWGAM). 

3211 3197 3.43E-27 2583 3215 3201 6.50E-27 2518 3217.4 3203 3.39E-27 2637 
1609.0 1598.2 2.59E-28 2477 1610 1599.0 1.31E-28 2491 1615.0 1603 6.37E-28 2567 
1610 1598.9 1.47E-27 2479 1613 1599.9 1.83E-28 2495 1614.1 1602 1.14E-28 2546 
1609.7 1598.4 3.94E-28 2609.8 

1598.677 3.94E-28 
 

1612 1599.4 4.59E-28 2496 1614.4 1603 2.03E-27 2562 

1609.2 1598.8 8.25E-28 2479 1612 1599.5 2.00E-28 2495 1614.5 1603 1.17E-27 2556 
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at 35% contamination rate and n = 300, the 
best smoothing method was the (HWGAM) 

at 15% contamination rate and n = 300, the 
best smoothing method was the (DWGAM) 

at 5% contamination rate and n = 300, the 
best smoothing method was the (HWGAM). 

564.1 557.0 3.58E-28 2584 540.6 533.8 3.53E-28 2493.2 540.9 534.1 1.50E-28 2510  GAM  
446.2 439.6 1.97E-27 53.73 462.2 455.6 2.23E-29 52.607 468.6 462.0 1.12E-28 53.5 HRGAM 
477.7 471.5 8.94E-28 553.0 493.4 487.0 2.12E-29 516.43 500.9 494.5 7.04E-29 539 HaRGAM  
424.8 405.0 1.95E-28 17.11 249.4 228.7 1.04E-29 13.914 235.7 227.1 1.36E-28 9.422 BRGAM  

at a 35% contamination rate and n = 50, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

at a 15% contamination rate and n = 50, the 
best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

at a 5% contamination rate and n = 50, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

 

1609 1598 1.48E-26 2478 1610 1599 3.93E-26 2483.9 1609 1599 1.75E-26 2481  GAM  
1294 1284 7.02E-27 50.5 1392 1381 3.50E-27 50.388 1405 1395 2.63E-27 50.37 HRGAM 
1388 1378 4.55E-27 527.9 1490 1480 1.64E-27 518.99 1505 1495 1.32E-27 519.4 HaRGAM  
1254 1197 4.27E-27 5.775 1333 1173 1.13E-27 6.963 1278 1063 2.73E-28 5.302 BRGAM  

at a 35% contamination rate and n = 150, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

at a 15% contamination rate and n = 150, 
the best method was the smoothing method 
with weighted function of Robust M 
estimator (BRGAM) 

at a 5% contamination rate and n = 150, the 
best method was the smoothing method with 
weighted function of Robust M estimator 
(BRGAM) 

 

3216 3203 9.17E-29 2536 3216 3203.5 6.19E-28 2534 3217.1 3203 7.07E-28 2537  GAM  
2561 2548 8.58E-29 50.59 2807 2794.8 2.52E-28 50.78 2825.9 2813 7.50E-29 50.76 HRGAM 
2747 2735 1.20E-28 537.2 3005 2993.5 2.30E-28 534.2 3024.5 3012 4.43E-29 532.5 HaRGAM  
2484 2341 8.17E-32 5.269 2413 2367.4 1.93E-30 5.268 2578.1 2467 5.47E-31 5.168 BRGAM  

at a 35% contamination rate and n = 300, the 
best method was the smoothing method with 
the weighted function of Robust M estimator 
(BRGAM) 

at a 15% contamination rate and n = 300, 
the best method was the smoothing method 
with the weighted function of Robust M 
estimator (BRGAM) 

at a 5% contamination rate and n = 300, the 
best method was the smoothing method with 
the weighted function of Robust M estimator 
(BRGAM) 

 

 
As a result of simulation experiments through tables 

(1,2,3,4) for the results of non-parametric analysis when X 
and y are contaminated and at sample sizes (50, 150, 300) 
and contamination rates (5%, 15%, 35%), the two proposed 
methods WGAM. And the proposed RGAM outperforms the 
ordinary GAM method by obvious decreasing the values of 
the comparison criteria (Concurvity, BIC, AIC GCV,), and 
the proposed robust M method (RGAM) showed an 
advantage over the proposed WGAM method by lowering 
the values of the criteria at Weight function (BRGAM) in all 
sample sizes and contamination ratios. Table (5) and as an 
overall result of simulation experiments, and for cases whose 
tables did not appear, we notice that the Bisequar (BRGAM) 
weighting method has had a better performance than the rest 

of the methods for the simulated scenarios that were 
addressed. 

We notice from the Final Table of 216 different trials for 
studied simulation scenarios, for three other contamination 
distributions and three sample sizes (50,150,300) and 
different contamination scenarios, that 50% of the trials 
recommended the BRGAM method as the most efficient 
method in the first and second simulation functions. The rest 
of the HWGAM and DWGAM have ratios more 
considerable than 27% and 22%, respectively. The second 
function was 22% and 16%, respectively. Therefore, the 
estimation of the Generalized Additive Model with robust 
methods was superior to all other methods.  

 

TABLE V 
 REPRESENTS THE SUMMARY OF SIMULATION EXPERIMENTS FOR WAVELET AND FORTIFIED METHODS FOR 216 SIMULATION ATTEMPTS  
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50 DWGAM HWGAM DWGAM DWGAM 
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300 BRGAM BRGAM BRGAM BRGAM 300 BRGAM BRGAM BRGAM BRGAM 
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300 BRGAM BRGAM BRGAM BRGAM 300 BRGAM BRGAM BRGAM BRGAM 

  

D.  Collection 

This study was applied to real data collected from Ibn 
Sina Teaching Hospital (Al-Wafa Specialist Center for 
Diabetes and Endocrinology Consultant of Short Stature) for 
Nineveh Governorate, 2019. On the cases with short stature, 
this research data was collected for 150 people with this 
disease. It is a very suitable sample for a model with nine 
explanatory variables (most research brings together that the 
appropriate sample size for estimating the regression models 
is to be ten times the number of explanatory variables at 
least). One response variable (height) was after reviewing a 
group of specialist doctors who were consulted. They 
demonstrated that they are the main factors that affect the 
incidence of this disease. 

E. Normality Test 

The normal distribution was tested using the normal 
probability plot (Q-Q plot), the response variable, and one of 
the explanatory variables tested (the rest were the same). 
Figure 1 shows that our data are not distributed as normal. 

 

 
(a) Probability graph of response y 

 

 
(b) Probability plot of one of the explanatory variables (x1) 

Fig. 1 Q-Q plot illustrates the scheme 

F. Outliers Detection 

In this step, the extreme values are to be detected, where 
the box plot was used to detect the extreme values in the 
response variable. On the other hand, a Cook distance 
method was used to detect the explanatory variables' 
extreme values. As we note in figures (2), (3) there are 
extreme values (some of them are outliers) in response and 
explanatory variables, respectively. 

 

 
Fig. 2 shows the Box Plot 
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Fig. 3 shows Cook’s Distance 

 

The data is prepared by relying on three methods. Firstly, 
estimate the Generalized Additive Model GAM based on the 
smoothing splines. Secondly, to filter the data using the 
wavelet shrinkage method and estimating the proposed 
Weighted Generalized Additive Model estimation of 
WGAM, based on four types of the most common wavelet 
functions (Daubechies), Haar, Least Asymmetric, Coiflets) 
using smooth thresholds. Thirdly, to estimate the 
Generalized Additive Model based on the proposed robust 
M estimator RGAM and three weights of the hippocampus 
M amount (Huber, Hampel, Bisquare), as shown in Table 
(7). 

TABLE VI 
SHOWS THE RESULTS OF ESTIMATING THE GAM USING WAVELET FUNCTIONS 

 
 
 
 
 
 
 
 
 
 

 
 
 

From observing the results in Table (7) and using the real 
data, the proposed WGAM and RGAM methods recorded a 
clear superiority over the ordinary GAM method through a 
clear decrease in the comparison criteria' values (Concurvity, 
BIC, AIC GCV,). The estimated RGAM showed progress on 
WGAM through the decline in the comparison criteria' 
values (BIC, AIC, GCV) at the Bisequare weighting 
function (RBGAM) to get. On the other hand, the wavelet 
shrinkage technique (WGAM) recorded a decrease in the 
non-linear multicollinearity index (Concurvity) at the 
LWGAM filter (wavelet). The GCV criterion is considered 
one of the most prominent comparison criteria for the 
Generalized Additive Model (GAM) that works to choose 
the smoothing parameter's value. 

IV.  CONCLUSION 

The use of GAM model based on smoothing splines 
represents a very flexible method of the data problem. It 
does not need a preliminary determination of the form of the 
relationship between the explanatory and response variables. 
In using the simulation method, when data is contaminated 
with distributions ((t) Dis., Exp. Dis.) And with 
contamination rates (5%, 15%, 35%) and with sample sizes 
(50,150,300) it is noted that the smoothing method is with 
the Bisequare weight (BRGAM). It had a better performance 
compared to the rest of the methods for the simulated 
scenarios covered. The GCV criterion showed a marked 
advantage over other criteria, especially when estimating the 
model in the proposed robust M (RGAM) model. 

It has a better performance compared to other methods of 
simulation scenarios that have been addressed. The GCV 
criterion showed a marked advantage over other criteria, 

especially when estimating the model using the proposed 
robust M (RGAM) model. When estimating the generalized 
additive model according to the proposed wavelet shrinkage 
GAM method (WGAM) and robust M (RGAM) method 
using the real data, it was noted that the two methods 
performed better than the usual GAM method. It works 
through a clear decrease in the comparison criteria' values 
(Concurvity, BIC, AIC, GCV) as the proposed robust GAM 
using M-estimator (RGAM) progress on the WGAM 
wavelet functions. It leads to a decrease in the values of the 
two comparison criteria at the Bisequare weight function 
(BRGAM). 

On the other hand, the wavelet recorded a decrease in the 
comparison criteria (BIC, AIC). The two methods helped to 
smooth the data from the extreme values. This is done by 
obtaining the smallest values for the comparison criteria. It 
was noted that the GCV criterion decreases with the increase 
of the sample size in general, as the GCV is the efficiency 
criterion for the GAM model, which is responsible for 
choosing the best smoothing parameter. Accordingly, the 
GCV criterion is considered as the most crucial efficiency 
criterion used in the research, and accordingly, the proposed 
robust method can be considered better than the proposed 
wavelet method. As for the AIC and BIC standard, there has 
been an increase with an increase in the sample size, and we 
find that the non-linear multicollinearity index (Concurvity) 
fluctuates up and down. Its results are close in all ways, so it 
is less sensitive to outliers than other criteria. 
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