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Abstract— The recognition of similar entities in databases has gained substantial attention in many application areas. Despite several 
techniques proposed to recognize and locate duplication of database records, there is a dearth of studies available which rate the 
effectiveness of the diverse techniques used for duplicate record detection. The calculating time complexity of the proposed methods 
reveals their performance rating. The time complexity calculation showed that the efficiency of these methods improved when 
blocking and windowing are applied. Some domain-specific methods train systems to optimize results and improve efficiency and 
scalability, but they are prone to errors. Most of the existing methods fail to either discuss or lack thoroughness in consideration of 
scalability. The process of sorting and searching form an essential part of duplication detection, but they are time-consuming. 
Therefore this paper proposes the possibility of eliminating the sorting process by utilization of tree structure to improve the record 
duplication detection. This has added benefits of reducing the time required and offers a probable increase in scalability. For a 
database system, scalability is an inherent feature of any proposed solution, due to the fact that the data size is huge. Improving the 
efficiency in identifying duplicate records in databases is an essential step for data cleaning and data integration methods. This paper 
reveals that the current proposed methods lack in providing solutions that are scalable, high accurate, and reduce the processing time 
during detecting duplication of records in the database. The ability to provide solutions to this problem will improve the quality of 
data that are used for the decision-making process.     
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I. INTRODUCTION 

Among the entity matching applications, one of particular 
importance is an identification of similar database records 
[31]. Recognizing and locating duplicate records is a process 
that involves probing databases for purposes of identifying 
records that, in the real world, represent an identical entity. 
Locating such duplications is impeded by the fact that they 
do not share a common key. One means of resolving this 
involves weeding out errors in the data, such as the 
misspelling of names; the lack of integrity restraints limiting 
human entries to ranges not much higher than 100 years; and 
recognizing varying conventions used for entering the same 
information. For example entering simple numerals rather 
than spelling numbers out [1].  

The pre-processing stage is amongst the most crucial 
phases since that is where a database is scanned to detect and 
remove duplicate records. Redundancy in records often 
results from merging databases. While this can initially 
create undesirable duplicates, the combination of duplicate 
records can ultimately result in enriched data combining 
details listed in one of two original entries but not in both, 
thus providing more detailed data to be mined and analyzed 
for research [1].  

Heterogeneity arises when data from several sources are 
combined and integrated. These are of two types, namely 
structural heterogeneity and lexical heterogeneity. Structural 
heterogeneity involves different means of separating fields 
for the same information, such as breaking up an address 
into two or three lines instead of listing all the data on a 
single line. Lexical heterogeneity involves different means 
of encoding the same information, such as spelling out a 
numerical street name rather than writing it in numerals; or 
using initials to abbreviate a person’s middle name or even a 
first name [1], [2]. 

This paper discusses issues related to scalability and 
efficiency. These two factors are very important assessment 
criteria for duplication detection techniques. Since detection 
methods work with huge databases, scanning them can 
consume considerable time. Therefore, use of techniques 
that both work efficiently with such massive databases 
within acceptable time limits, and that are scalable according 
to the size of the database, are essential.    

Previous studies used blocking or windowing as a means 
of finding duplication. However, such operations are time-
consuming and lead to trade-offs about the size of window 
or block. In order to lessen the work involved in sorting, a 
tree structure implementation ensures data is already sorted. 
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Another challenge is a discovery of juxtaposed duplicated 
records, which itself demands further research. Previous 
studies have failed to concentrate sufficiently on scalability 
and efficiency: few have proposed solutions for those issues 
[2]. This paper aims to review the existing techniques used 
in detecting duplicate records. To discuss the issues, this 
paper is organized as follows: section II examines the main 
differences between the two famous "divide and conquers" 
techniques (blocking and windowing) as a means of finding 
duplication. Section III discusses the common similarity 
measurements that have been employed to detect duplication 
within database records. Section IV describes the main 
detection tools that are commonly used in many articles 
reviewed in this paper. Section V considers the issues related 
to efficiency and scalability of the currently proposed 
duplication detection techniques. Finally, Section VI 
concludes the paper.  

II. MATERIALS AND METHODS 

Blocking and windowing are two core operations in 
record duplication detection. This section will discuss these 
two techniques and the process involves in detecting the 
similarities between records. These operations will be 
discussed in more details in section A and section B 
respectively. In blocking operation, records are partitioned 
into a disjoint partition, which means no record can be 
present in more than one partition. Then records will be 
compared within the block to detect any similarities. A 
blocking operation can be divided into two steps: The first 
step is building, which involves reading all record sets from 
a given data set, creating records, indexing them in the 
memory, and using that information to create blocking keys, 
such as by using an inverted index [1], [5]. Parameters are 
derived from the blocking keys for the inverted index. The 
inverted index list in question then receives all of the records 
containing an identical blocking-key value. The second step 
is retrieving, which involves retrieving record identifiers 
from the index one block at a time. Records in a given block 
are paired together in turns, and a classifier compares the 
numerical values of the vectors resulting from each pairing 
[1].  

A. Blocking 

Domain and duplication experts normally determine the 
blocking keys manually and normally choose general keys to 
optimizing the resulting quality. During this process of 
record comparison and matching, they reduce the required 
quantity of data [1]. Another means of reducing the number 
of comparisons is the Standard Blocking technique, which 
seeks identical blocking key values (BKVs) within which 
the record pairs are compared, as seen in Fig. 1. The 
proportion of comparisons is (N2/B), where N is the number 
of dataset records and B is the number of same-size blocks 
[1, 6].  

 
Fig. 1 Conventional blocking technique [7] 

 
The number of blocks and their size are determined by the 

blocking-key selection, which is what the blocking 
technique relies on [1]. Choosing the optimal key is based on 
the optimal means of bringing duplicate candidates into the 
same block. Blocking can increase the data-comparison 
speed: but by bringing together records that should not be 
compared, it also has the potential to increase the number of 
false mismatches. 

B. Windowing (Sorted Neighbourhood) 

Hernández and Stolfo [8] developed the Sorted 
Neighbourhood (SN) technique, otherwise known as 
Windowing. By imposing limitations on the measures of 
similarity in the dataset, the number of potential matches is 
minimized. The following three steps outline the Windowing 
technique: 

• Key creation: this process involves extracting 
appropriate attributes in order to compute a blocking 
key to apply to the dataset records under comparison. 
This can also be done with substring sequences of the 
attributes, which can be determined in a diversity of 
ways. The priority of the attributes is determined by 
which ones appear first in the key, and rank higher than 
those that appear later. 

• Data Sorting: The blocking key value outlined above 
can be used to sort the dataset records. 

• Limiting the comparisons within a window involves 
fixing the size of the window (w >1) and overlapping it 
throughout a series of records. Fig. 2 shows, if w = the 
size of window records, then adding records to a 
window and comparing each new one with previous 
records involves adding it to the preceding record w- 1. 

 

 
Fig. 2 Windowing [6] 

 
The comparison of potential pairs of records is limited to 

w −1 by the use of the windowing method. If the number of 
records in the dataset is n, then the number of records in total 
is O (wn). 

The selection of keys determines how accurate the 
windowing technique ends up being in practice. For example, 
a poor choice in a key with too small a window oversees 
records that should, in fact, be matched [1]. In contrast, a 
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poor choice in a key with too large a window results in too 
many undesirable comparisons [7]. 

Hernández and Stolfo offer a solution to this problem by 
merging the results of a multi-pass windowing technique 
that involves a sliding window and changing the key for 
each of a number of small-window periods [1], [8]. 

C. Comparison between Block & Slide Window 

An in-depth comparison test that strives for algorithms 
capable of weeding out all but the record pairs most fit for 
comparison involves massive costs. Pairing up records that 
correspond to identical entities in the real world poses a 
challenge. Another challenge that presents itself is the 
costliness of a process attempting to accurately compute 
resemblances between pairs in larger datasets. With this in 
mind, it is a high priority to try to search, spot and locate 
duplicates with the most effective and efficient system. 
The performance bottleneck for duplicate detection is related 
to the expense of comparison. To overcome these 
excessively expensive comparisons of all pairs of records, 
the best practice is to cautiously partition the records into 
smaller subsets and search for duplicates only within these 
partitions. Table 1 compares the blocking and windowing 
techniques in terms of working mechanism, occurrences, 
sizing, optimization, scalability, and efficiency.  

TABLE I 
COMPARISON OF BLOCKING AND WINDOWING TECHNIQUES 

Process  Blocking Windowing 
Working 
mechanism  

A set of records is 
partitioned into disjoint 
blocks by means of a 
blocking key. 

The first phase 
involves assigning a 
sorting key to every 
record. The key need 
not be unique for 
purposes of blocking 
methods. The second 
phase involves 
sorting the records 
based on the 
respective key of 
each one. The third 
phase involves 
sliding a window of 
unvarying size across 
a list of records that 
has been sorted along 
the lines outlined 
above. 

Comparison 
occurrences  

Where the entire 
number of comparisons 
is limited to records 
located in the same 
partition. This acts to 
reduce the potential 
number of comparisons 
to a notable degree. 

When determining 
the blocking method, 
the choice of which 
partitioning predicate 
to use ultimately 
characterizes the first 
two phases. 

Sizing 
mechanism  

The choice of which 
size partition to use is 
crucial to the creation 
of adequate 
partitioning. Given 
how easy it can be to 
locate duplicates, the 
ability to group 
duplicate candidates in 

The contrast of 
efficiency and 
effectiveness is 
determined by the 
window size, 
generally between 10 
and 30. Smaller 
window sizes are 
more efficient given 

the same partition is a 
reflection of how good 
the aforementioned 
decision is.  

their shorter run 
times, but larger 
window sizes are 
more effective given 
their greater 
thoroughness in 
spotting and locating 
duplicates. 

Optimization 
mechanism  

Optimal duplicate 
detection requires an 
iterative approach, 
especially in cases 
where duplicates have 
distinct partitioning 
attributes. 
 
The manifold approach 
involves distinct 
partition bases for each 
run. To eliminate any 
potential duplication, a 
transitive closure 
applies to all 
determined duplicates. 

The Sorted 
Neighbourhood 
Method provides one 
means of cutting 
down on processing 
time by sorting 
records into clusters 
and dealing with 
them in a parallel 
fashion that makes 
for a smaller number 
of comparisons. 
 
As noted above, the 
apparent efficiency of 
too small a window 
size risks missing 
duplications that 
should be included. 
Conversely, the 
greater efficiency of 
too large a window 
size wastes time and 
resources with more 
comparisons than are 
needed. 

Scalability  Technically, blocking 
isolates every block 
and scans it 
individually out of 
other blocks. 
Therefore, there is no 
overlapping. Blocking 
may perform better 
than windowing in 
terms of a number of 
comparisons. Only the 
number of blocks 
affects it, and that has 
been resolved by using 
parallel programming. 
  

The window slides 
every time, which 
takes more time than 
blocking. This sliding 
technique will 
obstruct using 
parallel programming 
and may affect the 
scalability of 
windowing 
technique.  

Efficiency  Both techniques suffer from size trade-off (size 
of window and block).   

Blocking and windowing have quite similar techniques. 
For instance, both try to decrease the number of comparisons 
by intelligently predicating the duplicated pairs. Both 
methods mainly depend on sorting to run duplicate detection 
effectively. 

Despite their widely differing approaches, blocking and 
windowing have both become increasingly common means 
of dealing with the challenges mentioned. Respectively, they 
handle the problems by creating subsets that are disjoint to 
divide records. On one hand, boxing records up in a window 
to sort what lays within its range: on the other hand, some 
researchers such as Draisbach and Naumann merged both 
technologies [9]. They proposed an algorithm called Sorted 
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Blocks [9]. The performance of the sorted blocks with 
different datasets showed that this algorithm is capable of 
finding an equal number of duplicates, even though it makes 
fewer comparisons. 

Sorted Blocks first order the records according to a key. It 
has assumptions, such as that the duplicated records are 
positioned in tight proximity to each other just as with the 
two previous approaches. However, unlike multi-pass 
techniques, which slide a window of unvarying size across a 
list of records, the sorted block approach makes a 
comparison of records that fit into disjoint partitions. 
Overlapping is used within sorted blocks to make sure that 
duplicated records are found. However, this additional 
complexity is linear. 

The varying partition size of the sorted blocks approach 
provides advantages that windowing approaches lack with 
their unvarying window size. Most notable among these is 
the fact that it discriminates between records of parallel field 
magnitude and those of differing field magnitudes, which 
accommodates the comparison of fewer fields. 

The trade-off is critical when it comes to time and 
accuracy. Therefore, many researchers recommended 
flexibility in the algorithm of records duplication. In other 
words, researchers let the user make decisions that are 
important to them, either by time or accuracy: this depends 
on their requirements. As such, Papenbrock, Heise, and 
Naumann recommended progressive duplicate detection [10]. 
The progressive approach utilizes parallel computing in 
order to reduce the time and increase scalability. Moreover, 
it allows users to interrupt the detection process and make 
modifications to improve the process. However, such an 
approach has many drawbacks: first, it assumes that the user 
has little knowledge about the cleaning process and of key 
generations. Such lack of knowledge may influence the 
accuracy of the result, as the user may select inefficient keys, 
or intervene erroneously. Besides, duplication detection 
process is a batch process due to the vast amount of records: 
interactivity is not recommended as it results in long user 
waiting time.   

In essence, whichever technique is chosen for records 
detection, there are many considerations to bear in mind: 

• The data itself determines the best approach to detect 
duplication. 

• There is always a trade-off between accuracy and time. 
The higher level of accuracy wanted, the more time is 
required to do detailed detection. For those people who 
want instant results, it is better to apply progressive 
approaches where data comes out whenever available 
without waiting for the duplication process to finish. 
Technically, linear searching is more accurate because 
it compares each record with the entire dataset: 
however, it is impractical, as it takes too long. 
Therefore, a balance between time and accuracy is the 
main motivation for new approaches to duplication 
detection.  

• Whatever record duplication algorithm is selected, it 
does not offer an optimal solution. Therefore, repeating 
duplication detection procedures with different keys or 
overlapping blocks or windows will enhance the 
accuracy of the results. 

• The result of records duplication detection algorithm is 
significantly dependent on the quality of data 
transformation that has taken place in prior steps. 

• Clustering is a way of reducing time by grouping 
records based on specific criteria, but again the quality 
is dependent on the prior steps. In other words, 
clustering is trying to use predictive criteria rather than 
criteria derived from the structure of the dataset such as 
name, telephone, or address. Criteria employed by 
clustering is developed by individuals who postulate 
data agreement based on previous experience. As an 
example, a data scientist might propose that the rich 
and young are more likely to purchase sports cars. Thus, 
sorting data based on criteria of age and wealth can 
assist duplicate deduction in such a group of records   

• String comparison is a crucial component of those 
techniques for spotting matching information in 
duplicated records. A goal common to all approaches is 
to find similarity in the meaning of two strings, instead 
of absolute equality of characters entered, as character 
matches may exist for a number of reasons, including 
typographical errors and diverse means of entering the 
same information (e.g. abbreviations, numerals in place 
of spelled-out words for numbers, etc.).  

D. Similarity measurements 

Similarity measurements are proposed to identify whether 
there is a match between two database records. This match is 
used to make a decision whether the both records are 
identical. Many similarities methods were matching based 
on a number of similar characters in both records, while 
other methods matched based on similar words. Beside this, 
there are two types of duplication record detection methods: 
one related to a normal comparison, and another related to 
using machine learning or artificial intelligence.  

It cannot be said that there is a single comprehensive 
comparison function that can provide a wide solution for 
record duplication detection in many domains. Vatsalan and 
Christen reported that there are three string comparison 
functions commonly used with medical records: the longest 
common substring approach, used since the earliest days of 
computer programming: the Levenshtein Edit Distance, 
pioneered in the 1960s; and the more recent Jaro-Winkler 
Distance, popularized in the 1990s. As with other 
contrasting means of drawing systematic comparisons, the 
right balance must be found along the continuum of 
efficiency and effectiveness - in the area of string 
comparison functions, this is generally referred to as 
specificity and sensitivity [3]. 

Several methods have been devised to carry out this task: 
however, each method tends to work well for particular 
types of errors, and none appears to offer a universal 
solution that fits all.  

 
1) Character-Based Metrics: These metrics take into 

account the inverse similarity (or distance) between two 
strings of text to compare or approximately match them, or 
to carry out searches on "fuzzy strings". There are several 
variations on these string metrics; the most frequently used 
being described by Gomaa [11]. These variations are:  
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• Edit-Distance or Levenshtein Distance: Levenshtein 
introduced the Levenshtein Edit Distance concept 
that calculates a two-string distance (c1, c2) needed 
to minimize the number of operations used for 
deriving one string from another [12]. As for 
identifying typos, the measurement of edit distance is 
an effective tool, but it is not as useful for identifying 
other types of errors [13]. 

• Hamming Distance: Hamming distance is principally 
used for numerical fields of a fixed size, for example, 
zip codes or social security numbers. It counts the 
mismatches between the two numbers being 
compared when determining the lowest number of 
substitutions needed (or the lowest number of errors 
incurred) when deriving one string from another.  

• Shingles (a type of n-gram): These are contiguous 
sub-sequences of tokens of length w (number of 
tokens in each shingle composing the set), which are 
a set of unique shingles that appear in a document, 
and are used to assess document similarity. The 
number of w shingles shared by paired-up documents 
can determine similarity according to this set of 
criteria [14]. However, Williams and Giles deemed it 
impractical in computational terms to calculate 
shingle set similarity for every document [15]. 
Therefore, they employed a method of producing a 
document sketch by h-hashing the shingles, locating 
the lowest value associated with each hash, and using 
these lowest values to construct a sketch. In order to 
estimate the similarity of the sketches, they 
overlapped them. 

• Jaro: Considers common spelling errors, and is 
principally used for record linkage purposes. 

• Jaro-Winkler: An extension of Jaro distance devised 
by William E. Winkler in 1990. This makes use of a 
prefix scale that gives more positive ratings to strings 
that match from the beginning for a set common 
prefix length, up to a maximum of four characters 
[11]. 

• q-gram: The q-gram similarity between the 
corresponding values is calculated, and the similarity 
is added with a weight to the similarity of the two 
products. Where q-gram Distance (s1; s2) is the 
number of different q-gram occurrences in s1 and s2 
[17], [18]. 

 
Character-based measurements compare character to 

character. These may be affected by the size of the record, 
which may influence the overall performance of duplication 
detection when using this approach. However, the accuracy 
is considerable because all available characters are scanned.   

 
2)  Token-Based Metrics: When it comes to typographical 

errors, the Character-Based Similarity Metrics work really 
well. The downside of this is that typographical conventions 
may lead to certain unsolicited rearrangement of words (e.g. 
“Walter Evans” vs. “Evans, Walter”). In cases like this, the 
Character-Level Metrics fail to net similarities of the 
components. This is where Token-based Metrics come in 
and try to compensate for this problem. [11], [17]. 

 

3) Numeric Metrics: Even though there are numerous 
methods currently used for detecting similarities in string-
based data, methods seeking out these similarities in numeric 
data are extremely dated. The numbers are characteristically 
regarded as strings or simple range queries, which pinpoint 
numbers that have similar values. Koudas et al. suggest that 
for future research the direction should point towards 
considering data together with its type and its distribution 
[18]. Another direction to be considered is the extension of 
the notion of cosine resemblance when it comes to numeric 
data, and how well it works in detecting duplicates [11], [14], 
[20].  

In terms of scalability and performance, there are few 
differences among these three metrics. Some have better 
performance than others in certain domains, but not 
considerable differences. Moreover, it was noticed that 
methods that use clustering offer better performance, due to 
very good categorization for records that facilitate finding 
duplicates easily. The challenge comes with developing 
methods that minimize the unnecessary check of duplication, 
provide very good response time, and simultaneously have 
scalability. However, it seems hard to achieve this triple 
benefit. Yancey demonstrated that, for purposes of matching 
names, the Jaro-Winkler metric performed well, and, for 
purposes of matching tokens and characters, the metric used 
by Bilenko et al. performed well. The Monge-Elkan metric 
performed the best for distance metrics, while the SoftTF 
performed the best for IDF metrics [16]. Given that most 
metrics performed well in some areas but poorly on others, 
some called attention to the necessity of metrics that can 
more flexibly accommodate a variety of similarity 
comparisons.  

Increasing the efficiency of comparing single records can 
possibly increase the efficiency of spotting duplicates. 
Moreover, there are certain fields that, if scanned for 
duplications first, could clarify that the records are not 
duplicates before resources are allocated to scanning the 
documents in their entirety. Thus, it is imperative to decide 
the field comparison for the two records as soon as possible 
to eliminate time wasting. 

In order to curb time wastage, “the global likelihood ratio 
for the full agreement for each of the identifiers should be 
calculated” [17]. Throughout the duration of the comparison, 
the maximum collective evidence that is most likely to be 
amassed from that point forward will be an indication of the 
rate and/or quality of improvement in the holistic likelihood 
ratio, in the case of methodical continual comparisons. 

Verykios et al. proposed a group of techniques to 
minimize the number of record comparisons [22]. The 
techniques involve applying a feature subset selection 
algorithm in order to decrease the dimensionality of the 
input set. This pre-processing step accelerates the process of 
comparison by limiting its search to the more manageably 
sized subset of fields in the records being compared [21], 
[22]. Verykios et al. similarly advocate smaller model trees 
by pruning the derived decision trees themselves, thereby 
speeding up and improving the accuracy of the 
categorization of record pairs [22].  
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E. Duplicate Record Detection Techniques 

The techniques described previously are all capable of 
being employed to pair up and match fields one at a time in a 
given record. However, the practical database has records 
consisting of multiple fields, which complicates the process 
of spotting and locating duplications and necessitates a 
choice between deeming the record pairs matches or 
mismatches [23], [24]. 

For multiple field records, there are many techniques to 
detect duplication. Elmagarmid et al. categorized them as 
follows [17]: 

• Techniques that involve machine-learning models, in 
addition to probabilistic methods, to learn by 
themselves the best ways to pair up records for 
potential matches. 

• Methods guided by various types of domain 
knowledge, often complemented with distance 
metrics (of a generic variety), to match records in 
ways requiring less machine learning. 

F. EM Algorithm 

According to Jaro, estimates for ML of data that is 
incomplete should be obtained using an EM algorithm [25]. 
When a subset of the desired training data is not available 
for computing conditional probabilities, this provides a 
practical second option. A good deal of information in the 
data set can also be harnessed [26]. This also computes the 
E-step and the M-step iteratively on a data set that is 
incomplete to create the parameter set θ= (m, u, p). The steps 
outlined in Dumpster, Laird, & Rubin are as follows [26]: 

• Give initial values of θ. These values can be any values 
since the algorithm is not particularly sensitive to the 
starting values.  

• Compute the E-step using the values of θ. 
• Compute the M-step to re-estimate the values of θ 

based on the values from Step B. 
• Repeat Step B and Step C until the convergence of the 

values of θ. 
 
Estimating mi requires that the record pairs match and 

that this is reflected in the EM algorithm. A blocking 
technique typically allows each similar record pair to be 
grouped into its own block and uses these pairs to compute 
the λ comparison vector.  

G. Rule-Based Technique 

Wang and Madnick put forth a rule-based technique that 
uses heuristic rules defined beforehand in order to determine 
whether two records match [27], [28]. Techniques of this 
variety give a one or zero as a weight for each attribute, 
unlike techniques based on probabilistic methods, which 
determine the weight of each attribute based on the input. 
For instance, Wang and Madnick might define rules such as 
the following [27]: 

IF age < 22 
THEN status = undergraduate 
ELSE status = graduate 
IF course_id = 564 or course_id = 579 
THEN student_major = MIS 
 

Records referring to an identical entity in the real world 
are clustered by rules of this sort, and this sometimes leads 
to incorrect results, given the heuristic nature of their 
derivation [27]. 

III.  RESULTS AND DISCUSSION 

This paper has reviewed, analyzed and compared existing 
approaches in order to suggest the most effective approach 
in terms of efficiency and scalability. Finding such approach 
to improve scalability is important because the algorithm 
able to maintains acceptable response times, even when the 
size of data processed is massively increased. Many methods 
suffer from the drawback of quadratic computation, which 
arises from pairwise distance calculations that affect their 
scalability. Adaptive tree-based indexing approaches were 
proposed to reduce such disadvantages [3].  

To prove efficacious, duplicates detection should maintain 
the efficiency of the system and scalability, principally when 
dealing with large datasets. The standard blocking technique 
is developed by Baxter et al. [6], and the sorted 
neighbourhood technique is developed by Hernández & 
Stolfo [8]. These two techniques share the characteristic of 
sorting a dataset before applying a window or block to it. 
They both combine dataset attributes to create a candidate 
key [1]. Choosing the candidate key wisely is significant in 
order to avoid missing duplicated records.  

Identifying and locating duplicated records can be a sub-
optimal process when it involves pairing up all records of a 
database. If for instance, each record in one data set |A| is 
paired in turn with every record in a second data set |B|, then 
the combination of |A|×|B| could produce heavy processing 
loads: if each dataset has a large number of records, such as 
1,000,000 each, this would require comparing 1012 record 
pairs. Given how relatively small a set of duplication errors 
would be found after so great an expenditure of resources 
and time, more efficient methods are not simply more 
desirable but far more practical.  

For efficiency and scalability, grouping data sets into 
clusters or blocks provide one way of meeting the challenge 
to increase efficiency. A particularly useful solution involves 
defining criteria and threshold values, breaking datasets into 
blocks, and building pairs of candidates within a single 
block, for use with a Blocking Key Value (BKV) approach. 
This approach to greater efficiency is geared to not 
compromise the effectiveness [28], [29].   

The reviewed techniques concentrated on the accuracy of 
duplication detection and focused far less on scalability and 
performance. There is a trade-off between accuracy and 
performance. Character-based methods give more details 
about the similarities, and enable the decision maker to 
choose whether to consider it duplication or not. However, 
this takes considerable time as they go character by character. 
Conversely, term-based methods focus on finding similarity 
between tokens and take less time in comparison. Then 
again, they do not give the same leeway to the decision 
maker as character-based methods.   

This paper insinuates an approach of data cleaning based 
on a tree structure. This approach will assist in determining 
duplicated data once the new data comes in. This happens 
due to the fact that the records are saved next to each other 
based on a specific key. Therefore, a new record arrives is 
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automatically positioned to the closest key and this helps to 
implement a duplication determining method, such as Jaro. 
In a tree structure, it is highly possible to locate duplicated 
records within the same sub-tree. However, the block or 
window size selection option will be eliminated. On the 
other hand, the searching time required will be significantly 
lower due to searching in small areas (the sub-tree). In 
addition, there is an increase in accuracy as there is not any 
chance of any duplicated record being undetected or left 
behind (as with block and window discussed previously). 
The tree structure introduces a good solution in terms of 
accuracy and efficiency but also has a fundamental flaw; 
which is scalability in cases of data presented and saved in 
memory. This, however, can resolve by saving the tree 
structure to a hard disk and is only retrieved it when 
necessary.   

IV. CONCLUSIONS 

Since errors involving duplication entry occur routinely, 
data cleaning of this sort is a crucial part of regular 
operations. The overview of techniques discussed here 
displays a range of approaches for searching database 
records in order to spot and locate these mistakes. There still 
remains room to expand the repertoire of techniques used in 
present-day systems. Currently, there are two key 
approaches for duplicate record detection which are blocking 
and windowing. Both approaches operate in a simple and 
fast duplication detection process and can be applied to 
databases with millions of records. Such techniques should 
have a balance between efficiency and accuracy. The 
majority of duplicate detection systems in use at present 
advocate many algorithms to accelerate the duplicate 
detection process. The key component should be the 
flexibility of using methods that adapt and change, 
independently and automatically, over time when detecting 
different patterns throughout the duplicate detection 
process.  

Reviewed papers showed weaknesses in terms of 
scalability, with barely any mention of how far their 
methods can be scaled. Scalability is crucial because of the 
nature of duplication detection methods that involve sorting 
and searching. It is an acknowledged fact that sorting and 
searching are time-consuming. Therefore, it is recommended 
that methods be identified that at least eradicate sorting and 
principally focus on searching of duplications. This paper 
proposed the tree-based approach for detecting duplications 
for the following reasons: First, a tree is inherently sorted; 
there is no need for any sorting. This feature arranges 
records with relatively similar keys next to each other in a 
single sub-tree. As a result, the implementation of the Jaro 
method becomes easy. Second, the accuracy is very high as 
all duplications will be in one place. Consequently, there 
will be no records left behind as opposed to with block and 
window. Finally, there is only one flaw with this method, 
scalability; the tree grows too fast. However, this can be 
resolved by saving the tree onto a hard disk. This will be 
further investigated in future.  

The authors regard character-based methods as the best 
starting point for this task. The output of this study will 
improve the parameters of evaluation for duplication 
detection algorithms. This paper pointed out that accuracy, 

performance, and scalability are considerable factors to 
evaluate the detection algorithms. The argument was based 
on the fact that the working domain is a warehouse. 
Therefore, it is characterized by huge size, and duplicated 
data for working methods which should be scalable, faster, 
and accurate. As future works, this study will analyze Jaro 
method and improve this algorithm in order to minimize 
running time and increase accuracy in record detection 
duplication. Providing solutions to this problem will reduce 
duplication of records in the area of data management, data 
warehousing, customer relationship management and data 
integration.   
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