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Abstract— RSA is the most popular public-key cryptography. The main strength of the algorithm is based on the difficulty of factoring 

in a large integer number. RSA has also been applied in a system with limited resource environments like single-board computers 

(SBC). To ensure data security, a recommendation to use a key size longer than 2048 bits generates challenges for implementing RSA 

in the SBC. This research proposes an EPNR (Eight Prime Numbers of Modified RSA) method, a modified double RSA based on eight 

prime numbers combined with the CRT method, to speed up the random key generation and decryption mechanism. The method is 

implemented in a Raspberry Pi 4 Model B+. The running time and security performances of the EPNR were analyzed and compared 

to the other models. Compared to the others model based on the standard RSA scheme, the proposed model is faster 21.78 times in a 

random key generation, 9.03 times in encryption and decryption processing. The EPNR has resistance to Wiener, statistical, and 

factorization attacks (GNFS and Fermat).  Using standard RSA in the second encryption mechanism, the GNFS is not yet effective for 

attacking the proposed model. The modified Fermat Factorization algorithm is more difficult and needed more extra times for factoring 

a large composite number into eight prime numbers correctly. The method will be useful for implementing certificates authentication 

and distribution of the secret key. It is very suitable to enhance more secure RSA implementation in an SBC environment. 
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I. INTRODUCTION

Data and information are essential assets; therefore, their 
security aspects should be guaranteed. Cryptography 
techniques can be implemented to ensure security aspects of 
data, namely: confidentiality, integrity, and authentication [1] 
[2]. As one of the popular asymmetric cryptography methods, 
the RSA algorithm was developed by Rivest-Shamir-
Adleman in 1978 [1]. The standard RSA algorithm generates 
a pair of keys based on two random prime numbers. The 
security level of the RSA algorithm depends on how difficult 
to factorize a big integer number that is used as a modulus 
computation into two prime numbers. With the improvement 
of computational capabilities, the key size should be longer 
than 1024 bits [1], [3], [4]. Using longer than 2048 bits is also 
recommended [5], [6]. Modulus factorization is the most 
common type of RSA cryptosystem attack. The RSA 
algorithm with a key size shorter than 1024 bits is easy to be 
broken by some factorization algorithms, such as trial division, 
Pollard Rho, Fermat factorization, Euler factorization, and 

Quadratic Sieve algorithms [7]–[9]. The Quadratic Sieve, the 
Number Field Sieve [10], and the Elliptic Curve Factoring 
Algorithm [11] are considered to be the best and most 
effective factoring algorithms on very large numbers [5], [12]. 

The RSA algorithm can be divided into three phases: 
random key generation (public key and private key), 
encryption, and decryption phases. The random key 
generation and decryption phases need more resources and 
time compared to the encryption phase. These phenomena are 
very critical in terms of limited or constraint systems related 
to speed computational, memory, and power supply, such as 
in a single-board computer (SBC) [13]–[16]. Some SBC 
samples with limited resources are implemented as a simple 
sensor with minicomputer-instrument for system monitoring 
in a remote territory, such as in smart grid line monitoring [17], 
[18], [19], weather monitoring [20], [21], wireless body area 
network [22]–[25], smart city [26], internet of things [27] and 
radiation monitoring [28]–[30]. Security measurement should 
be conducted in the transmission of monitoring data by 
considering the site’s resources limitation and implementing 
suitable cryptography techniques. Especially in RSA 
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implementation, the multi-prime numbers technique can 
generate keys faster than only uses two prime numbers, like 
in the standard RSA algorithm [31]–[33]. On the other side, 
the Chinese Remainder Theorem (CRT) can be implemented 
to increase the acceleration of the decryption process [1], [22], 
and [34]. 

Many studies have been done to improve the performance 
of the RSA. These studies mainly focus on improving speed 
execution and security level, especially from the factorization 
attack. Some modification implemented methods to achieve 
speed improvement by modifying repetitive modular 
multiplication and modular exponentiation for suitable 
modern hardware [35]. Another applied two different keys 
pairs in brute force attack and probability bit different keys 
pairs in brute force attack. Other researches improved 
probability bit n RSA-PAKE protocol, two different size keys, 
multiple public keys, and multi-prime [5]. 

In speed execution issues of RSA algorithm, the 
researchers tend to focus on increasing the key generation and 
decryption process speed. A combination of multi-prime 
numbers and the CRT methods are used for achieving the 
goals [31]. The modified RSA algorithms usually use more 
than two prime numbers than standard RSA that uses two 
prime numbers [36]. On the other side, the CRT method is 
used to shorten the decryption exponent bit size by hiding 
incompatible systems to have a better speed in decryption 
processing [37]. 

Other studies have generated some set of public and its 
corresponded private keys from two prime numbers [38] and 
[39]. In the transmission process, the public key is disguised 
or blinded by another number to improve confidentiality. The 
mathematical operation, with the same modulo in the system, 
generates vulnerability from modulus attacks. Other modified 
RSA by adding two random numbers and uses two different 
modulo have been proposed [40]. Implementation of small 
private keys size is the security vulnerability hole from the 
Wiener attack [35].  

Dual RSA with two pairs of public and private keys to 
improving the standard RSA's security has been performed 
[41], [42]. The proposed dual RSA also implemented CRT to 
speed up the decryption process [43]. RSA modifications by 
utilization of multi public (w1, w2, w3, …, wk,, n) and private 
(s1, s2, s3, …, sk, n) key pairs based on two prime numbers (p, 
and q), also has been observed [44]. Each key pair is used for 
each correlated segment of big matrices, corresponding to the 
matrices of images. It is operated as big plain matrices to 
produce cipher matrices. This method is suitable for 
encrypting images or video files. 

Additionally, some studies have modified RSA algorithm 
by using three prime numbers (p, q, and r) [45], [46], and [47]. 
The simulation result in [45] proves that the key generation 
was faster compared to standard RSA and it enhances security 
by two levels in a modified RSA algorithm. Three Mersenne 
prime numbers to construct a new RSA cryptosystem, which 
provides more efficiency and reliability over the network, 
have also been observed [46]. The Zaid and Hassan [47] 
results indicate that the average speed improvement is about 
80% in a key generation process, more or less 96% in the 
decryption process, and only 4% in the encryption process. 

This is reached by a combination of multi primes and CRT 
methods. 

An asymmetric Key-based Cryptographic Algorithm using 
Four Prime Numbers (ACAFP) to secure message 
communication has been proposed [48]. Four prime numbers 
(w, x, y, and z) are not easily disintegrated and increased the 
networks' effectiveness. The proposed scheme is much 
advanced in terms of memory consumption and 
computational speed. Dual Modulus RSA, based on four 
prime numbers and Jordan-Totient function, has been 
developed [42]. However, both papers do not utilize the CRT 
in the decryption process.  

The hybrid RSA method was also proposed based on four 
prime numbers  [49], [49]. The public and private keys are 
generated by implementing a modification to Euler’s totient 
component. In the encryption and decryption process, the 
modulus is hidden by some random number related to the real 
modulus. The encryption and decryption processes are faster 
than the standard RSA, but processing for key generation is 
slower [50].  

Modified RSA by four [51] and by five [52] prime numbers 
combined with the CRT method has been observed to 
enhancement the speed of the decryption mechanism. More 
generally, RSA modification based on multi-prime numbers 
by secretly keys sharing has been observed [12], [53]. Its 
combination with CRT also has been analyzed [31]. Two 
secret keys are used and combined in the calculation to 
improve complexity in the encryption and decryption 
mechanism. Secure secret keys distribution is needed 
seriously in this system. 

Based on the above discussions, implementing the RSA 
algorithm in an SBC environment with limited computational 
resources has not been studied deeply. Multi-prime numbers 
combined with the CRT method will be very suitable and 
useful to implement in this condition. Therefore, this research 
proposes a method for improving the RSA algorithm 
implemented in a more secure SBC. The improvement is 
made by implementing multi-primes and the CRT based on a 
double encryption/decryption mechanism. In our case, the 
SBC will be installed in the Radiation Data Monitoring 
System (RDMS) device used to monitor the level of radiation 
in its surrounding area [28]. The function of SBC is to 
increase the security of the RDMS data, especially for 
authenticating the entity of new RDMS, secret key 
distribution, and encrypting the monitoring data that is sent 
from RDMS device to the server. 

II. MATERIALS AND METHOD 

This section discusses in detail the proposed EPNR method, 
which is the modified version of the Dual RSA algorithm. The 
motivation of EPNR development is that it will run on the 
hardware or system with limited resources, such as the SBC. 
RSA Cryptosystem implementation in a long key that is 
longer than 2048 bits [5] to reach minimal security 
requirements hugely influences SBC performance. Based on 
the two main problems above, we conducted research method 
in Figure to develop an EPNR algorithm model.  
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Fig. 1 Research method 

 
The method includes problem identification, literature 

studies, proposed EPNR model, EPNR implementation in 
Python programming, performance model testing and 
analysis, followed by concluding and reporting. Fig.2 shows 

the main diagram of an EPNR algorithm. Multi primes and 
CRT are combined as the EPNR algorithm for more secure 
SBC implementation is proposed in this to reach the goals. 

 

  
Fig. 2 The main diagram of an EPNR algorithm 

 
Based on the process as shown in Fig. 2, Bob generates a 

public and private key (E, D) based on two strong prime 
numbers (a, and b) as standard RSA in the first time.  Bob also 
computes the private key’s exponents (Da, and Db) and their 
inverses (aInv,  and bInv). The public key components (E, N) 
are sent to Alice. Alice generates a public and private key 
based on eight strong prime numbers (p, q, r, s, t, u, v, and w). 

Alice also calculates each the private key’s exponents (dp, dq, 

dr, ds, dt, du, dv, and dw) and their inverses (pInv, qInv, rInv, 

sInv, tInv, uInv, vInv, and wInv). 
Alice uses her private exponents and Bob’s public key to 

encrypt a plain text (P) and send Bob's result (C). After 
receiving the ciphertext, Bob uses his private key (D, N) and 
Alice’s public key (e, n) in the decryption processing to get 
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the plain text.  The method also implements the CRT method 
with eight private key exponents on Alice’s side and two 
private key exponents on Bob’s side. By the double 
mechanism, the random key generation and encryption based 
on EPNR method in Alice’s side will be faster. It also can 
guaranty authentication and confidentiality message 
transmission from Alice to Bob. The mechanism is very 
suitable for certificates authentication of new RDMS’s entity, 
secret key distribution, and encrypting the monitoring data 
that is sent from RDMS device to the server. More detail 
about the generation of a public key pair, encryption of the 
plain message, and decryption of ciphertext is given in 
Algorithm 1, 2, and 3, respectively. 

In Algorithm 1, the proposed method uses two strong prime 
numbers (a and b) to generate public (PUB) and private keys 
(PRB) in Bob’s side. Bob also computes the private key’s 
exponents (Da, and Db) and their inverses (aInv,  and bInv). 
In another side, Alice uses eight-strong prime numbers (p, q, 

r, s, t, u, v, and w) to generate Alice’s public (PUA) and private 
keys (PRA). In order to generate Alice’s private keys, the 
algorithm computes eight private key exponents (dp, dq, dr, ds, 

dt, du, dv, and dw ) and their inverses (pInv, qInv, rInv, sInv, 
tInv,uInv, vInv, and wInv). During the double encryption 
(Algorithm 2), firstly, a plain message is encrypted using 
Alice’s private key and, secondly, using Bob’s public key to 
produce ciphertext (C). In double decryption processing 
(Algorithm 3), Bob uses his private key in the first decryption. 
The final message has resulted from the second decryption 
with Alice’s public key. 

The CRT method is used for breaking a large integer of 
each private key into smaller exponent to simplify 
exponentiation computation both in encryption and 
decryption processing. By a double encryption/decryption 
mechanism, there are two layers of security. The first or outer 
layer of security is an encryption/decryption mechanism using 
Bob’s public and private keys. The second or inner security 
layer is an encryption/decryption mechanism using Alice’s 
public and private keys. These mechanisms are secure defense 
in depth implementation in our model. 

 
Algorithm 1: Key generation  

Bob’s side: 
1. Generate random prime numbers: a1, and b1. 
2. Compute and find strong prime numbers: 

a = 2a1+1, and b = 2b1+1. 
3. Compute N as modulus a system: N = a*b. 
4. Compute the totient of N: ɸ(N) = (a-1)*(b-1). 
5. Choose integer E as a public key, where 1 < E < ɸ(N) 

(randomly chosen from five digits of palindrom prime 
number set). 

6. Find D as a private key, where E*D ≡ 1 mod ɸ(N). 
7. Calculate a private key exponent:  

Da = D mod (a-1), and Db = D mod (b-1). 
8. Calculate two private key exponents invers:  

aInv = a-1 mod b, and bInv = b-1 mod a. 
9. Bob’s public key: PUB = {E, N}. 
10. Bob’s private key: PRB = {Da, Db, aInv, bInv, and N}  
Alice’s side: 
1. Generate random prime numbers:  

p1, q1, r1, s1, t1, u1, v1, and w1. 
2. Compute and find strong prime numbers:  

p = 2p1+1, q =2q1+1, r = 2r1+1, s = 2s1+1, t = 2t1+1, u = 
2u1+1, v = 2v1+1, and w = 2w1+1. 

3. Calculate n as modulus a system: n = p*q*r*s*t*u*v*w. 
4. Calculate the totient of n:  

ɸ(n) = (p-1)*(q-1)*(r-1)*(s-1)*(t-1)*(u-1)*(v-1)*(w-1). 
5. Choose integer e as a public key, where 1 < e < φ(n) (fixed 

setting to 65537). 
6. Find integer d as a private key, where e*d ≡ 1 mod ɸ(n). 
7. Compute eight private key exponents: 

dp = d mod (p-1); dq = d mod (q-1); dr = d mod (r-1);  

ds = d mod (s-1); dt = d mod (t-1); du = d mod (u-1);  

dv = d mod (v-1); dw = d mod (w-1). 

8. Compute eight private key exponent invers: 
pInv = p-1 mod (q*r*s*t*u*v*w);  

qInv = q-1 mod (p*r*s*t*u*v*w);  

rInv = r-1 mod (p*q*s*t*u*v*w);  

sInv = s-1 mod (p*q*r*t*u*v*w);  

tInv = t-1 mod (p*q*r*s*u*v*w);  

uInv = u-1 mod (p*q*r*s*t*v*w);  

vInv = v-1 mod (p*q*r*s*t*u*w);  

wInv = w-1 mod (p*q*r*s*t*u*v). 
9. Alice’s public key: PUA = {e, n}. 
10. Alice’s private keys: PRA = {dp, dq, dr, ds, dt, du, dv, dw, 

pInv, qInv, rInv, sInv, tInv, uInv, vInv, wInv, n}. 
 

Algorithm 2: Encryption of plain text 

The encryption applies double encryption mechanism.  
1. In first encryption steps, Alice’s eight private key exponents 

and the invers modulation are used to compute separated 
message by implementing CRT method as: 

m1A = (Mdp mod p)*(q*r*s*t*u*v*w)*(pInv);        

m5A = (Mdt mod t )*(p*q*r*s*u*v*w)*(tInv); 

m2A = (Mdq mod q )*(p*r*s*t*u*v*w)*(qInv);       

m6A = (Mdu mod u )*(p*q*r*s*t*v*w)*(uInv); 

m3A = (Mdr mod r )*(p*q*s*t*u*v*w)*(rInv);        

m7A = (Mdv mod v )*(p*q*r*s*t*u*w)*(vInv); 

m4A = (Mds mod s )*(p*q*r*t*u*v*w)*(sInv);        

m8A = (Mdw mod w )*(p*q*r*s*t*u*v)*(wInv). 

2. Based on the result of above separated message, compute first 
ciphertext (C1) as: 

C1 = (m1A+m2A+m3A+m4A+m5A+m6A+m7A+m8A) mod n 

3. In second encryption step,  Bob’s public key exponents (E, N) 
are used to compute a final ciphertext (C) as:  

C = C1
E mod N 

Algorithm 3: Decryption of ciphertext 

1. In first decryption steps, Bob’s two private key exponents and 
the invers modulation are used to compute separated message 
by implementing CRT method as: 
m1B = (CDa mod a)*(b)*(aInv) 

m2B = (CDb mod b )*(a)*(bInv 

2. Based on the result of above separated message, compute first 
ciphertext (C1) as: 
C1 = (m1B+m2B) mod N 

3. In second decryption step, Alice’s public key exponents (e, n) 
are used to compute an original plaint text (M) as: 
M = C1

e mod n 

 
In order to evaluate the performance of the EPNR method, 

we compare it to the standard RSA and a modified RSA with 
four prime numbers (the ACAFP).  We implement these three 
methods in Python 3.8 and run them in a Raspberry Pi 4 
Model B. The Raspberry’s specifications are Cortex-A72 
processor, 1.2GHz Quad-Core ARM Cortex-A53 (64Bit) 
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802.11 b/g/n, 4.00 GB LPDDR4 memory, and Raspbian 
Operating System.  

We performed two sets of experiments. The first set of 
experiments is to compare the running time of the three 
methods on random key generation, encryption, and 
decryption steps. In these experiments, we varied the size of 
the key (in bits), that is, 800, 1024, 1600, 2048, 3200, 4096, 
5000, 6000, 7000, and 8192 bits. The second set of 
experiments is to compare the robustness of the three methods 
from statistical and factorization attack.  We use Shannon 
Entropy values, and the modified Fermat factorization 
algorithm to analyze the robustness of the three methods from 
these two attacks. 

III. RESULTS AND DISCUSSION 

This section presents and discusses the computational 
(running time) and security performance of our proposed 
EPNR method. 

A. Running Time Comparison 

Computational performances of the proposed method, 
which includes running time of random key generation, 
encryption, and decryption processes, are discussed here. 
Based on the duration of a key pair generation process for all 
of its bits size, respectively, the processing time is shown in 
Fig. 3 and Fig. 4. It can be compared more rigid, increasing 
speed up on the process based on the utilization of multi-
prime numbers for the same key size. Generally, it can be seen 
that for increasing the longer size of keys or system modulus 
(n), the time processing to get the RSA key pair will also 
increase exponentially for all of the methods. 
 

 
Fig. 3  The running time comparison of the random key generation 

In the same size of keys, our proposed method is the fastest 
in key generation processing. A smaller running time means 
a faster process. It is caused by generating a shorter bit prime 
number when the multi-prime method was implemented. For 
example, for generating 8192 bits, two of 4096 bits are needed 
in standard RSA, and four of 2048 bits prime numbers are 
needed in the ACAFP method. 

For the same operation, our proposed EPNR only needs to 
generate eight of 1024 bits prime numbers. Actually, generate 
eight of 1024 bits prime numbers is faster than generate two 
of 4096 bits or four of 2048 bits prime numbers. These 
conditions correlate closely to the primality check mechanism 
by executing such an algorithm as Miller-Rabin. Primality 

checking is very dependent on bits long. It indicates that the 
EPNR is the best approach. 

 

 
Fig. 4 The speed comparison of random key generation 

 
Fig. 4 shows the speed of random key generation of the 

three methods. The speed information can indicate an 
optimum of the key size in their generation process. The speed  � (����/�) is formulated as: 

   � = 

�   (1) 

where b is the size of the key (bits), and t is the time of key 
generation (second). The speed performances of random keys 
generation of the proposed method are compared to standard 
RSA and the ACAFP. It can be known that by increasing key 
size, the speed of key generation for standard RSA always 
decreases exponentially. This condition is hugely different 
compared to EPNR that from 1024 to 2048 bits of key size 
relatively little bit the same performance. For EPNR, from 
3200 to 8192 bits of key, the speed decreases exponentially. 
It can be concluded that in the key generation of prime 
numbers, the EPNR is optimum in range 1024 to 2048 bits of 
key size. It is a secure range of RSA algorithm. However, so 
that security is always guaranteed we recommend using a key 
length of more than 2048 for both Alice and Bob side.  

In all conditions of key size, the EPNR method’s speed is 
always the fastest compared to ACAFP and standard RSA. By 
increasing the length of key bits, the speed decreases, but the 
speed ratio increase exponentially. Our proposed EPNR 
method has the highest speed ratio compared to others (in the 
average 21.78 compared to standard RSA and 5.76 compared 
to the ACAFP). It shows that eight multi-prime numbers can 
increase the key generation process significantly. 

Alice’s public key is set to a fixed public key 65537 for all 
experiments. The 65537 number is chosen based on reasoning 
recommendations for achieving a minimum security level, 
and it is the most common choice number [1]. In another side, 
Bob’s public key is randomly chosen from five digits 
palindrome prime number set to improve complexity. An ID 
Code of the Radiation Data Monitoring System (example 
SARA01SRPAGS711S21087) was used as plain text in the 
experiments. The ID Code should convert into an integer 
number before being encrypted. The plain text is encrypted 
firstly using Alice’s private key and then secondly using 
Bob’s public key. Fig. 5 shows the duration of each 
encryption processing. 
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Fig. 5  Running time comparison of the encryption process 

 
Fig. 5 describes that all durations of encryption 

exponentially increase by increasing of key size. The graph 
trendlines are relatively identic with the graph trendlines of 
key generation. It is caused by implementation of a double 
encryption mechanism. First encryption using Alice’s private 
key needs more extra-time compared to the second encryption 
using Bob’s public key. It can be known that the Alice’s 
private key always extra bigger than all possible Bob’s public 
key. The message will only be useful for the receiver if he/she 
decrypt the ciphertext into original plain text. Besides the 
accuracy of the message, the decryption mechanism itself is 
very important. Fig. 6 describes the complete time duration of 
the decryption processing that conducted by Bob. In all RSA 
systems, the decryption process always needs extra time. This 
phenomenon is different in a double RSA scheme. In a double 
RSA scheme, there are two pairs of random keys (one random 
key pair from the sender, and another from the receiver). Both 
in encryption and decryption process, there are two identic 
exponentiation calculations but in opposite order. Firstly, 
exponentiation calculation with a public key, and the second 
is exponentiation with a private key. This fact can be observed 
by comparing graph in Fig. 5 and Fig. 6. 

Both in encryption and decryption processing, the CRT 
method is the best approach to solve how to speed up the 
exponentiation calculation process that uses the private key 
components. Previous research on improving the decryption 
processing in RSA only divides private key into two or four 
exponents. This proposed method uses eight exponents of 
private keys for implementing the CRT method in Alice’s side 
and two exponents in Bob’s side. 

 

 
Fig. 6  Running time comparison of the decryption process 

 
In encryption and decryption for all conditions of key size, 

the EPNR method’s duration time of process is always the 
smallest compared to ACAFP and standard RSA. By 
increasing the length of key bits, both the duration time and 

duration time ratio increases exponentially. Our proposed 
EPNR method has the highest speed ratio compared to others 
(in the average 9.03 compared to standard RSA and 6.47 
compared to the ACAFP). It shows that eight multi-prime 
numbers can increase the encryption and decryption process 
significantly. 

Hinek formula has provided the iteration or bit operation 
estimation for decryption processing related to multi-prime 

numbers implementation, that: ��
������� = �
��� (�����)� , 

when r is the number of primes in the n modulo. It can be 
concluded that for more number of primes used in the 
modulus, the fewer iterations required for decryption 
computation [31]. Related to the maximum speed up ratio on 
decryption process (�), Joseph in [54] has estimated by � =�
� �. �� formula, where m is the number of primes in the n 

modulo. In comparison, uses 2, 4, 8, 16, and 32 prime 
numbers, speed up ratio will be 4, 16, 64, 256, and 1024. In 
the general formula, it presented as � =  2�, with k = 2, 4, 6, 
8, and 10. In the context of double RSA mechanism, the two 
above formulas still work related to modular exponentiation 
calculation with a private key component. 

The experiment also describes that our proposed method 
by using eight exponents to implement the CRT method in 
Alice’s side resulted the fastest speed on random key 
generation and encryption processes. It is proofing that our 
proposed method can improve the speed of the process in SBC 
faster and better without having to override the security aspect 
by implementing a double encryption/decryption mechanism. 

B. Security Comparison 

The security performances of the proposed method, that is, 
a randomized level of ciphertext and its attack resistances, are 
discussed here. Bit’s randomization level of ciphertext 
represented by Shannon Entropy value H(x). The ciphertext 
with a higher Shannon Entropy value will be more statistically 
difficult to decompose by an attacker. The value was 

calculated in reference to previous studies [55]–[58]: 

  (!) = − ∑ $(!�)����$(!�)%�&'  (2) 

where p(xi) is a probability of such character appearing in 

all sets of total characters observed (n). Table I describes the 
determination of Shannon Entropy values based on multi-
prime numbers variation in integer and ASCII format of 
ciphertext. 

TABLE I 
THE SHANNON ENTROPY VALUE OF CIPHERTEXT (BITS) 

Size of 

keys 

RSA 

(2 primes) 

ACAFP 

(4 primes) 

EPNR 

(8 primes) 
(bits) Integer ASCII Integer ASCII Integer ASCII 

800 3.30 5.4 3.29 5.4 3.29 5.4 
1024 3.30 5.59 3.30 5.6 3.30 5.61 
1600 3.31 5.96 3.31 5.95 3.31 5.96 
 2048 3.31 6.12 3.31 6.11 3.31 6.1 
3200 3.32 6.31 3.32 6.31 3.31 6.32 
 4096 3.32 6.4 3.32 6.39 3.32 6.39 
 5000 3.32 6.44 3.32 6.44 3.32 6.44 
6000 3.32 6.48 3.32 6.47 3.32 6.47 
7000 3.32 6.51 3.32 6.5 3.32 6.5 
8192 3.32 6.53 3.32 6.52 3.32 6.52 
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Based on the data in Table I, there are not significantly 
different Shannon Entropy values for ciphertext in integer 
format. It is mean that there is not significant influencing of 
multi-prime numbers used with the values into Shannon 
Entropy values of the ciphertext. 

In the other fact that the average value is low, it is caused 
by the character representation of ciphertext in integer format 
only using decimal integer number from 0 to 9. The values 
can be increased by using more complex character 
representation, likes ASCII codes. This method can increase 
an average of the Shannon Entropy values up to 1.86 times. 
By increasing character complexity, the resistant of related 
ciphertexts from statistical attack also will increase. 

The security of the RSA depends on computationally 
infeasible for an intruder to factorize large integer (n) into its 
prime number components. This research uses eight 
components (p, q, r, s, t, u, v, and w) in Alice’s side that the 
strength of a huge prime number relied on. It is regarded to be 
hard to break the vast number into eight prime factors. The 
above EPNR scheme is still added with standard RSA as the 
second layer of security. It is the key point of security from 
our proposed method. 

Regarding on private key using in standard RSA algorithm,   
[35] and [59]  recommend to use a big integer of a private key 

(( ≥ '
� �'/*) for avoiding Wiener attack. Another research, 

give suggestions to use ( ≥ +�,�-'.,/
�  [60] and ( ≥

 +�(2√2 + 8/3)45.67/√8 [16], where t is chosen parameter. 

Along with n as a modulus or key size increasing, d will also 
increase into a very big integer. Especially in a double RSA 
scheme, [61] recommend a private key (d > n0.368) for 
avoiding factorization attack based on lattice basis reduction 
algorithm. In our proposed model execution, the above 
minimum of private key size requirements always be fulfilled. 

In principle, existing factorization algorithms are 
formulated based on the assumption that RSA’s modulus 
generates based on two prime numbers. By the above 
assumption, our proposed method uses more than 2048 bits 
and is based on eight prime numbers with double 
encryption/decryption mechanism is secure from all existing 
factorization attacks.  

The most efficient of factorization attack to standard RSA 
algorithm is the General Number Field Sieve (GNFS) method 
[10], [16], [62]–[65]. Granger et al. [66] provide an in-depth 
report in 2009 on the factorization of the 768-bit number 
RSA-768 by the number field sieve (NSF) factoring method 
and provide some implications for the RSA [8], [65]. The 
largest such semi-prime yet factored was RSA-250, an 829-
bit number with 250 decimal digits, in February 2020. The 
total computation time was roughly 2700 core-years of 
computing using Intel Xeon Gold 6130 at 2.1 GHz [67], [66].  
This newest fact further reinforces the assumption that 1024 
bit will be factored and will not be secured enough to stand 
against the factorization attacks [5]. This is the main reason 
why our EPNR method is kept back up with standard RSA as 
a double encryption/decryption mechanism. To more 
confident on avoiding GNFS attack, the scheme must use a 
standard RSA with a key size greater than 2048 bits in Bob’s 
side.  

Our proposed EPNR method implements a double 
encryption/decryption mechanism. In the encryption 
processing, the first encryption conducted using modified 
RSA based on eight multi-prime numbers. In the context of 
algorithm’s resistance to GNFS attack, implementation of 
eight multi-prime numbers will reduce its resistance to one 
eighth compared to standard RSA. The standard RSA is still 
applied to the second encryption to overcome the previous 
vulnerability. Thus, if the resistance to factorization attack in 
dual standard RSA scheme is doubled, then our proposed 
EPNR method only increase by one eighth. By this 
mechanism, the random key generation and encryption in 
Alice’s side (incidentally on SBC environment) can be 
accelerated, ensuring security from GNFS factorization 
attacks. 

On the other hand, using eight multi-prime numbers in 
Alice's side’s second security layer makes the difference each 
prime number is smaller. In case an attacker can break the first 
layer of security (standard RSA scheme), the system becomes 
vulnerable to Fermat factorization attack [68], and [69]. The 
Fermat Factorization algorithm is modified for measuring our 
model’s security resistance from the attack. It factorized a 
modulus number of n into eight prime components in our 
proposed research. Fig. 7 describes complexity steps to 
factorize n by modified Fermat Factorization. 
 

 
Fig. 7  Modified Fermat Factorization algorithm steps to factorize n 

 
Based on an equation to determine the modulus n = pq in 

standard RSA system, where p and q assumed as an odd 
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number with small different each other, the above equation is  
approached with difference equation of two squares as [70], 
[62], and [68]: 

 � = �� − �� (3) 

By repositioning, the new equation formulated as �� −� = �� and then: 

 (�5 + 9)� − � = �� (4) 

With initial approaching is started from �5 = √�, brute 
force iterations are conducted by starting from k = 0, 1, 2, 

3, … and so on until getting such a perfect squares number. In 
that condition, it gets: 

 $ = � + � (5a) 

 : = � − � (5b) 

To get eight primes’ factors as described in Fig. 6, steps in 
Equation (4), (5a), and (5b) should be repeated to factorize p 
into p1 and p2, q into q1 and q2, p1 into p11 and p12, p2 into p21 
and p22, q1 into q11 and q12, and q2 into q21 and q22 completely 
and correctly. Prime number p11, p12, p21, p22, q11, q12, q21, and 
q22 equivalent to getting prime numbers  p, q, r, s, t, u, v, and 
w in our EPNR scheme.  The minimum number of all 
iterations steps (I) can be approached by formulation: 

; = 0.994523 @A B-C
�D�CE� + ABF-CF

�D�CFE� + AB/-C/
�D�C/E� +

GBFF-CFF
�√CFF H� + GBF/-CF/

�√CF/ H� + GB/F-C/F
�√C/F H� + GB//-C//

�√C// H�I (6) 

The constant number 0.994523 granted empirically from 
experiment. It is a correction number to approach more 
precise the minimum number of all iteration’s steps. 

By Equation (6), the total estimated time for factoring n can 
be determined based on the speed of computational iteration. 
It analyzed that step of factorization intensely depend on 
different of closer prime numbers. Based on mathematical 
operation for the same size of short keys, it easy to predict that 
by implementing eight prime numbers, each closer number 
will be very closed and has smaller differences. It causes the 
factorization of modulus into eight prime numbers faster than 
into two prime numbers. It is very contradictory to improve 
the security level of the modified algorithm.  

By theory and experiment, the difference from each closer 
prime number should be added to be more significant. It was 
conducted by implementing a general small random number 
(non-prime integer) to substitute one of a prime number. It 
will also be advantageous and efficient if different bits size of 
eight prime numbers are implemented. A simple example is 
the implementation of p in 20 bits, q, r, s, t, u in 10 bits, then 
v and w with 5 bits for 80 bits key size. The above strategy 
should be implemented based on strong prime numbers as 
stated in Algorithm 1. Equation (6) can be implemented to 
estimate iteration operation of factorization for the long size 
of keys, such as 800 bits, 1024 bits, 1600 bits, 2048 bits, 3200 
bits, 4096 bits, 5000 bits, 6000 bits, 7000 bits, and 8192 bits. 
Table II shows the factorization iteration estimations. 

 
 
 
 

TABLE II 
ESTIMATION OF FACTORIZATION ITERATION FOR LONG KEY SIZE  

Size of 

keys 

(bits) 

RSA 

(2 primes) 

ACAFP 

(4 primes) 

EPNR 

(8 primes) 

800 1.06832E+119 4.97808E+118 1.84691E+119 
1024 3.44077E+150 5.01439E+152 7.99117E+152 
1600 6.82261E+238 6.98096E+239 1.13168E+240 
2048 1.88574E+306 8.36656E+306 7.50599E+374 
3200 8.07506E+479 1.6116E+480 3.80980E+562 
4096 6.47168E+613 3.30105E+614 1.33508E+752 
5000 3.64525E+749 1.31847E+751 1.16201E+785 
6000 7.40950E+900 1.16131E+901 2.09158E+1005 
7000 6.53459E+1050 2.17134E+1051 1.06063E+1161 

8192 1.07391E+1231 1.19817E+1232 Overflow 

Error 

 
The Fermat factorization takes high computation cost. It 

also consumes high computation time to find all prime factors 
correctly. By double encryption/decryption mechanism using 
key size longer than 2048 bits and implementing the secure 
protocol, the EPNR method is very secure from potential 
factorization attacks. 

IV. CONCLUSION 

In this paper, we have proposed the EPNR method that 
modifies the dual RSA algorithm by using eight prime 
numbers combined with the CRT to increase the speed of 
random key generation and decryption processes. There are 
two layers of security based on a double 
encryption/decryption mechanism. The average speed-up 
ratio of random key generation can reach 21.78 compared to 
standard RSA and 5.76 compared to ACAFP. In the 
decryption process, the average speed-up ratio can reach 9.03 
compared to the standard RSA and 6.47 compared to the 
ACAFP. In terms of data security, the modulus of the EPNR 
algorithm is more difficult to be factorized. If the first layer of 
security is broken, more effort and computational resources 
are needed to factorize a large integer composite number into 
eight compared to two or four prime number factors in 
standard RSA and the ACAFP.  

By implementing a modified Fermat Factorization 
algorithm, it needed more extra times and iterations to attack 
the system for factoring n until finding each eight prime 
numbers correctly. Security analysis by implementing another 
factorization attack will be useful to improve the security 
performances of our proposed algorithm. The proposed 
method is very suitable for enhancing security and 
implementing in an environment with limited resources, like 
SBC. A more comprehensive application of the double EPNR 
method as a communication protocol for mutual 
authentication of identity and distribution of secret keys to 
support the Radiation Data Monitoring System in Nuclear 
Installation or Radiation Facility will be studied in the next 
research. 
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