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Abstract— This study developed a Bivariate Zero-Inflated Poisson Inverse Gaussian Regression (BZIPIGR) model to presents the form 

of BZIPIGR parameter estimation and modeling of the number of HIV and AIDS cases in each sub-district in Trenggalek and Ponorogo 

regencies to determine the factors that have a significant effect. This model can be used on data that have overdispersion cases caused 

by extra zeros in the response variables. The parameter estimation of the BZIPIGR model uses the Maximum Likelihood Estimation 

(MLE). The first derivative of the BZIPIGR model has obtained not closed form, therefor it has continued with the Berndt Hall Hall 

Hausman (BHHH) iteration to obtain the maximum likelihood estimators, while the hypothesis testing of the BZIPIGR model is derived 

using Maximum Likelihood Ratio Test (MLRT) approach. Based on the AICc value obtained, the BZIPIGR model is a feasible model 

to be applied to data on the number of HIV and AIDS cases in Trenggalek and Ponorogo Districts, East Java Province. The variable 

that had a significant effect on the increase in the number of HIV and AIDS cases was the percentage of the population with low 

education (SMA). The variables that had a significant effect on reducing the number of HIV and AIDS cases were the percentage of the 

population aged 25-29 years, the percentage of reproductive-age couples using condoms, the percentage of health educations activities 

about HIV and AIDS, and the percentage of community health insurance (Jamkesmas). 
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I. INTRODUCTION

Count data states the number of occurrences in a certain 

period and is in the form of non-negative integers. Count data 

cannot use Ordinary Least Square (OLS) regression because 

it will violate the assumption that the error value follows a 

normal distribution and has heteroscedasticity. One of the 

models that can apply for modeling count data is Poisson 

regression, but this model must fulfill the Equi dispersion 
assumption (mean and variance are equal). This assumption 

is often violated. That is, the variance value is smaller than 

the mean (under dispersion) or otherwise (overdispersion)[1]. 

The number of zeros (excess zeros) can cause a large enough 

variance that is known as overdispersion[2]. Occasionally, an 

event rarely occurs. Therefore, many responses are zero 

(excess zero). If the case is disregarded, it will underestimate 

and wrong decision when testing the hypothesis[3]. 

Several models have been developed to solve the 

overdispersion problem. The modeling can use Generalized 

Poisson[4] or a mixed Poisson distribution both discrete and 

continuous. Some of the mixed-Poisson distributions that 
have been developed are Negative Binomial [5], and Poisson 

Inverse Gaussian (PIG) [6]. Poisson Inverse Gaussian (PIG), 

a mixed Poisson distribution with random effects, has an 

Inverse Gaussian distribution. These distributions are not 

good enough to handle overdispersion and extra zeros cases.  

Several other mixed Poisson distributions can manage this 

problem, they are Zero Inflated Negative Binomial (ZINB)[5], 

Zero Inflated Generalized Poisson (ZIGP)[7], and Zero 

Inflated Poisson Inverse Gaussian (ZIPIG)[8]. Based on the 

results of research by Hilbe that the ZIPIGR model is the best 

compared to ZIP or ZINB in modeling count data with many 
significant zero values[9]. Constraints in the parameter 

estimation process of the ZIPIGR model using Maximum 

Likelihood Estimation (MLE) is the function of the model is 

complicated, thereby to overcome this problem in obtaining 

parameter estimator must be followed by numerical iteration. 

One of the numerical iterations that can apply is the Berndt 

Hall Hall Hausman (BHHH) algorithm[10], which in this 

algorithm only uses the first derivative of its likelihood 

function. 
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The ZIPIGR model is still limited to one response variable 

only. Meanwhile, model cases with two response variables 

will be developed to the Bivariate Zero Inflated Poisson 

Inverse Gaussian Regression (BZIPIGR) model. This study 

will be applying it to modeling the number of HIV and AIDS 

cases. In this case, there are many zeroes in the response 

variable, so the BZIPIGR model is suitable for the application. 

HIV (Human Immunodeficiency Virus) is a virus that attacks 

white blood cells, which causes a decrease in the body’s 

immune system. AIDS (Acquired Immune Deficiency 

Syndrome) is a group of diseases that arise due to decreased 
immunity caused by HIV infection. HIV and AIDS have 

become an epidemic worldwide because no medicine can cure 

the sufferer. Also, the symptoms of this disease are not visible, 

and the course of this disease takes a long time. The fifth 

highest rankings of HIV infections that occurred in Indonesia 

from 1987 to 2019 were East Java, DKI Jakarta, Papua, Bali, 

Riau,  and West Java [11]. In opposition to HIV, the three 

highest rankings of AIDS infections were central Java, Papua, 

and East Java. In 2019 the number of HIV 8,885 cases and 

920 cases of AIDS in East Java, this number increased from 

the previous year[12]. Many HIV and AIDS infections in East 
Java, which is extremely high, need to be addressed. 

Trenggalek and Ponorogo regencies are districts in East Java 

Province. This study will apply the BZIPIGR model to data 

on the number of HIV and AIDS cases in Trenggalek and 

Ponorogo Districts. 

II. MATERIALS AND METHOD 

A. Poisson Inverse Gaussian Regression (PIGR) 

The PIG distribution is a mixed Poisson distribution 

consisting of two parameters, namely μ (mean) as the location 
parameter and τ (dispersion parameter) as the shape parameter. 

Let Y is the response variable that PIG distribution and can be 

denoted by Y ~ PIG (μ,τ). The probability density function of 

Y is as follows[13]. 
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Y is the number of events in a unit of observation in a 

certain period,   is the average of these events, and tau is an 

overdispersion parameter and is the same as Var (v), which is 

due to the heterogeneity or diversity associated with the unit 

of observation with certain characters [12]. 

Suppose Yi is the response for the ith observation and 
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B. Bivariate Poisson Inverse Gaussian Regression (BPIGR) 

The Bivariate Poisson Inverse Gaussian (BPIG) 

distribution has two count variables that are correlated. 
Suppose that two random variables have a Poisson 

distribution and are independent of each other,  Y1 and Y2 , 

which have the mean vμ1 and vμ2 respectively, and the 

variance 2

1 1 1( )Var Y      and 2

2 2 2( )Var Y     . Variable v 

is a random variable with Gaussian inverse distribution. 

Hence Y1 and Y2 have mixed Poisson distribution, namely 

Poisson Inverse Gaussian. The BPIG distribution opportunity 

density function is as follows [15]. 
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BPIGR is a regression model with two correlated responses. 

Suppose yih is the hth response to the ith observation and is 

give a random sample  1 2
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C.  Bivariate Zero Inflated Poisson Regression (BZIPR) 

Let Y1 and Y2 are random variables with a bivariate Poisson 

distribution    1 2 1 2 0
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probability function is[16] 
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The BZIP regression model is as follows. 

  0 exp ;h 1,2    T

hk k hx  (4) 

Method of estimation in the BZIPR model is a MLE. The 

method for calculating the test statistics on the parameter test 

is the Maximum Likelihood Ratio Test (MLRT)[17]. 

D. Zero Inflated Poisson Inverse Gaussian Regression 
(ZIPIGR) 

If Y=0 with the probability value v and Y=Y1 with the 

probability value (1-v), then Y has a Zero-Inflated Poisson 

Inverse Gaussian distribution, which can be written as  
withthe probability function follows[18]. 
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E. Bivariate Zero Inflated Poisson Inverse Gaussian 
Regression (BZIPIGR) 

Let Y1 and Y2 are random variable which BZIPIG 

distribution with  1 2,i iY Y ~
iid
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the joint probability function of Y1,Y2 as follows [8] 
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The BZIPIGR model can be written as follows. 
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F. HIV and AIDS and Factors Affecting the Number of HIV 
and AIDS Cases 

HIV is a type of virus that attacks/infects white blood cells, 

which will cause a decrease in human immunity and impair 
its function. If HIV infection is not handled immediately, it 

will develop into serious health called AIDS, which is the 

final stage of infection caused by HIV, which can infect the 

body's organ systems, including the brain, thus damaging the 

immune system. Until now, there is no cure for HIV and 

AIDS. However, there are drugs to slow the progression of 

the disease and increase the life expectancy of sufferers.  

HIV and AIDS cases were determined by three main 

factors, namely[19]. 

1. Predisposing factors. The factors that encourage a 

person's behavior include knowledge, attitudes, religion, 

beliefs, values, traditions, etc. The driving factors for 
HIV exposure are low knowledge of HIV, accepting 

attitudes about the behaviors that cause HIV, and 

traditions that can lead to HIV. 

2. Enabling factors. Factors that facilitate a person's 

behavior to become infected with HIV such as facilities 

and infrastructure for the occurrence of health behaviors, 

enabling factors that can cause HIV, namely the distance 

between prostitution and prostitution localization close 

to home, distance to health services that are far away so 

that there is less information about HIV. 

3. Reinforcing factors are factors that amplifier the 
behavior of a person infected with HIV. Sometimes even 

though people know and can behave healthily, they do 

not. Examples include family, health workers, and 

community leaders. In cases of HIV exposure, 

reinforcing factors are family rules that do not prohibit 

HIV-causing behavior and the enabling environment for 

HIV-causing behavior. 

G. Data Source 

This study used secondary data obtained from the Health 
Service of Trenggalek and Ponorogo Districts Profile in 2012. 

This data has been used by Wijaya [20] to know the factors 

that can affect the number of HIV and AIDS cases. The 

observation units used in this study were 27 districts in 

Trenggalek and Ponorogo regencies.  

Research variables used in this study consisted of two 

responses  Y  and five predictor variables (X). The variables 

in this study are given in Table 1: 
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TABLE I 

RESEARCH VARIABLES 

Response Variables 

Y1 The number of HIV 

Y2 The number of AIDS  

Predictor Variables 

X1 The percentage of age group 25-29 years 

X2 
The percentage of population with senior high 
school level 

X3 
The percentage of couples of reproductive ages 
using condoms 

X4 
The Percentage of health education activities about 
HIV and AIDS 

X5 
The percentage of community health insurance 
(Jamkesmas) 

H. Steps to determine the factors that influence the number 
of HIV and AIDS cases using BZIPIGR Model 

The steps to determine the factors that influence the 

number of HIV and AIDS cases are as follows. 

1. Make a descriptive analysis of variables.  

2. Correlation test between responses using the Pearson 

test. 

3. Detect multicollinearity from predictor variables using 

the VIF test criteria.  

4. Testing of overdispersion using the Variance Test (VT)  

5. Perform data analysis using the BZIPIGR model. 

a. Specifies the parameter estimator value using MLE 

with BHHH algorithm. 

b. Conducting hypothesis testing simultaneously using 
MLRT on the regression parameters. 

c. Perform partial hypothesis testing on regression 

parameters. 

d. Interpret the analysis results. 

e. Conclusion. 

III. RESULT AND DISCUSSION 

A. Parameter Estimation of BZIPIGR 

The parameter estimation of the BZIPIGR model uses 

MLE method. The probability distribution for BZIPIG is in 
equation (8). The first stage is to estimate the parameters 

using MLE by forming the likelihood function, which is 

defined as follows. 
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1
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1
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2
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
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


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The second stage is to determine the log from the 

likelihood function. 

    1
1 2 1 2

1

log ( , , , , ) log   



  l

i i

n
b b

i i

i

L A Bβ β  (10) 

      
1 1

1 log log

 

   l

n n

i i i i
i i

b A b B  (11) 

ib  is a dummy variable equal to 1. Furthermore, to obtain 

parameter estimation, the ( , , ; 1,2)h h h  βl  function is 

derived against the parameter 1 2 1 2, , ,   β β and   then equated 

with zero. These first derivative does not yield closed form, 

hence parameter estimation was continued to a numerical 

method, namely the BHHH iteration[21], where the initial 

value
1 2 1

[ ]T T T  
2

γ β β and 0m  with $ 0 0γ  corresponds 

to the ZIPIGR function for convergence tolerance limits. The 

initial values for 1 2 1 2, , , , and  β β  are obtained from the 

estimator in the ZIPIGR model. 

The iteration starting from 0m  in the following equation.

$ $ $  $ 1
1m m m m


  γ γ H γ g γ . Iteration will stop if value 

$ $

1m m
  γ γ  , where ε is a very small positive number close 

to 0, where the gradient vector $ m( )
g γ  is 

 ( )
1 21 2

( ) ( ) ( ) ( ) ( )
ˆ

  

                                      

T
T T

m T T

L L L L L. . . . .
g γ

β β
 

with    1 2 1 2log , , , ,   L L β β  and the Hessian matrix 

is 

      
1

ˆ ˆ ˆ
n

T

m i m i m

i

 ( )
H γ g γ g γ   

with  
 

 
1 2 1 2log , , , , ,

ˆ
ˆ

  



i i

i m

m

L y X β β
g γ

γ
    

B. Hypothesis Testing of Parameter BZIPIG Model 

Testing Hypotheses are examining that simultaneously and 

partially to determine the significance of each parameter. 
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1)  Simultaneous Testing Parameters 1 2,β β  

Hypothesis testing of parameters BZIPIGR model, 

determined by the likelihood function  ˆL   and  ˆL  , 

where  ˆL   is the Maximum Likelihood value under the 

population which involved the predictor variables, and 

otherwise  ˆL   is the likelihood function under 
0

H . 

Simultaneous testing of the parameters BZIPIGR model is to 
determine the significance of the parameters 1 2,β β  together, 

with the following hypothesis. 

0 1 2: 0  k kH with  1,2, ,k p K  

1H : at least one of  =0hk  with 1,2h   and 1,2, ,k p K  

Before managing the test statistic to be used, it will define 
the parameter set under the population , namely , then from 
the set of parameters, the likelihood function can be formed 
under the population like in equation (9). 

The maximum likelihood value under population  L   is 

 ˆL   were obtained from section 3.1. Meanwhile, the set of 

parameters under 
0

H    is  10 20 10 20, , , ,      . Then 

from the set parameters, the likelihood function under 
0

H  

 L   can form. 

   10 20 10 20 1 2 10 20 10 20

1

, , , , ( , ) | , , , ,         



n

i i

i

L P y y  (12) 

The probability function of BZIPIG distribution like in 
equation (6) and (7). The BZIPIGR model without predictor 
variable. 

 
 

 
   

 
 

 
   

   

1 0 10

1 1

1 0 10 10

2 0 20

2 2

2 0 20 20

1 10 2 20

exp exp 1
=          1

1 exp 1 exp 1 exp

exp exp 1
         1

1 exp 1 exp 1 exp

exp                                                     exp

  
   

  
   

   

 
  

     

 
   

     

 

p p

p p

 (13) 

the maximum likelihood value under 
0

H   L   is  ˆL   

obtained in the following way. Substitute equation (14) in 
equation (6) and (7) to obtain 

      
   

1 2

1 2

1 2

, , 0,0
,

, , 0,0


 



i i i

i i

i i i

C y y
P y y

D y y

 (14) 

The first step is to estimate the parameters using MLE by 
forming the likelihood function, which is defined as follows. 

      10 20 10 20

1 1

, , , ,    
 

  
n n

i i

i i

L C D  (15) 

where. 
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

O
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The second stage is to determine the log from the 
likelihood function. 

   1
10 20 10 20

1

log ( , , , , ) log     



   i i

n
b b

i i

i

I L C D  (16) 

     
1 1

1 log log

 

   
n n

i i i i

i i

I b C b D  (17) 

ib  is a dummy variable with a value of 1. Furthermore, to 

obtain parameter estimation, the function 

10 20 10 20( , , , , )    l  defines a derivative for parameters then 

equates to zero. This first derivative for each parameter does 

not yield close form. Then for getting  ˆL   is using BHHH 

algorithm. 
From these two maximum likelihood values, a ratio is 

formed between the maximum likelihood value under 

population  L   and the maximum likelihood value under 

0
H   L  , which is called the odds ratio, as follows: 

 
 

ˆ

ˆ

L

L


 


 

with the rejection area of H0   < 0 where 0 < 0 < 1. 
The next is to determine the distribution of test statistics 

with the n big sample approach as follows. 

 2 2log  G  

with 

 2 2
0and |  is true  G c P G c H   
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c will obtain if 2
G  is known, so this simultaneous test uses 

the test statistics. 

   
        2 2

ˆ
ˆ ˆlog 2log 2 log log .

ˆ




 
          
 

L
G L L

L
 

will compare with  
2

, a b  , where a is the number of 

parameters under the population, and b is the number of 

parameters under 
0

H . The rejection area of 
0

H  if 

 
2 2

, a bG   . 

2)  Partial Parameter Testing  

If the test results produce a rejecting conclusion, then the 
test can be continued by partially testing with the Wald test 
statistics. This test, to find out the effect of the predictor 
variable partially on the response, with hypothesis: 

i) 
0

: 0
hk

H     

1
H : 0

hk
    with 1, 2 and 1, 2, ,h k p  K  

ii) 
0

: 0
h

H     

1
H : 0

h
   with 1,2 h    

iii) 
0

: 0H     

1
H : 0    

with the test statistics which used are: 

     
ˆ

ˆ ˆˆ where var  
ˆ


 


 hk

hk hk

hk

Z se
se

 

     
ˆ 1 ˆ ˆˆ where var  

ˆ
h

hk hk

hk

Z se
se




 




   

     ˆ where var  Z se
se




 


 

$

$ $

$

 

Where the value of   ˆˆvar  hk ,  ˆˆvar hk , and  ˆvar  $  

are obtained from the main diagonal elements of the matrix

 1 ̂H . 
0H  reject if 

2

score
Z Z . 

C. Descriptive statistics of Response and predictor variable 

In each sub-district in Trenggalek and Ponorogo Districts, 
the highest number of HIV and AIDS cases was 4 cases and 
almost 50% of the sub-districts had no cases or more than       
50% of the sub-districts had cases. The highest mean and 
variance from the variable of percentage public health 
insurance and the lowest in the percentage health extension 
activities variable. This shows that there is still low awareness 
of the importance of health education, which is followed by a 
low percentage of reproductive-age couples (PUS) using 
condoms.  

The average percentage for the population of the lowest 
level of education in a senior high school is 15.43%, with the 
highest in the Pudak sub-district. The average percentage of 
couples of reproductive ages using condoms is 3.283%, with 
the highest in the Tugu sub-district and the least in the Ngebel 
sub-district. The percentage of health education activities is 

0.6407%, with the highest in the Pudak sub-district and the 
least in the Gandusari sub-district. The percentage of public 
health insurance is 42.75%, with the highest in the Pudak sub-
district and the least in the Trenggalek sub-district. 

Based on the value of the correlation coefficient that there 
are positive relationship patterns of the number cases of HIV 
and AIDS variable with the percentage of the age group 25-
29 years, the percentage of the lowest level of education 
(SMA), and percentage of couples of reproductive ages using 
condoms. Meanwhile, the percentage of health education 
activities and the percentage of public health insurance are 
negative relationship pattern to the response variable. 

1)  Pearson Correlation Test 

The two responses in the bivariate regression analysis must 
correlate. To determine whether there is a relationship is 
tested using the Pearson correlation coefficient with the 
following hypothesis[10]. 

1 20 ,: 0y yH    

1 21 ,: 0y yH  
 

Test Statistics. 

1 2,

2 2

2 0.851 27 2
8.102

1 1 0.851

 
  

 

y yr n
T

r

 

The T value (8.102) is greater than 
0.025,25

2.059t  therefore 

0
H is rejecting or the number cases of HIV and AIDS are 

correlated, so this research can continue with the bivariate 
model.  

2)  Multicollinearity Test 

There are many ways to detect multicollinearity, one of 
these is the Variance Inflation Factor (VIF) value or a value 
that describes the increase in the variance of the estimated 

parameters between predictor variables. If the 10VIF  , it can 

be said that there is multicollinearity, on the other hand, if the 

10VIF  , there is no multicollinearity[22]. The VIF value of 

predictor variables are less than 10 (X1=1.22, X2=2.32, 
X3=1.93, X4=1.06, and X5=1.06). Therefore, the predictor 
variables do not experience multicollinearity, or there is no 
correlation between the predictor variables. 

3)  Overdispersion Test 

This study conducted an overdispersion test to determine 
whether the data used violates the assumptions or not. One 
way that can do to detect the presence or absence of 
overdispersion is using the variance test (VT), where 
overdispersion occurs if VT>1. The value of VT can be 
calculated using[10]. 

 2
1

1
47.4074074

41.29
1.148148





  

n

i
i

y y

VT
y

 

 

 2

1
2

24.0740741
29.545

0.814815





  

n

i
i

y y

VT
y

  

According to VT value for Y1 and Y2 (HIV and AIDS cases) 
have VT1 and VT2 are more than 1, therefore the data had 
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overdispersion problems, hence this study continued using the 
BZIPIGR model. 

D. Regression Modeling of the Number of HIV and AIDS 
Cases in Trenggalek and Ponorogo Districts using the 
BZIPIG method. 

The number of HIV and AIDS cases in Trenggalek and 
Ponorogo Districts is count data with overdispersion 
problems. Therefore, this research modeling using BZIPIGR. 
Simultaneous testing of parameters is carried out to determine 

whether the significant 1 2,β β  parameter jointly affects the 

response. Simultaneous testing of the parameters of the 
BZIPIGR model with a hypothesis 

0 1 2
: 0

k k
H     with 1,2, ,5k  K  

1
H : at least one of  =0hk  with 1,2h   and 1,2, , 5k  K  

The value of test statistics G (73.18336) is greater than 
2
(0.05;10) 18.30704  , hence rejecting

0
H . The conclusion is 

predictor variables together affect the response.  
After testing simultaneously, the next step is testing the 

parameters BZIPIGR model partially. The hypothesis for this 
testing is: 

i) For  

0

1

: 0 ; 1, 2; 1, 2,3, 4,5

: 0

hk

hk

H h k

H





  


 

ii) For  

0

1

: 0 ; 1, 2

: 0

h

h

H h

H





 


 

iii) For  
0

1

: 0

: 0

H

H








 

The partial hypothesis testing on the parameters of the 
BZIPIGR model can be seen in Table 2. 

TABLE II 

PARAMETER ESTIMATION OF BZIPIGR MODEL 

Parameter Estimate Se Z  

 -1.117 0.001417051 -788.257 

 -0.097 0.001422267 -68.201 

 0.064 0.001409661 45.401 

 -0.042 0.001405293 -29.887 

 -0.27 0.001415502 -190.745 

 -0.015 0.001417234 -10.584 

 -1.963 0.001515899 -1294.941 

 -0.019 0.001539334 -12.343 

 0.056 0.001515931 36.941 

 -0.014 0.001507484 -9.287 

 -0.01 0.001469292 -6.806 

 -0.022 0.001510367 -14.566 

 0.05 1.3956E-07 358267.700 

 0.057 2.59258E-07 219858.600 

 0.006 9.81499E-05 61.131 

 

P value  of the all parameters are less than the 0.05   

(P-Value < 0.05), hence 
0

H  is rejecting. Therefore, all the 

predictor variables partially influence the number of HIV and 
AIDS cases in Trenggalek and Ponorogo Districts. They are 
the percentage of the age group 25-29 years, the percentage 
of the lowest level of education is the senior high school 
variables, the percentage of couples of reproductive ages 
using condoms, the percentage of health education activities, 
and the percentage of public health insurance. 

The equation of the BZIPIGR model according to table 2 
for the number of HIV cases is divided into 2 models, such as 
the model for Poisson state and the model for zero state. The 
Poisson state regression model for HIV as follows.  

 1 1 2 3

4 5

ˆl 1.1169 0.0966 0.0643 0.0423

0.2703 0.01 0

g

5

o  



 



i i i i

i i

X X X

X X

 

The estimation of parameters in the equation above can be 
interpreted based on the independent variables' coefficient 
and coefficient sign. For instance, every 1% increase of the 

population aged 25-29 years  1X  will reduce the average 

number of HIV cases in each sub-district in Trenggalek and 

Ponorogo districts equal to  0.0966 1.1011exp   times, 

assuming the other variables are constant. The interpretation 
of the other independent variables can carry out in the same 
way. The Poisson state regression model for AIDS as follows. 

 2 1 2 3

4 5

ˆlog 1.9625 0.0187 0.0560 0.0141

0.0103 0.0221

      

 

i i i i

i i

X X X

X X

 

Like the the first model above, can interpret every 1% 

increase of population aged 25-29 years  1X will reduce the 

average number of AIDS cases in each sub-district in 
Trenggalek and Ponorogo districts equal to 

 exp 0.187 0.9815   times, which assuming the other 

variables are constant. The interpretation of the other 
independent variables can carry out in the same way. 

There are differences influence of variables by Wijaya, 
where in Wijaya's research there are 3 variables that have a 
positive effect on the number of HIV and AIDS, namely the 
percentage of age group 25-29 years, The percentage of 
couples of reproductive age using condoms, and The 
percentage of community health insurance (Jamkesmas), 
while the other 2 variables have a negative effect. In this study 
only the percentage of population with senior high school 
level has a positive effect (it can increase the number of HIV 
and AIDS as the percentage of this variable increases), while 
other variables have a negative effect. 

The second model of BZIPIGR is zero state regression 
model for HIV and AIDS. The zero-state regression model for 
HIV is as follows:  

 

  


1 1 2 3

4 5

1 2 3 4

5

ˆlogit 0.05

 

1.1169 0.0966 0.0643 0.0423

0.2703 0.015

2               = 0.0558+0.0048 0.003 0.0021 0.0135

0.0008

0

  



  

  





i i i i

i i

i i i i

i

p X X X

X X

X X X X

X
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The logit model equation above can interpret the 
Opportunities in every district in Trenggalek and Ponorogo 
did not have HIV cases increased equal to exp 
(0,0048)=1.0048 times if there is an increase of 1% of the 
population aged 25-29 years (X1), assuming other variables 
constant. Similarly, to the variable X3, X4, and X5. However, 
if there is an increase of 1% of percentage of the population 
with senior high school level X2 with the assumption that the 
other variables are constant, then the chance of not having an 
HIV case will decrease by exp (0.0032)= 1.0032 times. This 
is related with the Poisson state regression model, which can 
increase the number of HIV is variable X2. 

The zero-state regression model for AIDS cases is as 
follows. 

  


2 1 2 3

4 5

1 2 3 4

5

ˆlogit 0.057 1.9625 0.0187 0.0560 0.0141

0.0103 0.0221

                = 0.1119+0.0011 0.0032 0.0008 0.0006

0.0013

      

 

  



i i i i

i i

i i i i

i

p X X X

X X

X X X X

X

  

The logit model equation above can interpret the chance 
that each sub-district in Trenggalek and Ponorogo districts 

does not have AIDS cases increases by  exp 0.0011 1.0011  

times if there is an increase of 1% of the population aged 25-
29 years, assuming the other variables are constant. Similarly, 
to the variable X3, X4, and X5. However, if there is an increase 
of 1% of percentage of the population with senior high school 
level X2 with the assumption that the other variables are 
constant, then the chance of not having an AIDS case will 
decrease by exp (0.0032)= 1.0032 times. This is related to the 
Poisson state regression model, which can increase the 
number of AIDS variables X2. Based on these two regression 
models (Poisson state and zero state), an increase in the 
number of HIV and AIDS can be caused by an increase in the 
percentage of the population aged 25-29 years (X2).  

According to Akaike Information Criterion Corrected 
(AICc) value. The AICc value uses if the objective of 
regression modeling is to identify the influencing factors. The 
AICc value using the BZIPIGR model obtained is 317.96. 
Previous research with the same data using the BZIPR method 
on the number of HIV and AIDS cases got an AICc value of 
340.6977. Therefore, the data on the number of HIV and 
AIDS cases in Trenggalek and Ponorogo Districts is better 
using the BZIPIGR model. 

IV. CONCLUSION 

Based on the results and discussion above, it can conclude 
that: The estimation parameters of the BZIPIGR model using 
the MLE method has obtained that the first derivative does 
not yield closed form. Therefore, it is followed by numerical 
iteration using the Berndt Hall Hall Hausman (BHHH) 
algorithm. For Simultaneous hypothesis testing of the 
BZIPIGR model using the MLRT method has obtained test 
statistics that follow Chi-square distribution. Based on the 
AICc value were obtained from the BZIPIGR model, it has 
shown that the model is feasible to apply for data on the 
number of HIV and AIDS cases. All predictor variables 
significantly affected the number of HIV and AIDS cases.  

Based on the Poisson state regression model, the variable 
whose effect is to increase the number of HIV and AIDS cases 

is the percentage of the population with low education (SMA). 
The variables that can reduce the number of HIV and AIDS 
cases are the percentage of the population aged 25-29 years, 
the percentage of reproductive-age couples (PUS) using 
condoms, the percentage of health education activities, and 
the percentage of community health insurance (Jamkesmas). 
Based on the Zero state regression model,  
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