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Abstract— Mutation testing is an effective technique for errors. Although effective, mutation testing has the main limitation that it is 

awfully expensive because it requires a series of tests on each mutant. Therefore, many researchers have focused on presenting various 

techniques to reduce the cost of mutation testing. In this study, the MT-Forward algorithm was developed. The concept of MT-Forward 

is mutation testing that connects the selection and prediction methods. As a result of the selection, the mutant operator can make a more 

efficient selection of the number of mutants obtained. The shrinkage of the selected mutants was from 1,019 live mutants to 749 live 

mutants as a priority. There are 15 features used in this study. The required features are obtained from the Locmetrix Test, Coverage 

Test, and Mutation Testing. The accuracy value of each method is almost the same, which distinguishes this study is the selection of 

important operators who prioritize improvement programs without reducing the level of accuracy. Where the PMS Method uses 43 

Mutant Operators, PMT Method 22 Mutant Operators, while MT-Forward uses 7 mutant operators as priority mutant operators. The 

method used to evaluate the performance of the algorithm is 5-fold cross-validation. The accuracy of each method is PMS 57.14%, PMT 

Method 57.14%, and MT-Forward is 95.00%. MT-Forward states that combining mutant selection techniques and project category 

prediction is important for fixing faults.  
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I. INTRODUCTION

The quality of a software product is affected by the quality 

of software testing [1]–[3]. Several of the techniques used is 
the approach of making the test case [4] and automatic 

assessment [5], [6]. One of them is mutation testing. A 

program's large number of mutants causes a high 

computational cost for mutation testing [7]–[9]. Programmers 

will find it difficult to kill all mutants [10]. This motivates the 

research to try the mutant operator selection and predict it. 

Mutant prediction methods have been developed. In this 

study, the predictive mutation testing technique was evaluated 

from the reduction of the mutant operators. There are two 

types of MUCLIPSE mutant operators: a traditional operator 

and a class operator. There are many approaches to reducing 

the cost of mutation testing based on mutant reduction that is 
being considered and how to consider the number of trials to 

also be reduced [11], [12]. Many mutants can be tested in a 

project. So one of the solutions researchers apply is to create 

a clustering mutant or test case [13]. Previous research has 

also clustered projects for mutation testing. 

Prediction is a systematic process of predicting something 

to be observed. The mutant prediction process requires an 

algorithmic classification process [14]. However, some of the 
applied methods can be developed further by looking at the 

tested features. The PMT method predicts mutants with AUC 

values with several features [15], whereas the PMS method 

predicts mutation testing based on mutation values. Mutation-

Aware Fault Prediction performs predictions by taking the 

value from MCC. Optimization of different features is needed 

to increase the effectiveness or reduce the cost of mutation 

testing. Mutation clustering is more difficult to implement 

than selective mutation or mutant sampling because clustering 

removes unnecessary mutants [16].  

Therefore, this study improves the optimization technique 

in predicting project categories by considering mutation 
testing features. The features used in the classification of 

mutation testing project categories are Project Categories 

(CP), Covered Line (CL), Coverage Method (CM), Covered 

Branch (CB), Coverage Complexity (CC), Covered 

Instruction (CI), Missed Line (ML), Missed Method (MM), 

Missed Branch (MB), Missed Instruction (MI), Missed 
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Complexity (MC), Line of Code (LOC), number of mutants 

killed selected (NSK), number of mutants alive selected 

(NSA), and Number of Mutants (NM). The algorithm 

developed is the MT-Forward algorithm that connects the 

concepts of selection and prediction. The selection stage is 

useful for reducing testing costs. In addition, prediction is 

applied to predict the project category on mutation testing. 

The project categories are divided into three, namely low, 

medium, and high status. It is based on the category status 

states the rate of mutants found. It also means determining 

how much to increase. Meanwhile, this prediction also takes 
into account the features associated with mutation testing. 

II. MATERIALS AND METHOD 

A. Mutation Testing 

The purpose of mutation testing is to evaluate the scope of 

the test. The general idea is to inject the false into the original 

program automatically, run the test again, and expect to kill 

the mutant [17]. The false code version based on the injection 

is called a mutant. Mutants are considered alive if the test still 
passes or the result is the same as the source code execution 

result but are considered alive if both have the same output 

[18], [19]. Then to detect a live mutant, a new test case must 

be made to find the false or mutant code completely 

equivalent to the original code. The mutation test uses a set of 

tests to assess effectiveness since the test set must kill all the 

mutants. A mutation test should be able to ensure that a test 

suite can detect and find the false of all program developers 

by comparing the output of the original code and the output 

of the code mutated against the same test case. The 

effectiveness of error detection of a test suite depends on the 

percentage of false that the test suite can detect [20]. There 
are several mutation testing terminologies such as killed 

mutants, alive mutants, mutant equivalent, and mutation 

operators [21]. The mutants that were killed were the mutants 

detected by the test [22]. Alive mutants are mutants not 

detected by the test. An equivalent mutant is a mutant that is 

semantically equivalent to the code under test [23], [24]. 

Mutation operators are operators that modify code in simple 

ways. 

Applying mutation testing begins with building a mutant 

test program that creates a test suit. The following are the 

steps to run the mutation test. The first step is to insert 
incorrect code into the program source code by creating 

multiple versions called mutants. Each mutant made has a 

resemblance to the original program. Mutants containing false 

will affect the effectiveness of test cases. The second step is 

to test the case applied to the original and mutant programs. 

A test case is run to detect false in a program. The third step 

is to compare the results of the original and mutant programs 

based on the applied test case. The fourth step is mutant 

detection. The mutant is said to be killed by the test case if the 

original program and the mutant program produce different 

outputs [25]–[27]. Therefore, the test case is good enough to 
detect a change between the original and mutant programs. 

The fifth step is the detection of alive mutants. The mutant is 

said to be alive if the original program and the mutant 

program produce the same output. In such cases, the test cases 

are less effective because the goal is to kill all the mutants. 

 

B. Feature in Project Category 

Usually, software developers who create applications have 

a lot of code entered, which requires testing to ensure the app 

is running as expected. With mutation testing, it is possible to 

detect many mutants that must be corrected [28]. For this 
reason, software developers need clustering in project 

categories which shows which projects are prioritized. The 

features used are mutation scores [29]. In this study, the 

feature is not only a mutation score but also involves other 

features. These features are the number of killed mutants, 

SLOC-P, and SLOC-L.  

The quality of a set of test cases can be determined by 

calculating the mutation score (MS), where the mutant 

detected is divided by the total number of mutants [30]–[33]. 

A mutation test is said to kill a mutant if it finds an output 

different from the original program. Killed mutants are 
collected and placed according to project data. The SLOC-P 

and SLOC-L features are obtained in the Locmetrix test. Line 

source (SLOC) is a metric that describes the program code 

size [34]. SLOC has two types, namely physical and logical. 

Physical SLOC (SLOC-P) is counting the number of lines in 

the program. Meanwhile, comment lines are not counted. 

Logical SLOC calculates the number of statements that can 

be executed to run a program. 

C. The Classification Feature in Mutation Testing  

Classification of mutation testing in project categories 

based on mutant operators after process selection. The feature 

used is project categories, covered instructions, covered line, 

covered methods, covered complexity, complexity branch, 

missed instructions, missed a line, missed methods, missed 

complexity, missed branch, LOC (Lines of Code), number of 

alive mutants selected, number of kill mutants selected, and 

number of mutants. In the Project Category (CP) feature, 

mutation testing projects need to be grouped. This is to make 

it easier for software developers. When several projects are 

tested for mutants, it is better to prioritize which ones will be 
fixed first. Covered Line (CL) is information the java code-

covered tool provides, such as line counts in the class file. 

Class files are compiled first. The line will be counted; at least 

there are instructions run. Code coverage can be used for 

platform evaluation for java applications [35]. The coverage 

Method (CM) is the extent to which a specified coverage item 

has been performed by the test suite [36]. A method will be 

counted when there is at least one command executed. 

Sometimes not all methods are used in application sources. It 

requires a test on the coverage method [37]. Branch coverage 

(CB) covers the possible steps in the branching flow control 

structure followed. The coverage test will record if the 
expression is Boolean in the control structure and see if the 

expression matches when it executes [38]. Branch coverage is 

more impressive because it tends to go deeper into the code 

than the statement coverage technique. Branch coverage is a 

metric measuring the results of decisions that are subjected to 

testing. Information on branch coverage will have at least one 

branching done. Examples of instructions that are calculated 

in branch coverage are the if and switch statements. Coverage 

Complexity (CC) is a method's number of programming paths 

and is calculated from the minimum obtained. The complexity 

information in the class file can be computed even if there is 
no debugging information. The complexity value is closely 
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related to a class file's unit test. The instructions in the class 

file are counted as part of the covered instructions information 

(CI). The instructions must exist in a class file so they can be 

computed quickly even without debugging information. The 

code that has been executed is included in the calculation. 

Missed line (ML) is a calculation where instructions on the 

line are not executed. Missed methods (MM) are the number 

of methods that contain files but do not execute. The Missed 

Branch metric (MB) provides information about the branch 

(if and switch statement instructions) that were not executed. 

The covered branch is not being used, so it is entered into the 

missed branch metric. Missed instruction metrics (MI) 

provide information on the number of instructions that were 

not executed. Missed complexity (MC) indicates the number 

of test cases missing to cover the module completely. Line of 

Code (LOC) is a large software measurement technique by 

counting the number of lines of existing program code.  
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Fig. 1  MT-Forward Algorithm 

 

The LOC method is one of the easiest traditional methods 

of measuring the quality of a software, although easy the LOC 

method is quite complicated when studied. LOC is a real 

proof of what software engineers are doing (in this context it 

proves how many lines of program a programmer commented 

there were). In general, better programming skills can use 
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fewer LOCs and sophisticated programming constructs [39]. 

The number of killed selected mutants (NSK) is obtained 

from mutation testing based on the selected mutant operator. 

There are many mutants killed in mutation testing. But not all 

mutants that were killed counted for NSK. However, NSK 

counts only the number of mutants killed from certain mutant 

types. This is adjusted to the reference mutant. The number of 

selected alive mutants (NSA) was identified during mutation 

testing. The NSA counts not all alive mutants. As with NSK, 

the number of living mutants is calculated based on the type 

of mutant that is the reference. Number of Mutants (NM) is a 
mutant that appears after mutation testing. Mutants were 

counted and grouped. Mutants use several types of operators. 

Mutation testing using MUCLIPSE has two types of mutant 

operators: traditional and class operators. 

D. MT-Forward Algorithm 

MT-Forward is an algorithm that connects the Advanced 

Choice algorithm with classification. The selected 

classification is the k nearest neighbor algorithm. An 
algorithm is a sequence of several logical and systematic steps 

that are used to solve certain problems. Forward selection is 

part of the method for feature selection. The forward method 

is modeling from zero variables. Then the variables are 

entered one by one until certain criteria are met. After the 

mutant selection process is complete, it will be connected with 

the classification process. It uses the nearest k neighbor 

(KNN). So this method is called MT-Forward. The flow steps 

of the MT-Forward algorithm are shown in the flowchart as 

shown in Figure 1. 

The MT-Forward algorithm starts from the similarity 

correction between mutants and the similarity correction 
between mutant data lines. Next is to calculate the partial 

correlation value first. Check for non-correlation values. If 

there is no correlation, the mutants will be eliminated. The 

mutant operator used is the one with the largest correlation 

value. The correlation equation used is as follows: 

 � = � ∑ ���(∑ �)(∑ �)

{� ∑ ���(∑ �)�}{� ∑ ���(∑ �)�}

 (1) 

The x symbol shows the independent variable that is the 

selected feature. Meanwhile, the y symbol is the dependent 

variable, namely the project category. The simple f test uses 

the mutant operator. The next selection process is by 

comparing the f-count and the f-table. The mutant operator 

will enter the model if the value of f is greater than the f-table. 

The regression coefficient is calculated based on the 

remaining variables. This is done to find the mutant operator 
which has the largest coefficient. The next step is to test f 

simultaneously by the mutant operator and the selected 

mutant from the previous model. The process will be repeated 

until the value is smaller than the f-table. After the selection 

process, it enters the prediction process. Data originating from 

the selected operator will be processed. The f-test formula is 

shown: 

 � = ��/(���)
(����)/(���) (2) 

R is the Correlation Coefficient. The n symbol is the 
amount of data. Meanwhile, k represents the number of 

independent variables. The next step in the MT-Forward 

algorithm is classification. The KNN algorithm starts by 

specifying the value of the k parameter. The Euclidian 

distance from the training data is calculated. The euclidean 

distance formula is shown: 

 �(�,�) =  �(�� − ��)� +  (�� − ��)� (3) 

The x symbol is the data record. Meanwhile, y is the data 

centroid. Data is sorted from high to low values. The next 

process is to collect the nearest neighbors' classification based 

on k. The type of class determines the classification results. 
The final stage is to measure the performance of the model.  

III. RESULTS AND DISCUSSION 

A high Mutation Score means that many mutants detected 

on the mutation test are killed. So, the programmer just needs 

a little improvement in the source code being developed. A 

low Mutation Score means that a small number of killed 

mutants were detected on mutation testing. So, the 

programmer needs a lot of improvement on the developed 
source code. However, the project category clusters involve 

other attributes to differentiate levels. Apart from the 

mutation score, the attributes that are entered are the number 

of killed mutants, SLOC-P, and SLOC-L. Cluster models 

obtained after iterations are as follows:  

TABLE I 
ABSOLUTE COUNT CLUSTER COEFFICIENT 

Index Nominal Value Absolute Count Fraction 

1 cluster_0 28 0.757 

2 cluster_1 7 0.119 

3 cluster_2 2 0.054 

 

Based on project clustering in Table I, information was 

obtained that 28 projects were part of the low category. 

Medium status is 7 projects and in the high category is 2 

projects. At the Clustering Evaluation stage, it was carried out 
using the Davies Bouldin Index (DBI). It determines the 

optimal number of clusters in the clustering process. The best 

number of clusters is the cluster that has the lowest DBI value 

compared to the number of other clusters. The most optimal 

value in the study amounted to 3 where the DBI value was 

0.656. This means that the mutation value is high, medium, 

and low. MT-Forward starts with forwarding selection. 

Forward Selection is selecting variables based on correlation 

coefficients and regressing independent variables X one by 

one until perfect equations are obtained. The study of 

conducting a selection using the Forward Selection algorithm. 
The result obtained is 7 mutant operators from 21 mutant 

operators. The results of the forward selection obtained are as 

follows: 

TABLE III 

THE RESULT OF FORWARD SELECTION 

Model F Sig. 

1 Predictors: (Constant), AOIS 31.479 .000a 

2 Predictors: (Constant), AOIS, COD 31.348 .000b 

3 Predictors: (Constant), AOIS, COD, JID 40.692 .000c 

4 Predictors: (Constant), AOIS, COD, JID, AORB 39.000 .000d 

5 Predictors: (Constant), AOIS, COD, JID, AORB, 

COI 

43.509 .000e 

6 Predictors: (Constant), AOIS, COD, JID, AORB, 

COI, ASRS 

52.463 .000f 

7 Predictors: (Constant), AOIS, COD, JID, AORB, 

COI, ASRS, LOI 

52.303 .000g 
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Table II shows that the mutant selection obtained is AOIS, 

COD, JID, AORB, COI, ASRS, LOI. Mutants selected 

operators were collected after obtaining the f test with a 

significant value below 0.05. Meanwhile, the mutants that 

were not selected were AORS, AOIU, ROR, COR, IOD, 

OAN, JTI, JTD, JSI. Unselected mutant operators were 

collected after the regression test with a significant value 

above 0.05. Shrinkage of the selected mutants was from 1,019 

live mutants to 749 live mutants as priority. It is obtained after 

selecting operator mutants based on the forward selection 

method. 
The features used in the classification of mutation testing 

project categories are Project categories (CP), Covered Line 

(CL), Coverage Method (CM), Covered Branch (CB), 

Coverage Complexity (CC), Covered Instruction (CI), Missed 

Line (ML), Missed Method (MM), Missed Branch (MB), 

Missed Instruction (MI), Missed Complexity (MC), Line of 

Code (LOC), number of mutants killed selected (NSK), 

number of mutants alive selected (NSA), and Number of 

Mutants (NM). The classification feature obtains the average 

value as shown in the following Figure 2.  

 

 
Fig. 2  The Average of Features 

Mutant classification uses the KNN algorithm. The 

majority of classifications that emerge are category 1. 

Predictive data test results are classified into low mutations. 

This means that the project under study has a low mutation 

score, so the mutants live more than the dead ones. The 

classification method requires measurement so that it can be 

said to be the best method.  
 

Fig. 3  Accuracy of Cross Validation 

 

The method used is the confusion matrix. The confusion 

matrix results are compared with the results of other 

classification confusion matrices. Accuracy is defined as the 

level of closeness between the predicted value and the actual 

value. The accuracy value is taken from the correct prediction 

ratio (positive and negative) with the whole data. The KNN 

algorithm predicts project categories based on features. The 

k-optimal search using the k-Fold Cross Validation method 

can be seen in the following figure 2. 

The number of folds that can be maximized in the MT-

Forward method is k-fold = 5 with an accuracy of 95.00%. 

The method that has been generated is compared with other 

methods. Among the methods being compared are the PMT 
method and the PMS method. The results obtained are as 

follows: 

TABLE III 

COMPARE ALGORITHM 

  Kevin Jalbert 

(PMS 

Method) 

Zhang Jie 

(PMT 

Method) 

Sasa Ani 

Arnomo (MT-

Forward) 

Year 2012 2018 2020 

Mutation 

Operator 

43 Operator 22 Operator 

(14 pit and 8 

major) 

21 Operator 

Reduction - - 7 Operator 

Feature 4 Feature 14 Feature 15 Feature 

Classification SVM Random forest KNN 

Accuracy 57.14% 57.14% 95% 

 

The use of many operators to detect mutants will be 

increasingly influential, with much testing that must be done. 
The repair will also require a long time for any errors in 

programming. Table 3 above shows a comparison of methods 

for predicting mutation testing. The accuracy value of each 

method is almost the same which distinguishes this research 

is choosing an important operator that is a priority. Although 

reduced, it does not reduce the level of prediction accuracy in 

mutation testing. Where PMS Method uses 43 Mutant 

Operators, PMT Method 22 Mutant Operators while MT-

Forward uses 7 mutant operators as priority mutant operators. 

IV. CONCLUSION 

A high Mutation Score means that many mutants detected 

on the mutation test are killed. So, the programmer just needs 

a little improvement on the source code being developed. A 

low Mutation Score means that a small number of killed 

mutants were detected on mutation testing. So, the 

programmer needs much improvement on the developed 

source code. However, the project category clusters involve 

other attributes to differentiate levels. Where apart from the 

mutation score, the attributes that are entered are the number 
of killed mutants, SLOC-P, and SLOC-L. Based on 

clustering, most of the mutation testing project categories 

were obtained at cluster_0 (Low). There are 28 low level 

projects, 7 medium level projects and 2 high level projects. 

The mutant selection and project category clusters were 

completed and then predicted. The accuracy value of each 

method is almost the same which distinguishes this research 

is choosing an important operator that is a priority. Although 

reduced, it does not reduce the level of prediction accuracy in 

mutation testing. Where the PMS Method uses 43 Mutant 

Operators, the PMT Method is 22, while Mutant Operators 
MT-Forward uses 7 mutant operators as priority mutant 
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operators. While the accuracy of each method is PMS 

57.14%, PMT Method 57.14%, and MT-Forward are 95.00% 
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