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Abstract—Prediction of time series is one of the topics that receive significant interest because of its importance in various fields,
especially when studying natural phenomena. In this research, the transformation function model was reconciled where it aims to use
the genetic algorithm to estimate the parameters of the final transformation function model. Also, it was used to predict future values
for the time series of monthly averages of temperatures in Nineveh Governorate for the period (1985-2000) as an output series and wind
speed as an input series. In Nineveh Governorate, they are not stable in average and variance; when taking the square root of the data
and taking the first seasonal difference as well as the first normal difference, stability was achieved, and then showed a model of the
transformation function as shown in the equation (17). This research showed that the model's final parameters were estimated using
the genetic algorithm based on the standard error squares average. The best estimate was chosen for the parameters that correspond
to the lowest value of the average error squares, and by using this model, monthly temperature rates were predicted. Predictive values
were shown to be consistent with the original values of the series. By depending on the transformation function model shown in the
above equation, monthly averages of the temperature were predicted for the next four months, and the prediction results were consistent
with the original time series values, which indicates the efficiency of the model.
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genetic algorithm and then predict the appropriate model and
I. INTRODUCTION apply that to real data, which represents monthly averages of
temperatures in Nineveh Governorate for the period (1985-
2000) as a series of outputs and the wind speed measured
(m/hour) as a series inputs.

The importance of time series, many works can be seen in
the literature on these topics, especially those that depend on
statistical models, and there are many possible methods for
describing temporal behavior. The Box Jenkins method is
attractive in time series analysis as it provides us with a

comprehensive statistical modeling methodology that covers A. Mathematical Formula of the (TFM) and its Construction
a wide variety of patterns from stability to non-stability and

II. MATERIALS AND METHOD

Steps
seasonality of time series. The prediction for using ARIMA P ] ]
models is based on using a single time series without using Assuming that Z,,U, represent two stable series, these
the information package available in other linked time series. two series are connected by a linear filter [3]:

Moreover, in many prediction situations, other events lead to
a regular impact on the time series that we want to predict 2 =V(QU. + N, (1)
(dependent variables), so we need to use multivariate Whereas: V({) = vy + v, + v,{+.... The conversion
prediction models, and here we must build a prediction model

. . . function, the coefficients v,,V,,V,,.... represent the impulse
that includes more than one-time series and shows the 02 71> 72> p P

dynamic characteristics of the system. Such a model is called response weights, (¢) the back displacement factor, and N,

a transformation function model(TFM) [1], [2]. represents white noise and follows the ARMA pattern [4].
The research aims to estimate the parameters of the best We assumed in the previous equations that the change in U

model for the transformation function models using the leads to an immediate change in Z, as a delay time in the
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system's response to changes is likely to occur. It has been
assumed (k) that the number of periods that elapse before U
starts affecting the dependent variable in this case Equ.1 can
be rewritten as follows:

@s({) 19(()

L= Vet o ® @
w(() = @y — Wy (—...—ws(°
YD) =1-y{—...— %"
9() =1-9,{—... =0, (™
o) =1-¢{—...—¢, (P

There are three stages to building a transform function
model through the Box Jenkins algorithm. These stages can
be summarized as follows:

B. Diagnosing the TFM

The first step is to determine the chain's stability or not and
whether there are seasonal changes or not. After confirming
the stability of the chain, the weights of the TFM are estimated
depending on the cross-correlation function; pre-bleaching of
the input and output chains is made by assuming that both
series are they follow the ARMA model and can be expressed
as:

(P(()Ut = ﬁ(()gt =& = g((g U, 3)
P()Z, =93, = 9, =297, )

9(0)

After obtaining the two residual chains &, and O, two
interviews for each of the input and output series,
respectively, the two ovarian series' cross-linking is
calculated according to the following formula [5].

Pea (h) =

cov(g0)

Jvar(g)/var(9)

Where p,_,(h) the cross-correlation function &, and O,

)

the delay Lagging represent h. Pulse response weights are
found according to the following formula [6].

__4var(d)
v = Jvar(g)

C. Determination of the ARMA model for white noise N;

Before identifying the Ny model, the interference chain Nt's
estimated values must first be calculated using the following
equation and then estimating the ARMA model of the white
noise chain [7].

Pea (h) (6)

Ny =Z, - V(U, (7

D. Estimation and Validation of Model Diagnostic Accuracy

After the diagnostic stage in which the function of the TFM
rank (r, s, k) is determined and the chain of disturbance of the
ARMA model, the parameters of the TFM described in
equation (2) are evaluated as follows:

E. Initial Values for Parameters

The following relationships determine initial values for
parameters for the TFM:
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v, =0 A<k

V=YV VoVt AU @, L=k
V=YV VeVt AV — @ L=k + 1
V=YV Vvt v, L >k +s

(8)

F. Final Values of Parameters

The genetic algorithm is used in the final estimation of the
parameters, and tests are performed to determine the
suitability of the model with the final parameters. The
estimator function that achieves the smallest value for the
mean error squared standard is used. The proposed steps for a
genetic algorithm are as follows [8]:

1) Creation of the primary generation: The single
chromosome in this generation represents the parameter
values for the TFM. The true value of the parameter has been
placed in the chromosome gene, meaning that the coding was
real coding [9].

2) Fitness function: The value of the fitness function in
this algorithm represents the value of the standard mean error
squares and at the same time checking the randomness of the
residual chain by using the (Box-Pierce) test according to the
following formula:

¥ =cXiy Rag (O )

Whereas, ¢ = n-r-s-k and*R the values auto-correlation
function of the a. series,{ is almost followed Kay Square

distribution with a degree of freedom (h-ps,-qn) and h
represents the largest studied displacement. And checking the
independence of the bleached input chain with the remaining
residual chain by using the (Box -Pierce) test according to the
following formula:

0 =cXioRea® (10)

Whereas, ¢ =n-1-n *, n * =max (pu, s + k + pn) and py are
the autoregressive order of the input chain, and Q) is almost

followed Kay Square distribution with a degree of freedom (h
+1-r-s) [10].

3) Selection: the process of selecting parents in the
community for mating and producing a new generation, and
the roulette wheel was chosen for the choice of parents.

4) Transit: This process is represented by a change
between the corresponding values of the two sections of the
parents elected to form the new individual, and the transit has
been chosen with two cutting points [11].

5) Mutation: The process of switching between one
individual's values to form individuals that give new solutions
to the next generation that was not previously formed in
previous generations to expand possible solutions. The
mutation process was done using the uniform function [12],
[13]. After the TFM fits into the data, it can be used to predict
the output chain Z; by using the previous date of the output
string Z; and the input string U. The step prediction formula
m can be written as:

= ]/r_l(()ws(()ut+m—k + ¢_1(()19(()at+m (11)

Zt+m



III. RESULTS AND DISCUSSION

In this paragraph of the research, two-variable time series
models were applied using a single-input- single-output TFM
on real data that represents monthly averages of temperatures
in Nineveh Governorate for the period (1985-2000) as a series
of outputs and the wind speed measured (m/hour) As an input
series. The stages of creating the transformation function
model are as follows:

A. Initializing the Data

Trend Analysis Plot for ynew
Linear Trend Model
Yt = 0.0043 - 0.000040xt

10 Variable
—o— Actual
—B— Fits

Accuracy Measures
MAPE 102764
MAD 0225
MSD 0088

1 18 36 54 72 90 108 126 144 162

Output series after stabilization

The first essential step is to know whether the data is stable
or not for the input and output series. We note that the input
and output series are unstable in the mean and variance, and
in order to make them stable, one of the transformations was
used, which is taking the square root of the contrast variance
and the seasonal difference to remove the effect of the season
from this series. The first difference was taken to make it
stable in the mean, as shown in the following Figure 1.

Trend Analysis Plot for y
Linear Trend Model
Yt = 19.31 + 0.0082xt

40 Variable

—o— Actual
—B— Fits
Accuracy Measures
MAPE  67.1388
MAD 8.8659
MSD  98.3679
] | %
10 U

1 19 38 &5 76 95 114 133 152 171 190
Index

The original output series

Fig.1 Illustrates drawing the general direction of the input and output series after their stability is proven
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Fig.2 Shows the graph of the ACF and the PACF of the input series after after stability is achieved
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Fig. 3 Shows the graph of the ACF and the PACF for a series residue model SARIMA(2,1,1)(2,1,3)12.



B. Purify the Input U, and Z; Output Series

After initializing the input and output chains, they were
bleached by specifying the appropriate model for them to
obtain a series of independent residues by noting the behavior
of the ACF and PACEF, as it was evident from Figure 2 that
the chain follows the SARIMA (2,1,1), (2,1,3)1> model,
having less MSE = 0.0281 Likewise, the residues were
random, as shown in Figure 3, which represents the graph of

both the ACF and PACF for the residues of the appropriate
model and the estimated values of the parameters is ¢; =
0.0989, ¢, = 0.0296, ¢, = —1.215, @, =

—0.634, Y, =0.8635, 6, =—0.237,0, =0.374,0; =
0.699. The general formula for the model is shown in Table
1. To maintain the semantic relationship between inputs and
outputs, the input chain is purified on the output chain. Table
2 shows the error chain values d;.

TABLEI
VALUES & FOR THE INPUT VARIABLE

t g, t g, t &, t &, t g,
1 0.498120 37 -0.393251 73 0.360085 109 -0.141922 145 -0.061399
2 0.884663 38 0.599732 74 0.102317 110 0.141894 146 0.287686
3 0.499046 39 0.029300 75 0.046100 111 0.254833 147 0.175468
4 0.762652 40 0.466817 76 0.387465 112 0.343662 148 0.215171
5 0.204545 41 0.042197 77 -0.183038 113 -0.038347 149 0.134937
6 0.121971 42 0.045467 78 0.031139 114 0.067151 150 -0.027980
7 0.373431 43 0.120327 79 0.177160 115 0.127725 151 -0.040712
8 -0.091480 44 -0.154220 80 -0.253200 116 -0.178096 152 -0.007475
9 -0.214389 45 -0.227104 81 -0.517602 117 -0.199731 153 -0.071996
10 0.229705 46 0.169186 82 0.355857 118 0.113654 154 -0.177266
11 -0.205437 47 -0.155790 &3 0.125481 119 -0.260843 155 -0.218456
12 0.237249 48 0.223675 84 0.271502 120 0.628991 156 0.256291
13 0.142695 49 0.314969 &5 0.193366 121 0.056190 157 0.015234
14 0.682390 50 0.452405 86 0.309239 122 0.508134 158 0.488197
15 0.509071 51 0.284273 87 0.226719 123 0.237392 159 0.251315
16 0.414193 52 0.387645 38 0.211759 124 0.214525 160 0.423183
17 0.003322 53 -0.123891 89 -0.127048 125 0.058693 161 -0.044763
18 -0.094328 54 0.017535 90 -0.052418 126 0.185873 162 0.237306
19 0.044619 55 -0.024953 91 -0.065646 127 -0.036388 163 0.121221
20 -0.476283 56 -0.096343 92 -0.197148 128 -0.043273 164 -0.143632
21 -0.293718 57 -0.299356 93 -0.281486 129 -0.114904 165 -0.278497
22 -0.061859 58 -0.304895 94 -0.027333 130 -0.339746 166 -0.267685
23 0.556640 59 0.061252 95 -0.114836 131 0.272284 167 -0.126395
24 0.501938 60 0.237627 96 0.283466 132 0.215503 168 0.554009
25 -0.010214 61 0.029984 97 -0.086968 133 -0.028421 169 -0.090935
26 0.420960 62 0.511822 98 0.403503 134 0.388946 170 0.241338
27 0.099327 63 0.347506 99 0.351416 135 0.237277 171 0.521145
28 0.132832 64 0.397739 100 0.286403 136 0.214420 172 0.162524
29 -0.007686 65 -0.113384 101 0.109332 137 -0.096411 173 0.051100
30 -0.000648 66 0.125001 102 -0.010700 138 0.133215 174 0.150161
31 0.023728 67 0.099776 103 -0.063911 139 0.220204 175 0.265546
32 -0.245978 68 -0.114875 104 0.137138 140 -0.228046
33 -0.242385 69 -0.295024 105 -0.419668 141 -0.211941
34 -0.190463 70 0.154342 106 0.313446 142 -0.266587
35 0.201226 71 0.057091 107 0.257655 143 -0.025114
36 0.720294 72 0.677589 108 0.164679 144 0.312524
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TABLE II
VALUES 0; FOR THE OUTPUT VARIABLE

t 0, t 0, t 0, t 0, t 0,

1 0.730280 37 0.290682 73 0.000285 109 0.557807 145 0.230120
2 0.433082 38 0.860596 74 0.149706 110 0.285817 146 0.233940
3 -0.043889 39 0.379137 75 0.040776 111 -0.215295 147 0.027786
4 -0.170726 40 0.064188 76 -0.115900 112 0.123452 148 0.060464
5 -0.128316 41 -0.123693 77 -0.016722 113 -0.109031 149 0.208206
6 0.235844 42 0.164503 78 0.073634 114 -0.122539 150 0.081815
7 -0.059740 43 -0.074365 79 0.093053 115 -0.125473 151 0.075898
8 0.252390 44 0.045305 80 0.142980 116 -0.004269 152 0.018955
9 0.243628 45 0.339499 81 0.263764 117 0.010447 153 0.099857
10 -0.577676 46 -0.209397 82 -0.236186 118 -0.267844 154 0.305099
11 -0.078226 47 -0.019219 83 -0.078848 119 -0.186070 155 0.322599
12 0.180604 48 -0.383446 84 -0.083827 120 0.316673 156 0.230366
13 0.880409 49 0.461807 85 0.392315 121 0.672533 157 0.479839
14 -0.061145 50 0.477478 86 0.207052 122 0.093680 158 0.178562
15 -0.219487 51 -0.203971 87 -0.140886 123 -0.319239 159 -0.078081
16 0.183129 52 0.099241 88 -0.135765 124 0.163942 160 0.072717
17 -0.011497 53 0.006581 89 0.032397 125 -0.096345 161 -0.135911
18 0.143098 54 0.186633 90 0.241912 126 0.208447 162 -0.003744
19 -0.130381 55 -0.134265 91 0.065898 127 -0.087050 163 -0.091883
20 0.065921 56 0.062383 92 0.134815 128 -0.092491 164 -0.115100
21 0.041794 57 0.227694 93 0.294854 129 0.018483 165 0.083897
22 -0.308573 58 0.131304 94 -0.309292 130 -0.034840 166 -0.279609
23 0.409612 59 0.185078 95 0.611431 131 0.824940 167 0.316425
24 -0.114376 60 -0.045894 96 0.583009 132 -0.000945 168 -0.213087
25 0.534445 61 0.183816 97 0.385248 133 -0.298536 169 -0.017234
26 0.193388 62 0.352787 98 0.382100 134 -0.141847 170 -0.010528
27 -0.250918 63 -0.055451 99 0.071455 135 -0.088459 171 0.310009
28 0.009602 64 -0.206216 100 -0.064583 136 0.110172 172 0.026968
29 -0.098092 65 0.088286 101 -0.049903 137 0.057679 173 -0.089647
30 0.192695 66 0.080481 102 0.035938 138 0.029269 174 0.149711
31 -0.088369 67 -0.083391 103 -0.184594 139 -0.180354 175 -0.150429
32 -0.044727 68 0.023606 104 0.203628 140 -0.034678

33 0.320005 69 0.273480 105 0.207971 141 0.293588

34 -0.488667 70 -0.026341 106 -0.167881 142 0.022029

35 0.451085 71 0.031127 107 -0.378575 143 0.146070

36 -0.638840 72 -0.782508 108 0.213932 144 -0.273265

C. Cross-Correlation Function (CCF) between Series (&,) 03 Sample Cross Correlatlon Function
and (0,) s

Using equation (5), the cross-correlation values between
the two (&,) and (0, ) series are obtained, and the cross-

D;HT[ I I t |t T

-0.1

correlation values are drawn to determine the system delay
time as well as determine the TFM ranks (s, r). The following

Sample Cross Correlation

Figure 4 shows the CCF graph between the two strings (&, )
and (8, ), and Table 3 shows the values of the CCF between oz2r

them. 03 ‘ ‘ ‘
-20 -15 -10 -5 o] 5 10 15 20
Lag

Fig. 4 Shows the graph of the cross-link function between the series (&) and

(8e)-
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TABLE III

'VALUES OF THE CROSS-CORRELATION FUNCTION BETWEEN SERIES (&) AND (0;)

t psf) t psf) t psf) t Pea t Peo

1 -0.066843 6 -0.211899 11 0.024691 16 -0.107010 21 -0.0898681

2 -0.061267 7 -0.039612 12 0.204591 17 -0.054091

3 0.074771 8 0.024740 13 -0.099650 18 -0.172258

4 -0.096836 9 -0.131466 14 -0.014954 19 -0.060100

5 -0.121444 10 0.204960 15 0.159757 20 0.059681
D. Diagnosis transformation function model (s, r, k) is determined from

Pulse response weights were estimated according to Figure 4, which represents the values of the cross-linking of
equation (6) and as shown in Table 4. The order of the the two series (é‘t)and(at )
TABLE IV
VALUES OF PULSE RESPONSE WEIGHTS

t \4 t \4 t \4 t \4 t \4

1 -0.065799 6 -0.208590 11  0.024305 16 -0.105339 21 -0.0884644

2 -0.060310 7 -0.038993 12 0.201395 17 -0.053246

3 0.073603 8  0.024353 13 -0.098094 18 -0.169567

4 -0.095324 9 -0.129412 14 -0.014720 19 -0.059162

5 -0.119547 10 0.201759 15 0.157262 20 0.058749

We note that the first significant correlation is at the fifth

When substituting the initial values for the pulse response

deficiency, and this means that (k =5) (r =0) ) And (s = 1), weights, we obtain the initial values for the parameters:
and the formula for the conversion function model is as

follows:

Z, = (@y — @;U;_s + N,

N, =27, — ?govi Uiy (13)

(12) To estimate the values of the noise chain N;, we use the

following equation. Table 5 shows the obtained N; noise
string values.

TABLE V
THE NT NOISE VALUES
t Ni t Ni t Ni t Ni t Ni
1 0.763056 37 -0.094591 73 0.19538 109 0.417826 145 0.489481
2 -0.062099 38 0.850668 74 -0.14042 110 -0.261614 146 0.221122
3 -0.428088 39 0.237827 75 0.22102 111 -0.251174 147 -0.271074
4 -0.157123 40 -0.319817 76 0.18995 112 0.335221 148 -0.241050
5 0.103400 41 -0.053534 77 -0.07958 113 -0.255383 149 0.247854
6 0.429821 42 -0.361963 78 -0.01339 114 0.009102 150 -0.171904
7 -0.055868 43 0.120893 79 -0.00926 115 0.031681 151 0.327981
8 0.250855 44 0.184382 80 0.05466 116 -0.193692 152 -0.089340
9 0.048014 45 -0.209755 81 -0.24140 117 0.031935 153 -0.283963
10 -0.824248 46 0.661166 82 -0.16826 118 -0.071617 154 0.533906
11 0.166238 47 -0.875889 &3 0.26200 119 0.617085 155 -0.299097
12 0.200053 48 0.625850 84 0.55319 120 -0.275735 156 0.313290
13 -0.159593 49 0.028878 &5 0.05120 121 0.063467 157 -0.089585
14 -0.552264 50 -0.354432 86 -0.16265 122 -0.180793 158 -0.392367
15 0.216655 51 -0.502067 87 -0.07833 123 0.054661 159 0.069963
16 0.414159 52 0.333475 88 -0.08254 124 0.085043 160 0.051396
17 -0.016515 53 0.189100 89 -0.02219 125 0.079901 161 -0.296747
18 -0.151297 54 0.147590 90 0.28283 126 0.126055 162 0.125920
19 0.125415 55 -0.256705 91 -0.21911 127 -0.048291 163 -0.183757
20 -0.054395 56 0.182004 92 -0.04486 128 -0.089416 164 0.176421
21 -0.346325 57 0.062696 93 0.12106 129 -0.063070 165 0.127835
22 0.706236 58 -0.051081 94 -0.20703 130 0.399834 166 -0.631121
23 0.144551 59 0.160119 95 0.60917 131 0.147935 167 0.296067
24 -0.588176 60 -0.111308 96 0.06119 132 -0.588696 168 -0.251815
25 -0.115997 61 -0.224987 97 -0.44359 133 -0.781612 169 0.051513
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26 0.398595 62 0.021393 98 0.04341 134 0.344638 170 0.153513
27 0.058817 63 0.148946 99 0.09757 135 0.315038 171 0.354127
28 -0.187875 64 -0.197633 100 -0.07346 136 -0.055234 172 -0.209759
29 0.041552 65 0.048949 101 -0.15530 137 0.264939 173 0.016519
30 0.087384 66 0.021662 102 0.17189- 138 -0.247279 174 0.270358
31 -0.016360 67 0.259677 103 -0.02517 139 0.081305 175 -0.093713
32 -0.306604 68 -0.174933 104 0.43258 140 -0.139967
33 0.393227 69 0.124428 105 -0.23151 141 0.458041
34 -0.682945 70 -0.127230 106 0.34167 142 -0.384373
35 0.382304 71 -0.081672 107 -1.10073 143 -0.106694
36 -0.393990 72 -0.459595 108 0.55603 144 0.033809

The ARMA model for the N; series has been determined by

drawing the ACF and the PACF, and it has been found that
the best model is SARMA(2,0,2)(1,0,2):, because it has the
lowest value MSE=0.0367, and the estimated values of the
parameters are (¢, = 0.003, ¢, =0.084,0, =
—0.799,9, = 0.574,9, = 0.391,0, = 0.081,6, = 0.799),
the final model of the TF can be illustrated according to the
formula following:

Zy = (@y — @, U;_s (14)

The genetic algorithm described in 2.3.2 was used by
applying it with the MATLAB program to estimate the
parameters' final values. On repeat (202) the genetic
algorithm was stopped, and the final values of the model were
obtained, and the minimum means squared error MSE =

0.048533

correspondings to the parameters(@w, =
—0.079,w; = 0.06, p; = —0.547,¢, = 0.05,0, =

—0.3,9; =0.103,9, = 0.615,68;, = 0.266,0, = 0.393) and
Table 6 shows the values of The residual a; is calculated using
the following estimated formula:

The Autocorrelations and partial auto- correlations of the
residual are calculated as in Figure 5. These correlations seem
small and fall within the confines of confidence, and
accordingly, it can be said that the residual series has random
fluctuations. And to determine whether the values of auto-
correlations are significant or not, the calculated value of the
(Box-Pierce ) test by using the equation (9) is i = 18.2905
less than the tabular value )(?0.05'13) = 22.362 at the level of
significance 0.05. Thus, the series of residues is considered a
random series, and the calculated value of the (Box-Pierce )
test by using the equation (10) is 2 = 16.5502 less than the
tabular value )((20.05'20) = 31.41 at the level of significance
0.05. This indicates the independence of the bleached input
series with the residual series.

TABLE VI
THE RESIDUAL SERIES VALUES a,

t at t at t at t at t at

1 0.730280 37 0.082353 73 -0.135267 109 0.268636 145 0.221632
2 0.349392 38 0.504460 74 -0.251570 110 0.095976 146 0.153492
3 -0.028568 39 0.440523 75 -0.039013 111 -0.284825 147 0.136826
4 -0.182273 40 0.101945 76 -0.044029 112 0.195920 148 -0.066065
5 -0.123194 41 0.018068 77 0.051174 113 -0.119270 149 0.212630
6 0.258044 42 -0.008914 78 0.066321 114 -0.133547 150 0.065478
7 -0.001306 43 -0.057592 79 0.160816 115 -0.086949 151 0.173628
8 0.357569 44 -0.021854 80 0.060975 116 -0.106703 152 -0.007009
9 0.272757 45 0.128439 81 0.101626 117 -0.109463 153 -0.046691
10 -0.522532 46 0.133826 82 -0.143847 118 -0.159205 154 0.419282
11 -0.007829 47 -0.121008 83 -0.035924 119 0.072003 155 0.254129
12 0.162046 48 -0.196106 84 0.286744 120 0.280925 156 0.150058
13 0.589208 49 0.203657 85 0.165540 121 0.262315 157 0.038919
14 -0.334449 50 0.181664 86 0.094897 122 0.098904- 158 -0.045816
15 -0.118382 51 -0.326278 87 -0.017977 123 0.093649- 159 -0.039831
16 0.198958 52 0.026102 88 -0.141965 124 0.120365 160 0.038738
17 0.035170 53 -0.017131 89 0.057267 125 -0.081312 161 -0.217114
18 0.047488 54 0.180817 90 0.119213 126 0.204648 162 -0.141177
19 -0.094660 55 -0.070901 91 0.070405 127 -0.066261 163 -0.105842
20 0.010063 56 0.095122 92 0.089018 128 -0.042247 164 -0.113858
21 -0.049275 57 0.151202 93 0.150748 129 -0.108989 165 0.036280
22 -0.065319 58 0.169345 94 -0.237290 130 0.197927 166 -0.363065
23 0.421833 59 0.087547 95 0.521480 131 0.548071 167 -0.032661
24 -0.258421 60 0.065289 96 0.452591 132 -0.196943 168 -0.281188
25 0.315252 61 -0.152934 97 0.096438 133 -0.565943 169 -0.046236
26 0.169089 62 0.168510 98 0.066581 134 -0.317898 170 -0.109936
27 -0.170762 63 0.080505 99 0.067493 135 -0.096538 171 0.368133
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28 -0.054775 64 -0.211458 100 0.023778 136 0.114532 172 -0.105296
29 -0.052338 65 0.133792 101 -0.086232 137 0.114500 173 0.073668
30 0.195792 66 -0.098566 102 -0.110193 138 -0.101196 174 0.173825
31 -0.050023 67 0.012425 103 -0.177641 139 -0.075977 175 -0.022766
32 0.005499 68 0.000483 104 0.161876 140 -0.080281
33 0.331650 69 0.128345 105 -0.046125 141 0.189830
34 -0.486898 70 0.086773 106 0.072234 142 0.043856
35 0.347627 71 -0.142190 107 -0.654399 143 0.021081
36 -0.647690 72 -0.616677 108 0.374395 144 -0.144315
_ Autocorrelation Function for at Partial Autocorrelation Function for at
(with 5% significance limits for the autocorrelations) (with 5% significance limits for the partial autocorrelations)
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Fig.5 Shows the graph of the ACF and the PACF for a series residue a;.

The prediction at period (m) can be obtained from the TFM
by using the following equation:

TFM = (my — my{)U, (15)

To find the predictive value of the output series Z; requires
determining a;+m values is the predicted value of a future step
of m and this value is not predictable and therefore is equal
to zero, and the following Table 7 shows the original values
and prediction values.

TABLE VII
PREDICTIVE VALUES FOR ZT TIME SERIES USING THE TF.
t actual forecasting
176 0.016141 0.0261363
177 -0.204892 -0.008901
178 0.268467 0.1078065
179 -0.087026 -0.1029681

IV. CONCLUSIONS

Through studying each of the series of inputs and outputs
represented by wind speed and temperature respectively in
Nineveh Governorate, they are not stable in average and
variance, when taking the square root of the data and taking
the first seasonal difference as well as the first normal
difference of data, stability was achieved. Then a model of the
transformation functioned shown in the equation (17), and it
was found the final parameters of the model were estimated
using the genetic algorithm based on the standard error
squares average, where the best estimate was chosen for the
parameters that correspond to the lowest value of the average
error squares. By using this model, monthly temperature rates
were predicted, and predictive values were shown to be

579

consistent with the original values of the series; and The
appropriate model of data can be formulated as follows:

(1-918-9,8%)(1-61¢12-6,8%%)
(1-91-92(1-0,712)

Z, = (@y — @, DUp_s5 + a; (16)
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