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Abstract— 3D surface measurement based on phase-shifting profilometry (PSP) has been actively developed in recent years. Three color 

channels of RGB that are modulated to generate a one-shot PSP method is a concept of color digital fringe pattern profilometry 

(CDFPP). The CDFPP is a promising technique for the 3D imaging profile of dynamic surface deformation if several phase errors in 

the one-shot PSP method can be suppressed. This work proposes a processing scheme for phase error suppression schemes (PESS) 

based on retrieving the modulated sinusoidal fringe and color fringe normalization in PSP using RGB color channel. The processing of 

PESS consists of tunable bandpass filtering (BPF) followed by fringe normalization. The initial BPF function is defined based on a 

smoothing spline data set of frequency and power spectrum from the baseline color fringe image. The predefine BPF function could be 

tunable during the imaging process by considering each frame's condition and RGB channel spectrum mapping. The corrected fringe 

images are then normalized from the color imbalance, and the phase shift is calculated using the conventional three-step PSP. For 

evaluation, PESS is performed to reconstruct simulator membrane deformation from four different static profiles and tested to observe 

the 3D surface of continuous membrane deformation. The PESS could suppress the phase errors of less than 30% less absolute errors 

than the conventional method and successfully reconstruct the 3D surface for low-frequency continuous membrane deformation with 

minimizing phase errors. 
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I. INTRODUCTION

Non-contact 3D surface measurement is widely used in 

many applications, such as in quality control inspection, 

metrology, biometrics, and entertainment. For various non-

contact 3D scanner techniques, the optical method based on 

digital fringe profilometry (DFP) is one of the most 

researched 3D imaging methods. A typical system 

configuration uses a digital light processing (DLP) projector 

and a digital camera with current technology[1], [2]. 

DFP reconstructs 3D information of a surface based on the 

phase-modulation and demodulation process. Various 

methods have been proposed to extract phase information 

from a DFP measurement. Two of the most common phase 
demodulation methods are Fourier Transform Profilometry 

(FTP) [3]–[6] and phase-shifting profilometry (PSP) [7]–[12]. 

PSP uses n-step frames of fringe patterns with different initial 

phases. PSP is often more preferred due to its robustness in 

obtaining the modulated phase information. However, for 

measuring a dynamic deforming surface, conventional PSP 

would produce a phase shift error due to the object’s 

movement unless the object can be in a static state for at least 

as long as it takes to project three grayscale fringes onto the 
object’s surface [13]. Regarding this limitation, many 

researchers have come up with various mathematical 

compensations for the dynamic application of conventional 

PSP by solving the problem of motion artifact[6], [14]–[16].   

Alternatively, Color Digital Fringe Pattern Profilometry 

(CDFPP) has been proposed as an alternative for a fast 

measurement technique and preserving PSP's advantage [17]–

[20]. Using CDFPP is possible to apply PSP by only 

projecting a single frame of a pattern. CDFPP makes use of 

the idea that a color image consists of three-color channels. 

Therefore, the three frames greyscale pattern previously used 
in PSP can be encoded into a single frame of RGB color fringe 

instead.  
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Even though the use of color channels in CDFPP seems 

promising, it does not come without any challenges. The 

hardware used in DFP, i.e., projector and camera, is 

intentionally fabricated to have a spectrum overlay and 

sensitivity to specific colors to accommodate human visual 

perception [19]–[21]. On the other hand, deliberate 
fabrication is rather unfortunate for measurement purposes 

through CDFPP. Several arising problems from the 

nonlinearity of projector and camera, color coupling, and 

color imbalance need to be tackled in CDFPP [18], [20]. 

These problems make image decoupling of a recorded color 

fringe pattern from each color channel hard to complete 

correctly and contribute hugely to phase error.  

Many approaches have been proposed to solve these 

drawbacks of color fringe utilization. A scheme based on 

artificial neural networks (ANN) has been presented as a non-

linear mapping to normalize fringe patterns from each color 

channel [20], [22]. However, an optimal mapping function 
depends on some strict assumptions about the training process 

of ANN. 

Another proposed solution tends to avoid the color 

crosstalk problem through rapid sequencing. In the rapid 

sequencing method, a color CCD camera is substituted by a 

monochrome CCD camera, and a modified projector is used 

to minimize the nonlinearity. However, this method requires 

a fair amount of hardware modification. Besides, it still needs 

to face greyscale imbalance problems since the monochrome 

CCD camera might still have different sensitivity for each 

color[8], [23]. Another method to solve the problem of color 
images is an iterative process known as several non-linear 

optimizations. As it is an iterative approach, this scheme has 

a high computational complexity that is burdensome; it also 

has a high potential for convergence [5], [18], [24]–[26].  

In previous work, Ma et al. [27] proposed a solution to 

solve the problem in CDFPP, assuming all phase shift errors 

can be corrected without prior calibration data and on any data 

model, which is called the blind phase error suppression 

(BPES). The process consists of a correction to distorted 

sinusoidal fringes and a color fringe normalization (CFN) to 

solve the amplitude imbalance of three fringes decoupled 

from three color channels. However, the method and the 
bandwidth selection in filtering the fundamental spectrum 

component (FSC) of the fringe on each color channel image 

are not systematically described[24], [27]–[29]. Furthermore, 

there have not been any reports on the method's consideration 

and application to a dynamic deforming object observation 

using CDFPP. In fringe normalization, particularly in CDFPP, 

a selection frequency bandwidth in filtering should consider 

the phase error due to hardware nonlinearity and a dynamic 

deforming surface contributing to phase error.   

This work proposes a fringe normalization method utilizing 

a tunable filter that considers the dynamic deforming surface. 
A tunable bandpass filter (BPF) function is used to optimize a 

weighting window function, which determines the spatial 

frequency and spectral power related to the fringe's 

fundamental spectrum component representing the shape 

variations of an object's surface observed.  

Based on spectrum information from a baseline color 

fringe, a dataset as a relation between the frequency 

components in line with the direction of the carrier frequency 

(fcx) and the power spectrum series with peaks at fcx, is 

determined. The dataset is used to estimate the predetermined 

1D-BPF function using an optimized smoothing spline to find 

a smoothing factor (λ) in order to minimize phase errors. 

Furthermore, a 2D function of BPF in each color channel can 

be numerically obtained by rotating the Hi(fx) data with 

respect to zero frequency. The proposed color fringe 
processing scheme was tested for evaluation by performing 

continuous 3D surface membrane deformation measurements. 

The measurement results are then compared with reference 

data from conventional three-step PSP measurements. This 

paper is organized as follows. The description of the scheme 

method is presented in Section 2. The experimental results 

and discussion of the testing targets are explained in Section 

3, and the conclusion is presented in Section 4. 

II. MATERIALS AND METHOD 

A. The basic Concept of CDFPP 

CDFPP is a modification of the three-step phase-shifting 

profilometry (PSP). The main idea of CDFPP is to encode 

three sinusoidal fringe images having different initial phases 

(S1, S2, and S3) into a single color fringe to be projected onto 

the surface of deforming objects (see Fig. 1). 

 

 
Fig. 1  The Illustration of CDFPP configuration and color fringe processing 

with the final product of a 3D surface Z(x,y).  

 

By assuming that the fringes have carrier frequency with 

the orientation in the x-direction, a colored fringe image Si (x, 
y) can be modeled as: 

 ����, �� � 	���, �� 
 ����, �� �
������ 
 ���  �1� 
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On 1, i =1, 2, and 3 represent the red, green, and blue color 

channels. An initial phase step is defined by αi = 0°,120°, 

240°, and fcx is the fringe carrier frequency. Also, ai and bi 

represent the average background intensity and amplitude 

modulation. For the computer-generated color fringe, ai and 

bi is often set equal for each color channel [27], [30].  
When Si(x,y) is projected onto an object’s surface by using 

the DLP projector, the modulated fringe pattern is recorded 

by a digital color camera, which can be modeled as    ����, �� � 	���, �� 
                    ∑ ��,���, �� �
������, �� 
 ���� 
 ��������  �2�   
On Eq-2, bk,i is amplitude modulation with harmonic 

components k [22], [27]. The spectrum mapping of Ii(x,y) can 

be performed using Fourier Transform (FT) that formulated 

as 

 ��!�� , �"# �  $�����, ��� �                         ∑ ∑ ����, ��.& '�( )−+!,. �� 
 -. �"#./  �3�   
where fx, fy are spatial frequency on x and y direction, 

respectively, and N = –(1/2)X to +(1/2)X and M = –(1/2)Y to 

+(1/2)Y, where X and Y are the image dimension.  

 
Fig. 2  The Illustration of |FIi(fx, fy)| and |FIi(fx,fy=0)| for range N is marked 

with the  yellow box on the spectral amplitude image (|FIi(fx, fy)|). A 

bandwidth of fundamental spectrum component (FSC) with peak spectral 

amplitude in fcx illustrated on plot of |FIi(fx,fy=0)|   

 

In this case, Si(x,y) has fcx with main direction in x-axis, the 
maximum |FIi(fx, fy=0)| for fx≥0 is represented as biδ(fcx). 
Evaluation on the spectral image of |FIi(fx,fy=0)| shown that 

the fundamental spectrum component (FSC) arise on both 

lobe-side of biδ(fcx) (see Fig. 2). The FCS of |FIi(fx,fy=0)| for 

fx≥ 0 can be modeled as 

 1 ��!�� , �" � 0#1 � 	� 
 ∑ �/,� . 3�f56��/�7  �4�       
Based on 4, the parameter bN, i represents a set of FCS 

harmonic components. The imbalance of the power spectrum 

of fcx of every color channel could be defined as bn,R (fcx)≠ 

bn,G (fcx)≠ bn,B (f x). Furthermore, the distribution of FCS has 
a specific pattern on each color channel. These problems 

contribute as a source of phase error in the final 3D 

reconstruction results. The next section describes the basic 

concept of phase error suppression scheme. 

Phase Error Suppression Scheme (PESS) 

As mentioned before, the correction of Ii(x,y) is required to 

extract the phase shift successfully (x,y) using the three-step 
corrected fringe image in each color channel [5], [6]. The 

basic concept of PESS is summarized in Fig. 3. 

 

 
Fig. 3  Basic concept scheme of PESS 

 

The process, performed for all color channels, consists of 

bandpass filtering followed by fringe normalization. Since the 

filtered image is used as input for the fringe normalization, the 

bandpass filter (BPF) on each IR(x,y), IG(x,y), and IB(x,y) is 

impactful for the error suppression method. The success in 
suppressing phase error in CDFPP depends on the optimal 

process both in the BPF design and fringe normalization. In 

the PESS, a tunable BPF function is proposed to consider each 

channel's different spatial spectrum characteristics and 

accommodate the application of CDFPP for a dynamic 

deforming object.  

Tunable BPF function 

In the spectrum domain, the filtering process of Ii(x,y) is 
defined as 

 9:�!�� , �"# �  ;�  !�� , �"#.  ��!��, �"# (5)   

where Hi(fx,fy) is BPF function, and i = 1, 2, 3 represents 

the R, G, and B channels. As illustrated in Fig.2, the 

FIi(fx,fy=0) is the spectral data set's main information. 
Therefore, filter Hi(fx,fy) can be designed as 1D-filter Hi(fx, 
fy=0), which will be further denoted by Hi(fx). Based on its 

assumption, 5 can be rewritten as 

 9:�!�� , �" � 0# � ;�����.  ��!��, �" � 0#  (6)  

 

Due to the symmetry property of FT, |CYi(fx,fy=0)| could 

be modeled as |Hi(fx).FI(fx, fy=0)|. The role of Hi(fx) is to 

select the k-component of FSC and to give weighting factor to 

the power spectrum of bN,i(fcx). However, the bandwidth of 

FSC centered at bN,i(fcx) is always changing in relation to the 
surface deformation. As illustrated in Fig. 4, the typical 

bandwidth of FSC obtained from the baseline surface 

condition (BL) when the membrane is flat and the deforming 

surface condition (D) in each color channel.   

In [27], [31], the Hi(fx) used is a simple square BPF 

function, defined as maximum if Lfx H, with fcx being 
the center frequency. The illustration of Hi(fx) is shown in Fig. 

5. Using a square function for the Hi(fx), the power spectral's 

weighting function around the specific FCS bandwidth highly 

depends on the definition of L dan H.  
 

1975



 
Fig. 4  Illustration of the spectrum range of  ∑ �/,�. 3�f56��/<7  on baseline 

(BL) and deformed (D) condition for each color channel R, G, B. 

 
Fig. 5  The illustration of the square function of H(fx), with H(fx) uniformly 

maximum along with the range of L  fx  H  as an effort to give a weight 

of useful power spectral in the FCS bandwidth for BL (blue line) and D (black 

line) from the blue channel 

 

In the case of CDFPP, L dan H can be very specific for 
each color channel and each surface deformation. Therefore, 

Hi(fx) should be able to select the FCS bandwidth adaptively. 

Another feature Hi(fx) for dynamic CDFPP should be having 

a proper weighting function for ∑ �/,� . 3!��,#�/<7 .  

The design of the proposed tunable Hi(fx) starts with 

analyzing the ∑ �/,� . 3���/��/<7  of the baseline condition for 

each color channel (i = 1, 2, 3). 1D datasets are defined as {fx, 

bN, i(fxN)} for LfxH including the carrier frequency 

component {fcx, bx, i(fcx)}. The L is define as minimum value 

of bN,i(L) for L>0 and L< fcx. For fx > fcx, H is defined 

where |fcx – L| = |H – fcx|.  
Given the data sets {fx, bN,iδ(fxN)} in the range of ΔL≤ fx ≤ΔH 

from the baseline surface condition, an objective smoothing 

spline function Sλ(H̅i) is minimized to estimate Hi(fx), which 

is defined as 

�=�;>�� �      ∑ ?�/,� . 3�f56� − ;>��f56�@A 
BC��D E?;>�FF���/�@AG �f5�   (7) 

where  denote a smoothing parameter [32]–[34]. The first 
term of the objective function Sλ(H̅i) measures the closeness 

to the data, and the second term penalizes the curvature, which 

relates to the smoothness. The H̅i(fxN) is estimated based on a 

concept of smoothing spline that minimizes Sλ(H̅i) over class 

of all twice differentiable function on the range of {fxN}. A 

smoother curve of the H̅i(fxN) is proportional to the larger 

value of .  
The next step is to determine the 2D filter function of 

Hi(fx,fy) based on Hi(fx) estimation. The 2D filter function is 

assumed to be a radially symmetric function. The 2D BPF can 

be numerically obtained by rotating the H̅i(fx) data with 
respect to the distance from its center frequency (fX=0, fX =0). 

After the tunable 2D filter is acquired, it is then applied for 

the filtering process defined in 5 to obtain CYi(fx,fy) and then 

followed by inverse FT of CYi(fx,fy) to get the corrected 

modulated fringe image Yi(x,y). However, Yi(x,y) still required 

fringe normalization to compensate for the imbalance 

amplitude before the three-step PSI calculation, phase 

unwrapping, and finally, the Z(x,y) reconstruction to obtain 

the final output. 

B. Fringe Normalization and Final Phase Processing 

A fringe normalization is a process to gain back balanced 

pure sinusoidal forms of the modulated fringe Yi(x,y) on each 

color channel. Observation of Yi(x,y) on the object reference 

area should show that the amplitude of YR(x,y) has the same 

range as YG(x,y) and YB(x,y). 
For the fringe normalization process, filtered fringe images 

CYi(fx,fy) (see Fig. 3) is transformed using Hilbert transform 

HT(.). 

 ;$!9:����# � 3H��� × CYL�f� (8) 

where f ={fx, fy} and H(f) is defined as  

 3H��� � M'�N/A, P� � < 00     , P� � � 0'R�N/A, P� � > 0  (9) 

The operator HT(CYi(f)) can be viewed that for negative 

frequency components of Yi(f), the phase is shifted for /2, 

and for positive components of Yi(f) the phase is shifted for -

/2. 

The analytic fringe image :T���, �� then can be formulated 

as 

 :T���, �� � :���, �� 
 +� $U;$�9:����V (10) 
In general, a normalized fringe for each color channel 

NYi(x,y) can be written as  

 ,:���, �� � WX��,"�YWX��,"�Z�C[\]UH]�^WX�_�VZ  �11� 
The result of fringe normalization NYi(x,y) can be used to 

determine the wrapped phase (x,y) through the following 
formula 

 ���, �� � `	aR� b∑ /WX��,"�cLd �eX�fXgh∑ /WX��,"�ijc �eX�fXgh k  �12� 
Then, phase unwrapping is conducted to recover the 

absolute phase information. Finally, 3D reconstruction, which 

involves removing the multiple 2π offset, is performed to 

determine Z(x,y). 

C. Procedure for optimization of PESS 

The critical process in PESS is the design of tunable 

Hi(fx,fy). After the parameter fcx, L, and H are obtained in 
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the baseline condition, the smoothing factor λ is yet to be 

defined. The value of  is related to a weighting function of 
estimated Hi (fx, fy). Optimized λ value determines the 

successfulness of the phase error suppression. The value of  
is evaluated iteratively with the objective of finding the 

optimized value that minimizes the variance (σ2) of Z(x,y) of 

the baseline surface condition that defines as 

 lA � [/& ∑�m��, �� − n� (13) 

with μ is the mean of Z(x, y). Because Z(x, y) represents the 

initial surface condition, the optimal  is related to the 
smallest σ2. 

D. Experiment Design 

The proposed scheme is tested to observe a dynamic 

deforming membrane surface for evaluation. The membrane 

simulator is an opaque elastic material. Its membrane is 

pushed by the arm connected to a controlled DC motor servo. 

The membrane simulator can be programmed to move 

continuously with a sinusoidal profile or be maintained in a 

specific position. The membrane simulator is shown in Fig. 6, 

and the experiment setup is shown in Fig.7.  
 

Elastic Membran Periodic Movement 

Driver

Power Supply

 
Fig. 6  The membrane simulator observed  

 

As an evaluation for the first experimental setup, the 

membrane simulator was held in several different positions 

(A, B, and C), as illustrated in Fig. 8. For the second 

experiment, a reconstruction of the membrane's continuous 

movement is observed using the CDFPP. The pusher moves 

back and forth for continuous movement, pushing the 

membrane and creating a sinusoidal trajectory.  
 

 
Fig. 7  The experiment setup for CDFPP   

III. RESULTS AND DISCUSSION 

A. Optimization of PESS in Baseline Condition 

The baseline condition refers to a flat membrane position 
or when the pusher is at its minimum point. The baseline 

condition is used as the reference in defining the optimal value 

of λ. The iterative process results in defining the optimal λ are 

shown in Fig 8. The iteration starts with λ=0,01 and then 

increases by 0.005 increments. The λ that results in minimum 

σ2 of Z(x,y) of the baseline condition is applied for 

experiments. 

 

 
Fig. 8  The profile of membrane simulator. First, the static setup maintains 

three different membrane positions, Z(x, y) in A, B, and C. The membrane is 

pushed for a dynamic setup, moving back and forth continuously with a 

sinusoidal trajectory having a frequency of 1 Hz. The red circle represents the 

position of the pusher during continuous CDFPP recording. 

 
The example cross-section plot of Z(x,y) on λ=0.01, 0.03, 

0,075 is denoted by A, B, and C, respectively. The reduced 

value of σ2 can be seen as related to the value of λ. As shown 

in Fig. 8, λ = 0.075 gives the results in the smallest value of 

σ2
, represented by the red arrow (Top) as well as the red line 

on the cross-section plot of Z(x, y)(Bottom). 

B. Evaluation for The First Experiment Setup 

The predefined filter design defined from the baseline 

condition is used for PESS evaluation for continuous 3D 
measurement of membrane surface deformation. Later the 

result is compared to reference data from the conventional 

three-step PSP with gray fringe images with the pusher 

membrane being maintained in positions A, B, and C (see Fig. 

7).  

The example of tunable Hi(fx) and rotated Hi(fx) into Hi(fx, 
fy) where i = R,G, and B,  for the membrane position A and C 

are shown in Fig. 9. The weighting function of Hi(fx) in each 

color channel and two different membrane positions is also 

presented in Fig. 10. 
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Fig. 9  (Top). Iteration process to determine optimal λ. The red arrow 

represents the optimal λ resulting in the lowest σ2. (Bottom) Cross-section 

plot of the yellow line in the baseline condition, for the definition of Hi(fX,fy) 

with λ=0.01(A), λ=0.03(B), and λ=0.075(C). 

 

The comparison of the Z(x, y) cross-section in position B 

reconstructed using conventional three-step greyscale PSP 

and CDFPP is presented in Fig.11. The plotted Z(x, y) is the 

x-direction plot of the surface center. The results show the 

reconstruction using CDFPP (I). Without PESS, (II). With 
non-tunable Hi(fx, fy) PESS, and (III) with tunable Hi(fx, fy) 
PESS. Reduction of σ2 can be seen in Fig. 10, while the 

absolute errors between different reconstruction methods 

using CDFPP of Z(x,y), compared to static greyscale PSP, are 

tabulated in Table 1. 

 

 
Fig. 10  Tunable Hi(fx) and rotated Hi(fx) into Hi(fx, fy) where i = R,G and B, 

for the membrane position A (top row) and C (bottom row) 

TABLE I 
THE ABSOLUTE ERROR BETWEEN Z(X,Y) FROM SEVERAL RECONSTRUCTIONS 

Surface 

Position 

I 

Without PESS 

II 

PESS with non-

tunable Hi(fx, fy) 

III 

PESS with 

tunable Hi(fx, fy) 

A 0.4262 0.0956 0.0022 

B 0.5946 0.1985 0.0044 

C 0.7324 0.6603 0.0052 

C. Evaluation for The Dynamic Observation 

The dynamic color fringe images recording of several 

positions of the membrane, from the baseline position 

(marked with (1)) to maximum surface amplitude (marked 

with (8)) shown in Fig 11. The images are obtained from the 

video recording of continuous deformation of the observed 

membrane. 

 

 
Fig. 11  The color fringe images for continuous surface deformation on eight 

different pusher positions. 

 

The cross-section plot of Z(x,y) processed using PESS with 
non-tunable Hi(fx, fy) and PESS with tunable Hi(fx, fy) are 

observed to see the reconstruction quality. From Fig. 13, the 

smoothness of the surface between non-tunable and tunable 

BPF filter on the PESS is clearly shown. 

 

 
Fig. 13  The plot of Z(x,y) was processed using PESS with non-tunable Hi(fx, 
fy) (left) and PESS with tunable Hi(fx, fy) (right) from the color fringe images 

in Fig. 12. 
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IV. CONCLUSION 

An alternative scheme of phase error suppression for color 
digital fringe pattern profilometry concerning continuous 

surface deformation was developed. The alternative scheme's 

primary sub-process is a tunable bandpass filter on the 

spectrum map of color fringe. The tunable BPF is determined 

based on the 1D-BPF function using an optimized smoothing 

spline to find a smoothing factor (λ) in order to minimize 

phase errors. Furthermore, a 2D function of BPF in each color 

channel can be numerically obtained by the rotation of 1D-

BPF function concerning its zero frequency. The predefine 

BPF function could be tunable during the imaging process by 

considering each frame's condition and RGB channel 

spectrum mapping. The corrected fringe images are then 
normalized from the color imbalance, and the phase shift is 

calculated using the conventional three-step PSP. 

The proposed scheme's performance was also 

demonstrated by reconstructing the surface profile of a 

simulator membrane at four different static levels and 

observing its deformation in a dynamic setting. From the 

observation, the proposed scheme can suppress the phase 

errors up to 30% less the absolute errors than the conventional 

method and successfully reconstruct the 3D surface for low-

frequency continuous membrane deformation with minimized 

phase errors. The method's performance for surface 
measurement under real vibration or higher frequency needs 

to be further investigated. Additionally, observation and 

measurement of colored objects need to be explored.  
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