

Vol.6 (2016) No. 6

ISSN: 2088-5334

Record Duplication Detection in Database: A Review
Saleh Rehiel Alenazi#, Kamsuriah*

#Research Center for Software Technology and Management, Faculty of Information Science and Technology,
Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia

 E-mail: sala207@hotmail.com, kamsuriah@ukm.edu.my

Abstract— The recognition of similar entities in databases has gained substantial attention in many application areas. Despite several
techniques proposed to recognize and locate duplication of database records, there is a dearth of studies available which rate the
effectiveness of the diverse techniques used for duplicate record detection. The calculating time complexity of the proposed methods
reveals their performance rating. The time complexity calculation showed that the efficiency of these methods improved when
blocking and windowing are applied. Some domain-specific methods train systems to optimize results and improve efficiency and
scalability, but they are prone to errors. Most of the existing methods fail to either discuss or lack thoroughness in consideration of
scalability. The process of sorting and searching form an essential part of duplication detection, but they are time-consuming.
Therefore this paper proposes the possibility of eliminating the sorting process by utilization of tree structure to improve the record
duplication detection. This has added benefits of reducing the time required and offers a probable increase in scalability. For a
database system, scalability is an inherent feature of any proposed solution, due to the fact that the data size is huge. Improving the
efficiency in identifying duplicate records in databases is an essential step for data cleaning and data integration methods. This paper
reveals that the current proposed methods lack in providing solutions that are scalable, high accurate, and reduce the processing time
during detecting duplication of records in the database. The ability to provide solutions to this problem will improve the quality of
data that are used for the decision-making process.

Keywords— duplication detection algorithm, windowing, blocking, scalability, efficiency, data quality

I. INTRODUCTION

Among the entity matching applications, one of particular
importance is an identification of similar database records
[31]. Recognizing and locating duplicate records is a process
that involves probing databases for purposes of identifying
records that, in the real world, represent an identical entity.
Locating such duplications is impeded by the fact that they
do not share a common key. One means of resolving this
involves weeding out errors in the data, such as the
misspelling of names; the lack of integrity restraints limiting
human entries to ranges not much higher than 100 years; and
recognizing varying conventions used for entering the same
information. For example entering simple numerals rather
than spelling numbers out [1].

The pre-processing stage is amongst the most crucial
phases since that is where a database is scanned to detect and
remove duplicate records. Redundancy in records often
results from merging databases. While this can initially
create undesirable duplicates, the combination of duplicate
records can ultimately result in enriched data combining
details listed in one of two original entries but not in both,
thus providing more detailed data to be mined and analyzed
for research [1].

Heterogeneity arises when data from several sources are
combined and integrated. These are of two types, namely
structural heterogeneity and lexical heterogeneity. Structural
heterogeneity involves different means of separating fields
for the same information, such as breaking up an address
into two or three lines instead of listing all the data on a
single line. Lexical heterogeneity involves different means
of encoding the same information, such as spelling out a
numerical street name rather than writing it in numerals; or
using initials to abbreviate a person’s middle name or even a
first name [1], [2].

This paper discusses issues related to scalability and
efficiency. These two factors are very important assessment
criteria for duplication detection techniques. Since detection
methods work with huge databases, scanning them can
consume considerable time. Therefore, use of techniques
that both work efficiently with such massive databases
within acceptable time limits, and that are scalable according
to the size of the database, are essential.

Previous studies used blocking or windowing as a means
of finding duplication. However, such operations are time-
consuming and lead to trade-offs about the size of window
or block. In order to lessen the work involved in sorting, a
tree structure implementation ensures data is already sorted.

838

Another challenge is a discovery of juxtaposed duplicated
records, which itself demands further research. Previous
studies have failed to concentrate sufficiently on scalability
and efficiency: few have proposed solutions for those issues
[2]. This paper aims to review the existing techniques used
in detecting duplicate records. To discuss the issues, this
paper is organized as follows: section II examines the main
differences between the two famous "divide and conquers"
techniques (blocking and windowing) as a means of finding
duplication. Section III discusses the common similarity
measurements that have been employed to detect duplication
within database records. Section IV describes the main
detection tools that are commonly used in many articles
reviewed in this paper. Section V considers the issues related
to efficiency and scalability of the currently proposed
duplication detection techniques. Finally, Section VI
concludes the paper.

II. MATERIALS AND METHODS

Blocking and windowing are two core operations in
record duplication detection. This section will discuss these
two techniques and the process involves in detecting the
similarities between records. These operations will be
discussed in more details in section A and section B
respectively. In blocking operation, records are partitioned
into a disjoint partition, which means no record can be
present in more than one partition. Then records will be
compared within the block to detect any similarities. A
blocking operation can be divided into two steps: The first
step is building, which involves reading all record sets from
a given data set, creating records, indexing them in the
memory, and using that information to create blocking keys,
such as by using an inverted index [1], [5]. Parameters are
derived from the blocking keys for the inverted index. The
inverted index list in question then receives all of the records
containing an identical blocking-key value. The second step
is retrieving, which involves retrieving record identifiers
from the index one block at a time. Records in a given block
are paired together in turns, and a classifier compares the
numerical values of the vectors resulting from each pairing
[1].

A. Blocking

Domain and duplication experts normally determine the
blocking keys manually and normally choose general keys to
optimizing the resulting quality. During this process of
record comparison and matching, they reduce the required
quantity of data [1]. Another means of reducing the number
of comparisons is the Standard Blocking technique, which
seeks identical blocking key values (BKVs) within which
the record pairs are compared, as seen in Fig. 1. The
proportion of comparisons is (N2/B), where N is the number
of dataset records and B is the number of same-size blocks
[1, 6].

Fig. 1 Conventional blocking technique [7]

The number of blocks and their size are determined by the

blocking-key selection, which is what the blocking
technique relies on [1]. Choosing the optimal key is based on
the optimal means of bringing duplicate candidates into the
same block. Blocking can increase the data-comparison
speed: but by bringing together records that should not be
compared, it also has the potential to increase the number of
false mismatches.

B. Windowing (Sorted Neighbourhood)

Hernández and Stolfo [8] developed the Sorted
Neighbourhood (SN) technique, otherwise known as
Windowing. By imposing limitations on the measures of
similarity in the dataset, the number of potential matches is
minimized. The following three steps outline the Windowing
technique:

• Key creation: this process involves extracting
appropriate attributes in order to compute a blocking
key to apply to the dataset records under comparison.
This can also be done with substring sequences of the
attributes, which can be determined in a diversity of
ways. The priority of the attributes is determined by
which ones appear first in the key, and rank higher than
those that appear later.

• Data Sorting: The blocking key value outlined above
can be used to sort the dataset records.

• Limiting the comparisons within a window involves
fixing the size of the window (w >1) and overlapping it
throughout a series of records. Fig. 2 shows, if w = the
size of window records, then adding records to a
window and comparing each new one with previous
records involves adding it to the preceding record w- 1.

Fig. 2 Windowing [6]

The comparison of potential pairs of records is limited to

w −1 by the use of the windowing method. If the number of
records in the dataset is n, then the number of records in total
is O (wn).

The selection of keys determines how accurate the
windowing technique ends up being in practice. For example,
a poor choice in a key with too small a window oversees
records that should, in fact, be matched [1]. In contrast, a

839

poor choice in a key with too large a window results in too
many undesirable comparisons [7].

Hernández and Stolfo offer a solution to this problem by
merging the results of a multi-pass windowing technique
that involves a sliding window and changing the key for
each of a number of small-window periods [1], [8].

C. Comparison between Block & Slide Window

An in-depth comparison test that strives for algorithms
capable of weeding out all but the record pairs most fit for
comparison involves massive costs. Pairing up records that
correspond to identical entities in the real world poses a
challenge. Another challenge that presents itself is the
costliness of a process attempting to accurately compute
resemblances between pairs in larger datasets. With this in
mind, it is a high priority to try to search, spot and locate
duplicates with the most effective and efficient system.
The performance bottleneck for duplicate detection is related
to the expense of comparison. To overcome these
excessively expensive comparisons of all pairs of records,
the best practice is to cautiously partition the records into
smaller subsets and search for duplicates only within these
partitions. Table 1 compares the blocking and windowing
techniques in terms of working mechanism, occurrences,
sizing, optimization, scalability, and efficiency.

TABLE I
COMPARISON OF BLOCKING AND WINDOWING TECHNIQUES

Process Blocking Windowing
Working
mechanism

A set of records is
partitioned into disjoint
blocks by means of a
blocking key.

The first phase
involves assigning a
sorting key to every
record. The key need
not be unique for
purposes of blocking
methods. The second
phase involves
sorting the records
based on the
respective key of
each one. The third
phase involves
sliding a window of
unvarying size across
a list of records that
has been sorted along
the lines outlined
above.

Comparison
occurrences

Where the entire
number of comparisons
is limited to records
located in the same
partition. This acts to
reduce the potential
number of comparisons
to a notable degree.

When determining
the blocking method,
the choice of which
partitioning predicate
to use ultimately
characterizes the first
two phases.

Sizing
mechanism

The choice of which
size partition to use is
crucial to the creation
of adequate
partitioning. Given
how easy it can be to
locate duplicates, the
ability to group
duplicate candidates in

The contrast of
efficiency and
effectiveness is
determined by the
window size,
generally between 10
and 30. Smaller
window sizes are
more efficient given

the same partition is a
reflection of how good
the aforementioned
decision is.

their shorter run
times, but larger
window sizes are
more effective given
their greater
thoroughness in
spotting and locating
duplicates.

Optimization
mechanism

Optimal duplicate
detection requires an
iterative approach,
especially in cases
where duplicates have
distinct partitioning
attributes.

The manifold approach
involves distinct
partition bases for each
run. To eliminate any
potential duplication, a
transitive closure
applies to all
determined duplicates.

The Sorted
Neighbourhood
Method provides one
means of cutting
down on processing
time by sorting
records into clusters
and dealing with
them in a parallel
fashion that makes
for a smaller number
of comparisons.

As noted above, the
apparent efficiency of
too small a window
size risks missing
duplications that
should be included.
Conversely, the
greater efficiency of
too large a window
size wastes time and
resources with more
comparisons than are
needed.

Scalability Technically, blocking
isolates every block
and scans it
individually out of
other blocks.
Therefore, there is no
overlapping. Blocking
may perform better
than windowing in
terms of a number of
comparisons. Only the
number of blocks
affects it, and that has
been resolved by using
parallel programming.

The window slides
every time, which
takes more time than
blocking. This sliding
technique will
obstruct using
parallel programming
and may affect the
scalability of
windowing
technique.

Efficiency Both techniques suffer from size trade-off (size
of window and block).

Blocking and windowing have quite similar techniques.
For instance, both try to decrease the number of comparisons
by intelligently predicating the duplicated pairs. Both
methods mainly depend on sorting to run duplicate detection
effectively.

Despite their widely differing approaches, blocking and
windowing have both become increasingly common means
of dealing with the challenges mentioned. Respectively, they
handle the problems by creating subsets that are disjoint to
divide records. On one hand, boxing records up in a window
to sort what lays within its range: on the other hand, some
researchers such as Draisbach and Naumann merged both
technologies [9]. They proposed an algorithm called Sorted

840

Blocks [9]. The performance of the sorted blocks with
different datasets showed that this algorithm is capable of
finding an equal number of duplicates, even though it makes
fewer comparisons.

Sorted Blocks first order the records according to a key. It
has assumptions, such as that the duplicated records are
positioned in tight proximity to each other just as with the
two previous approaches. However, unlike multi-pass
techniques, which slide a window of unvarying size across a
list of records, the sorted block approach makes a
comparison of records that fit into disjoint partitions.
Overlapping is used within sorted blocks to make sure that
duplicated records are found. However, this additional
complexity is linear.

The varying partition size of the sorted blocks approach
provides advantages that windowing approaches lack with
their unvarying window size. Most notable among these is
the fact that it discriminates between records of parallel field
magnitude and those of differing field magnitudes, which
accommodates the comparison of fewer fields.

The trade-off is critical when it comes to time and
accuracy. Therefore, many researchers recommended
flexibility in the algorithm of records duplication. In other
words, researchers let the user make decisions that are
important to them, either by time or accuracy: this depends
on their requirements. As such, Papenbrock, Heise, and
Naumann recommended progressive duplicate detection [10].
The progressive approach utilizes parallel computing in
order to reduce the time and increase scalability. Moreover,
it allows users to interrupt the detection process and make
modifications to improve the process. However, such an
approach has many drawbacks: first, it assumes that the user
has little knowledge about the cleaning process and of key
generations. Such lack of knowledge may influence the
accuracy of the result, as the user may select inefficient keys,
or intervene erroneously. Besides, duplication detection
process is a batch process due to the vast amount of records:
interactivity is not recommended as it results in long user
waiting time.

In essence, whichever technique is chosen for records
detection, there are many considerations to bear in mind:

• The data itself determines the best approach to detect
duplication.

• There is always a trade-off between accuracy and time.
The higher level of accuracy wanted, the more time is
required to do detailed detection. For those people who
want instant results, it is better to apply progressive
approaches where data comes out whenever available
without waiting for the duplication process to finish.
Technically, linear searching is more accurate because
it compares each record with the entire dataset:
however, it is impractical, as it takes too long.
Therefore, a balance between time and accuracy is the
main motivation for new approaches to duplication
detection.

• Whatever record duplication algorithm is selected, it
does not offer an optimal solution. Therefore, repeating
duplication detection procedures with different keys or
overlapping blocks or windows will enhance the
accuracy of the results.

• The result of records duplication detection algorithm is
significantly dependent on the quality of data
transformation that has taken place in prior steps.

• Clustering is a way of reducing time by grouping
records based on specific criteria, but again the quality
is dependent on the prior steps. In other words,
clustering is trying to use predictive criteria rather than
criteria derived from the structure of the dataset such as
name, telephone, or address. Criteria employed by
clustering is developed by individuals who postulate
data agreement based on previous experience. As an
example, a data scientist might propose that the rich
and young are more likely to purchase sports cars. Thus,
sorting data based on criteria of age and wealth can
assist duplicate deduction in such a group of records

• String comparison is a crucial component of those
techniques for spotting matching information in
duplicated records. A goal common to all approaches is
to find similarity in the meaning of two strings, instead
of absolute equality of characters entered, as character
matches may exist for a number of reasons, including
typographical errors and diverse means of entering the
same information (e.g. abbreviations, numerals in place
of spelled-out words for numbers, etc.).

D. Similarity measurements

Similarity measurements are proposed to identify whether
there is a match between two database records. This match is
used to make a decision whether the both records are
identical. Many similarities methods were matching based
on a number of similar characters in both records, while
other methods matched based on similar words. Beside this,
there are two types of duplication record detection methods:
one related to a normal comparison, and another related to
using machine learning or artificial intelligence.

It cannot be said that there is a single comprehensive
comparison function that can provide a wide solution for
record duplication detection in many domains. Vatsalan and
Christen reported that there are three string comparison
functions commonly used with medical records: the longest
common substring approach, used since the earliest days of
computer programming: the Levenshtein Edit Distance,
pioneered in the 1960s; and the more recent Jaro-Winkler
Distance, popularized in the 1990s. As with other
contrasting means of drawing systematic comparisons, the
right balance must be found along the continuum of
efficiency and effectiveness - in the area of string
comparison functions, this is generally referred to as
specificity and sensitivity [3].

Several methods have been devised to carry out this task:
however, each method tends to work well for particular
types of errors, and none appears to offer a universal
solution that fits all.

1) Character-Based Metrics: These metrics take into

account the inverse similarity (or distance) between two
strings of text to compare or approximately match them, or
to carry out searches on "fuzzy strings". There are several
variations on these string metrics; the most frequently used
being described by Gomaa [11]. These variations are:

841

• Edit-Distance or Levenshtein Distance: Levenshtein
introduced the Levenshtein Edit Distance concept
that calculates a two-string distance (c1, c2) needed
to minimize the number of operations used for
deriving one string from another [12]. As for
identifying typos, the measurement of edit distance is
an effective tool, but it is not as useful for identifying
other types of errors [13].

• Hamming Distance: Hamming distance is principally
used for numerical fields of a fixed size, for example,
zip codes or social security numbers. It counts the
mismatches between the two numbers being
compared when determining the lowest number of
substitutions needed (or the lowest number of errors
incurred) when deriving one string from another.

• Shingles (a type of n-gram): These are contiguous
sub-sequences of tokens of length w (number of
tokens in each shingle composing the set), which are
a set of unique shingles that appear in a document,
and are used to assess document similarity. The
number of w shingles shared by paired-up documents
can determine similarity according to this set of
criteria [14]. However, Williams and Giles deemed it
impractical in computational terms to calculate
shingle set similarity for every document [15].
Therefore, they employed a method of producing a
document sketch by h-hashing the shingles, locating
the lowest value associated with each hash, and using
these lowest values to construct a sketch. In order to
estimate the similarity of the sketches, they
overlapped them.

• Jaro: Considers common spelling errors, and is
principally used for record linkage purposes.

• Jaro-Winkler: An extension of Jaro distance devised
by William E. Winkler in 1990. This makes use of a
prefix scale that gives more positive ratings to strings
that match from the beginning for a set common
prefix length, up to a maximum of four characters
[11].

• q-gram: The q-gram similarity between the
corresponding values is calculated, and the similarity
is added with a weight to the similarity of the two
products. Where q-gram Distance (s1; s2) is the
number of different q-gram occurrences in s1 and s2
[17], [18].

Character-based measurements compare character to

character. These may be affected by the size of the record,
which may influence the overall performance of duplication
detection when using this approach. However, the accuracy
is considerable because all available characters are scanned.

2) Token-Based Metrics: When it comes to typographical

errors, the Character-Based Similarity Metrics work really
well. The downside of this is that typographical conventions
may lead to certain unsolicited rearrangement of words (e.g.
“Walter Evans” vs. “Evans, Walter”). In cases like this, the
Character-Level Metrics fail to net similarities of the
components. This is where Token-based Metrics come in
and try to compensate for this problem. [11], [17].

3) Numeric Metrics: Even though there are numerous
methods currently used for detecting similarities in string-
based data, methods seeking out these similarities in numeric
data are extremely dated. The numbers are characteristically
regarded as strings or simple range queries, which pinpoint
numbers that have similar values. Koudas et al. suggest that
for future research the direction should point towards
considering data together with its type and its distribution
[18]. Another direction to be considered is the extension of
the notion of cosine resemblance when it comes to numeric
data, and how well it works in detecting duplicates [11], [14],
[20].

In terms of scalability and performance, there are few
differences among these three metrics. Some have better
performance than others in certain domains, but not
considerable differences. Moreover, it was noticed that
methods that use clustering offer better performance, due to
very good categorization for records that facilitate finding
duplicates easily. The challenge comes with developing
methods that minimize the unnecessary check of duplication,
provide very good response time, and simultaneously have
scalability. However, it seems hard to achieve this triple
benefit. Yancey demonstrated that, for purposes of matching
names, the Jaro-Winkler metric performed well, and, for
purposes of matching tokens and characters, the metric used
by Bilenko et al. performed well. The Monge-Elkan metric
performed the best for distance metrics, while the SoftTF
performed the best for IDF metrics [16]. Given that most
metrics performed well in some areas but poorly on others,
some called attention to the necessity of metrics that can
more flexibly accommodate a variety of similarity
comparisons.

Increasing the efficiency of comparing single records can
possibly increase the efficiency of spotting duplicates.
Moreover, there are certain fields that, if scanned for
duplications first, could clarify that the records are not
duplicates before resources are allocated to scanning the
documents in their entirety. Thus, it is imperative to decide
the field comparison for the two records as soon as possible
to eliminate time wasting.

In order to curb time wastage, “the global likelihood ratio
for the full agreement for each of the identifiers should be
calculated” [17]. Throughout the duration of the comparison,
the maximum collective evidence that is most likely to be
amassed from that point forward will be an indication of the
rate and/or quality of improvement in the holistic likelihood
ratio, in the case of methodical continual comparisons.

Verykios et al. proposed a group of techniques to
minimize the number of record comparisons [22]. The
techniques involve applying a feature subset selection
algorithm in order to decrease the dimensionality of the
input set. This pre-processing step accelerates the process of
comparison by limiting its search to the more manageably
sized subset of fields in the records being compared [21],
[22]. Verykios et al. similarly advocate smaller model trees
by pruning the derived decision trees themselves, thereby
speeding up and improving the accuracy of the
categorization of record pairs [22].

842

E. Duplicate Record Detection Techniques

The techniques described previously are all capable of
being employed to pair up and match fields one at a time in a
given record. However, the practical database has records
consisting of multiple fields, which complicates the process
of spotting and locating duplications and necessitates a
choice between deeming the record pairs matches or
mismatches [23], [24].

For multiple field records, there are many techniques to
detect duplication. Elmagarmid et al. categorized them as
follows [17]:

• Techniques that involve machine-learning models, in
addition to probabilistic methods, to learn by
themselves the best ways to pair up records for
potential matches.

• Methods guided by various types of domain
knowledge, often complemented with distance
metrics (of a generic variety), to match records in
ways requiring less machine learning.

F. EM Algorithm

According to Jaro, estimates for ML of data that is
incomplete should be obtained using an EM algorithm [25].
When a subset of the desired training data is not available
for computing conditional probabilities, this provides a
practical second option. A good deal of information in the
data set can also be harnessed [26]. This also computes the
E-step and the M-step iteratively on a data set that is
incomplete to create the parameter set θ= (m, u, p). The steps
outlined in Dumpster, Laird, & Rubin are as follows [26]:

• Give initial values of θ. These values can be any values
since the algorithm is not particularly sensitive to the
starting values.

• Compute the E-step using the values of θ.
• Compute the M-step to re-estimate the values of θ

based on the values from Step B.
• Repeat Step B and Step C until the convergence of the

values of θ.

Estimating mi requires that the record pairs match and

that this is reflected in the EM algorithm. A blocking
technique typically allows each similar record pair to be
grouped into its own block and uses these pairs to compute
the λ comparison vector.

G. Rule-Based Technique

Wang and Madnick put forth a rule-based technique that
uses heuristic rules defined beforehand in order to determine
whether two records match [27], [28]. Techniques of this
variety give a one or zero as a weight for each attribute,
unlike techniques based on probabilistic methods, which
determine the weight of each attribute based on the input.
For instance, Wang and Madnick might define rules such as
the following [27]:

IF age < 22
THEN status = undergraduate
ELSE status = graduate
IF course_id = 564 or course_id = 579
THEN student_major = MIS

Records referring to an identical entity in the real world
are clustered by rules of this sort, and this sometimes leads
to incorrect results, given the heuristic nature of their
derivation [27].

III. RESULTS AND DISCUSSION

This paper has reviewed, analyzed and compared existing
approaches in order to suggest the most effective approach
in terms of efficiency and scalability. Finding such approach
to improve scalability is important because the algorithm
able to maintains acceptable response times, even when the
size of data processed is massively increased. Many methods
suffer from the drawback of quadratic computation, which
arises from pairwise distance calculations that affect their
scalability. Adaptive tree-based indexing approaches were
proposed to reduce such disadvantages [3].

To prove efficacious, duplicates detection should maintain
the efficiency of the system and scalability, principally when
dealing with large datasets. The standard blocking technique
is developed by Baxter et al. [6], and the sorted
neighbourhood technique is developed by Hernández &
Stolfo [8]. These two techniques share the characteristic of
sorting a dataset before applying a window or block to it.
They both combine dataset attributes to create a candidate
key [1]. Choosing the candidate key wisely is significant in
order to avoid missing duplicated records.

Identifying and locating duplicated records can be a sub-
optimal process when it involves pairing up all records of a
database. If for instance, each record in one data set |A| is
paired in turn with every record in a second data set |B|, then
the combination of |A|×|B| could produce heavy processing
loads: if each dataset has a large number of records, such as
1,000,000 each, this would require comparing 1012 record
pairs. Given how relatively small a set of duplication errors
would be found after so great an expenditure of resources
and time, more efficient methods are not simply more
desirable but far more practical.

For efficiency and scalability, grouping data sets into
clusters or blocks provide one way of meeting the challenge
to increase efficiency. A particularly useful solution involves
defining criteria and threshold values, breaking datasets into
blocks, and building pairs of candidates within a single
block, for use with a Blocking Key Value (BKV) approach.
This approach to greater efficiency is geared to not
compromise the effectiveness [28], [29].

The reviewed techniques concentrated on the accuracy of
duplication detection and focused far less on scalability and
performance. There is a trade-off between accuracy and
performance. Character-based methods give more details
about the similarities, and enable the decision maker to
choose whether to consider it duplication or not. However,
this takes considerable time as they go character by character.
Conversely, term-based methods focus on finding similarity
between tokens and take less time in comparison. Then
again, they do not give the same leeway to the decision
maker as character-based methods.

This paper insinuates an approach of data cleaning based
on a tree structure. This approach will assist in determining
duplicated data once the new data comes in. This happens
due to the fact that the records are saved next to each other
based on a specific key. Therefore, a new record arrives is

843

automatically positioned to the closest key and this helps to
implement a duplication determining method, such as Jaro.
In a tree structure, it is highly possible to locate duplicated
records within the same sub-tree. However, the block or
window size selection option will be eliminated. On the
other hand, the searching time required will be significantly
lower due to searching in small areas (the sub-tree). In
addition, there is an increase in accuracy as there is not any
chance of any duplicated record being undetected or left
behind (as with block and window discussed previously).
The tree structure introduces a good solution in terms of
accuracy and efficiency but also has a fundamental flaw;
which is scalability in cases of data presented and saved in
memory. This, however, can resolve by saving the tree
structure to a hard disk and is only retrieved it when
necessary.

IV. CONCLUSIONS

Since errors involving duplication entry occur routinely,
data cleaning of this sort is a crucial part of regular
operations. The overview of techniques discussed here
displays a range of approaches for searching database
records in order to spot and locate these mistakes. There still
remains room to expand the repertoire of techniques used in
present-day systems. Currently, there are two key
approaches for duplicate record detection which are blocking
and windowing. Both approaches operate in a simple and
fast duplication detection process and can be applied to
databases with millions of records. Such techniques should
have a balance between efficiency and accuracy. The
majority of duplicate detection systems in use at present
advocate many algorithms to accelerate the duplicate
detection process. The key component should be the
flexibility of using methods that adapt and change,
independently and automatically, over time when detecting
different patterns throughout the duplicate detection
process.

Reviewed papers showed weaknesses in terms of
scalability, with barely any mention of how far their
methods can be scaled. Scalability is crucial because of the
nature of duplication detection methods that involve sorting
and searching. It is an acknowledged fact that sorting and
searching are time-consuming. Therefore, it is recommended
that methods be identified that at least eradicate sorting and
principally focus on searching of duplications. This paper
proposed the tree-based approach for detecting duplications
for the following reasons: First, a tree is inherently sorted;
there is no need for any sorting. This feature arranges
records with relatively similar keys next to each other in a
single sub-tree. As a result, the implementation of the Jaro
method becomes easy. Second, the accuracy is very high as
all duplications will be in one place. Consequently, there
will be no records left behind as opposed to with block and
window. Finally, there is only one flaw with this method,
scalability; the tree grows too fast. However, this can be
resolved by saving the tree onto a hard disk. This will be
further investigated in future.

The authors regard character-based methods as the best
starting point for this task. The output of this study will
improve the parameters of evaluation for duplication
detection algorithms. This paper pointed out that accuracy,

performance, and scalability are considerable factors to
evaluate the detection algorithms. The argument was based
on the fact that the working domain is a warehouse.
Therefore, it is characterized by huge size, and duplicated
data for working methods which should be scalable, faster,
and accurate. As future works, this study will analyze Jaro
method and improve this algorithm in order to minimize
running time and increase accuracy in record detection
duplication. Providing solutions to this problem will reduce
duplication of records in the area of data management, data
warehousing, customer relationship management and data
integration.

ACKNOWLEDGMENT

The authors would like to thanks the Faculty of
Information Science and Technology, Universiti
Kebangsaan, Malaysia, for giving the opportunity to conduct
this research. This research is funded by Universiti
Kebangsaan Malaysia under Fundamental Research Grant
Scheme FRGS/1/2014/ICT07/UKM/02/3 and DPP-2015-019.

REFERENCES
[1] O. H. Akel, “A Comparative Study of Duplicate Record Detection

Techniques,” Master Thesis, Middle East University, Amman, Jordan,
2012.

[2] A. Skandar, M. Rehman, and M. Anjum, “An Efficient Duplication
Record Detection Algorithm for Data Cleansing,” International
Journal of Computer Applications, 127(6), pp.28-37, 2015.

[3] D. Vatsalan and P. Christen, “Privacy-preserving matching of similar
patients,” Journal of Biomedical Informatics, Vol. 59, pp. 285-298,
February 2016.

[4] W. E. Winkler, “Record linkage software and methods for merging
administrative lists,” US Bureau of the Census, 2001.

[5] P. Christen, “Improving data linkage and duplication quality through
nearest neighbor based blocking.” in Proceedings of Thirteenth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD'07), 2007.

[6] R. Baxter, P. Christen, and T. Churches, “A Comparison of Fast
Blocking Methods for Record Linkage.” ACM SIGKDD Workshop
on Data Cleaning, Record Linkage and Object Consolidation,
Washington DC, pp. 25-27, 2003.

[7] U. Draisbach and F. Naumann, “A comparison and generalization of
blocking and windowing algorithms for duplicate detection.” in
Proceedings of the International Workshop on Quality in Databases
(QDB), August 2009, p. 51-56.

[8] M. A. Hernández and S. J. Stolfo, “Real-world data is dirty: Data
cleansing and the merge/purge problem,” Data Mining and
Knowledge Discovery, 2(1), pp. 9-37, 1998.

[9] U. Draisbach and F. Naumann, “A generalization of blocking and
windowing algorithms for duplicate detection.” in Proceeding of
Data and Knowledge Engineering (ICDKE),” 2011, p. 18-24.

[10] T. Papenbrock, A. Heise, and F. Naumann, “Progressive duplicate
detection,” IEEE Transactions on Knowledge and Data Engineering,
27(5), pp. 1316-1329, 2015.

[11] W. H. Gomaa and A. A. Fahmy, “A Survey of Text Similarity
Approaches,” International Journal of Computer Applications (0975 -
8887) Volume 68(13), April 2013.

[12] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals,” Soviet Physics Doklady 10(8): pp. 707-710,
1996.

[13] V. Wandhekar and A. Mohanpurkar, “Validation of Deduplication in
Data using Similarity Measure,” International Journal of Computer
Applications, 116 (21), 2015.

[14] Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” Computer Networks and ISDN Systems,
29(8), 1157-1166, 1997.

[15] K. Williams and C. L. Giles, “Near Duplicate Detection in an
Academic Digital Library,” in Proceedings of the ACM symposium
on Document engineering (DocEng), 2013, pp. 91-94,

844

[16] W. E. Yancey, “Evaluating string comparator performance for record
linkage,” Statistical Research Division Research Report,2005.

[17] K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and
Data Engineering, 19(1), pp.1-16, 2007.

[18] R. V. Bezu, S. Borst, R. Rijkse, J. Verhagen, D. Vandic, and F.
Frasincar, “Multi-component similarity method for web product
duplicate detection,” In Proceedings of the 30th Annual ACM
Symposium on Applied Computing ACM, 2015 ,p. 761-768.

[19] D. Mrozek, B. Socha, S. Kozielski, and B. Małysiak-Mrozek, “An
efficient and flexible scanning of databases of protein secondary
structures,” Journal of Intelligent Information Systems, 46(1), 213-23,
2016.

[20] B. Khan, A. R. S. D. Shah, and S. Khusro, “Identification and
Removal of Duplicated Records,” World Applied Sciences Journal,
13(5), pp.1178-1184, 2011.

[21] D. Koller and M. Sahami, “Hierarchically classifying documents
using very few words,” Technical Report, Stanford InfoLab,1997.

[22] V. S. Verykios, A. K. Elmagarmid, and E. N. Houstis, “Automating
the approximate record-matching process,” Information Sciences,
126(1), pp. 83-98, 2000.

[23] X. Wang, “Matching records in multiple databases using a
hybridization of several technologies,” Master Dissertation.
Department of Industrial Engineering. University of Louisville, KY,
USA, 2008.

[24] C. Conrad, “Predicting Political Donations Using Data Driven
Lifestyle Profiles Generated from Character N-Gram Analysis of
Heterogeneous Online Sources,” Master of Electronic Commerce
Thesis, Dalhousie University, Canada, 2015.

[25] J. S. Murray, “Probabilistic Record Linkage and Deduplication after
Indexing, Blocking, and Filtering,” Journal of Privacy and
Confidentiality, 7(1), pp.3–24, 2016.

[26] P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm.” Journal of the Royal
Statistical Society. Series B (methodological), pp. 1-38, 1977.

[27] J. R. Wang and S. E. Madnick, “The inter-database instance
identification problem in integrating autonomous systems.” In
Proceedings of the Fifth International Conference on Data
Engineering, 1989. p. 46-55.

[28] M. Kejriwal and D. P. Miranker, “On the Complexity of Sorted
Neighborhood,”1501.01696, Cornell University, 2015.

[29] J. J. Tamilselvi and V. Saravanan, “Detection and elimination of
duplicate data using token-based method for a data warehouse: A
clustering based approach,” International Journal of Dynamics of
Fluids, 5(2), pp. 145-164, 2009.

[30] F. N. Mahamood and A. Ismal, “Semantic Similarity Measurement
Methods: State of Art,” Research Journal of Applied Sciences,
Engineering and Technology, 26, pp. 415–430, 2014.

[31] S. Ramya and C. Palani Nehr, “An Efficient Duplicate Detection
Based on Navie Block Detection Algorithm,” Middle-East Journal of
Scientific Research 24 (Techniques and Algorithms in Emerging
Technologies), pp. 291-296, 2016.

845

