
Vol.12 (2022) No. 5

ISSN: 2088-5334

MT-Forward Algorithm for Prediction of Project Categories Based on

Selection of Mutants

Sasa Ani Arnomo a,*, Noraini Binti Ibrahim b

a Department of Information System, Universitas Putera Batam, Batam, Indonesia
b Universiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia

Corresponding author: *sasa@puterabatam.ac.id

Abstract— Mutation testing is an effective technique for errors. Although effective, mutation testing has the main limitation that it is

awfully expensive because it requires a series of tests on each mutant. Therefore, many researchers have focused on presenting various

techniques to reduce the cost of mutation testing. In this study, the MT-Forward algorithm was developed. The concept of MT-Forward

is mutation testing that connects the selection and prediction methods. As a result of the selection, the mutant operator can make a more

efficient selection of the number of mutants obtained. The shrinkage of the selected mutants was from 1,019 live mutants to 749 live

mutants as a priority. There are 15 features used in this study. The required features are obtained from the Locmetrix Test, Coverage

Test, and Mutation Testing. The accuracy value of each method is almost the same, which distinguishes this study is the selection of

important operators who prioritize improvement programs without reducing the level of accuracy. Where the PMS Method uses 43

Mutant Operators, PMT Method 22 Mutant Operators, while MT-Forward uses 7 mutant operators as priority mutant operators. The

method used to evaluate the performance of the algorithm is 5-fold cross-validation. The accuracy of each method is PMS 57.14%, PMT

Method 57.14%, and MT-Forward is 95.00%. MT-Forward states that combining mutant selection techniques and project category

prediction is important for fixing faults.

Keywords— Prediction; selection; mutants; mutation testing; MT-Forward.

Manuscript received 22 Jan. 2021; revised 21 May 2021; accepted 8 Jul. 2021. Date of publication 31 Oct. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The quality of a software product is affected by the quality

of software testing [1]–[3]. Several of the techniques used is
the approach of making the test case [4] and automatic

assessment [5], [6]. One of them is mutation testing. A

program's large number of mutants causes a high

computational cost for mutation testing [7]–[9]. Programmers

will find it difficult to kill all mutants [10]. This motivates the

research to try the mutant operator selection and predict it.

Mutant prediction methods have been developed. In this

study, the predictive mutation testing technique was evaluated

from the reduction of the mutant operators. There are two

types of MUCLIPSE mutant operators: a traditional operator

and a class operator. There are many approaches to reducing

the cost of mutation testing based on mutant reduction that is
being considered and how to consider the number of trials to

also be reduced [11], [12]. Many mutants can be tested in a

project. So one of the solutions researchers apply is to create

a clustering mutant or test case [13]. Previous research has

also clustered projects for mutation testing.

Prediction is a systematic process of predicting something

to be observed. The mutant prediction process requires an

algorithmic classification process [14]. However, some of the
applied methods can be developed further by looking at the

tested features. The PMT method predicts mutants with AUC

values with several features [15], whereas the PMS method

predicts mutation testing based on mutation values. Mutation-

Aware Fault Prediction performs predictions by taking the

value from MCC. Optimization of different features is needed

to increase the effectiveness or reduce the cost of mutation

testing. Mutation clustering is more difficult to implement

than selective mutation or mutant sampling because clustering

removes unnecessary mutants [16].

Therefore, this study improves the optimization technique

in predicting project categories by considering mutation
testing features. The features used in the classification of

mutation testing project categories are Project Categories

(CP), Covered Line (CL), Coverage Method (CM), Covered

Branch (CB), Coverage Complexity (CC), Covered

Instruction (CI), Missed Line (ML), Missed Method (MM),

Missed Branch (MB), Missed Instruction (MI), Missed

1938

Complexity (MC), Line of Code (LOC), number of mutants

killed selected (NSK), number of mutants alive selected

(NSA), and Number of Mutants (NM). The algorithm

developed is the MT-Forward algorithm that connects the

concepts of selection and prediction. The selection stage is

useful for reducing testing costs. In addition, prediction is

applied to predict the project category on mutation testing.

The project categories are divided into three, namely low,

medium, and high status. It is based on the category status

states the rate of mutants found. It also means determining

how much to increase. Meanwhile, this prediction also takes
into account the features associated with mutation testing.

II. MATERIALS AND METHOD

A. Mutation Testing

The purpose of mutation testing is to evaluate the scope of

the test. The general idea is to inject the false into the original

program automatically, run the test again, and expect to kill

the mutant [17]. The false code version based on the injection

is called a mutant. Mutants are considered alive if the test still
passes or the result is the same as the source code execution

result but are considered alive if both have the same output

[18], [19]. Then to detect a live mutant, a new test case must

be made to find the false or mutant code completely

equivalent to the original code. The mutation test uses a set of

tests to assess effectiveness since the test set must kill all the

mutants. A mutation test should be able to ensure that a test

suite can detect and find the false of all program developers

by comparing the output of the original code and the output

of the code mutated against the same test case. The

effectiveness of error detection of a test suite depends on the

percentage of false that the test suite can detect [20]. There
are several mutation testing terminologies such as killed

mutants, alive mutants, mutant equivalent, and mutation

operators [21]. The mutants that were killed were the mutants

detected by the test [22]. Alive mutants are mutants not

detected by the test. An equivalent mutant is a mutant that is

semantically equivalent to the code under test [23], [24].

Mutation operators are operators that modify code in simple

ways.

Applying mutation testing begins with building a mutant

test program that creates a test suit. The following are the

steps to run the mutation test. The first step is to insert
incorrect code into the program source code by creating

multiple versions called mutants. Each mutant made has a

resemblance to the original program. Mutants containing false

will affect the effectiveness of test cases. The second step is

to test the case applied to the original and mutant programs.

A test case is run to detect false in a program. The third step

is to compare the results of the original and mutant programs

based on the applied test case. The fourth step is mutant

detection. The mutant is said to be killed by the test case if the

original program and the mutant program produce different

outputs [25]–[27]. Therefore, the test case is good enough to
detect a change between the original and mutant programs.

The fifth step is the detection of alive mutants. The mutant is

said to be alive if the original program and the mutant

program produce the same output. In such cases, the test cases

are less effective because the goal is to kill all the mutants.

B. Feature in Project Category

Usually, software developers who create applications have

a lot of code entered, which requires testing to ensure the app

is running as expected. With mutation testing, it is possible to

detect many mutants that must be corrected [28]. For this
reason, software developers need clustering in project

categories which shows which projects are prioritized. The

features used are mutation scores [29]. In this study, the

feature is not only a mutation score but also involves other

features. These features are the number of killed mutants,

SLOC-P, and SLOC-L.

The quality of a set of test cases can be determined by

calculating the mutation score (MS), where the mutant

detected is divided by the total number of mutants [30]–[33].

A mutation test is said to kill a mutant if it finds an output

different from the original program. Killed mutants are
collected and placed according to project data. The SLOC-P

and SLOC-L features are obtained in the Locmetrix test. Line

source (SLOC) is a metric that describes the program code

size [34]. SLOC has two types, namely physical and logical.

Physical SLOC (SLOC-P) is counting the number of lines in

the program. Meanwhile, comment lines are not counted.

Logical SLOC calculates the number of statements that can

be executed to run a program.

C. The Classification Feature in Mutation Testing

Classification of mutation testing in project categories

based on mutant operators after process selection. The feature

used is project categories, covered instructions, covered line,

covered methods, covered complexity, complexity branch,

missed instructions, missed a line, missed methods, missed

complexity, missed branch, LOC (Lines of Code), number of

alive mutants selected, number of kill mutants selected, and

number of mutants. In the Project Category (CP) feature,

mutation testing projects need to be grouped. This is to make

it easier for software developers. When several projects are

tested for mutants, it is better to prioritize which ones will be
fixed first. Covered Line (CL) is information the java code-

covered tool provides, such as line counts in the class file.

Class files are compiled first. The line will be counted; at least

there are instructions run. Code coverage can be used for

platform evaluation for java applications [35]. The coverage

Method (CM) is the extent to which a specified coverage item

has been performed by the test suite [36]. A method will be

counted when there is at least one command executed.

Sometimes not all methods are used in application sources. It

requires a test on the coverage method [37]. Branch coverage

(CB) covers the possible steps in the branching flow control

structure followed. The coverage test will record if the
expression is Boolean in the control structure and see if the

expression matches when it executes [38]. Branch coverage is

more impressive because it tends to go deeper into the code

than the statement coverage technique. Branch coverage is a

metric measuring the results of decisions that are subjected to

testing. Information on branch coverage will have at least one

branching done. Examples of instructions that are calculated

in branch coverage are the if and switch statements. Coverage

Complexity (CC) is a method's number of programming paths

and is calculated from the minimum obtained. The complexity

information in the class file can be computed even if there is
no debugging information. The complexity value is closely

1939

related to a class file's unit test. The instructions in the class

file are counted as part of the covered instructions information

(CI). The instructions must exist in a class file so they can be

computed quickly even without debugging information. The

code that has been executed is included in the calculation.

Missed line (ML) is a calculation where instructions on the

line are not executed. Missed methods (MM) are the number

of methods that contain files but do not execute. The Missed

Branch metric (MB) provides information about the branch

(if and switch statement instructions) that were not executed.

The covered branch is not being used, so it is entered into the

missed branch metric. Missed instruction metrics (MI)

provide information on the number of instructions that were

not executed. Missed complexity (MC) indicates the number

of test cases missing to cover the module completely. Line of

Code (LOC) is a large software measurement technique by

counting the number of lines of existing program code.

Correction of similarities

between mutants

Correction of similarities

between row data mutants

calculating the partial

correlation value

Check correlation

The mutant operator will

be removed

Looking for the greatest

correlation value

simple f-test

comparing the f-count

and f-table

YesNo

Calculate the regression

coefficient

Test f simultaneously

Looking for the greatest

regression coefficient

comparing the f-count

and f-table
Yes

Calculate Euclidian

distance

Sorting the distance

formed

Determine the

parameter k

Collecting nearest neighbor

classifications based on k

Define the class as a

data class

Performance

Measure

Save Included

Mutant Operator

NO

Save Excluded

mutant operator

End

Prediction Category

Mutation Testing

less

Fig. 1 MT-Forward Algorithm

The LOC method is one of the easiest traditional methods

of measuring the quality of a software, although easy the LOC

method is quite complicated when studied. LOC is a real

proof of what software engineers are doing (in this context it

proves how many lines of program a programmer commented

there were). In general, better programming skills can use

1940

fewer LOCs and sophisticated programming constructs [39].

The number of killed selected mutants (NSK) is obtained

from mutation testing based on the selected mutant operator.

There are many mutants killed in mutation testing. But not all

mutants that were killed counted for NSK. However, NSK

counts only the number of mutants killed from certain mutant

types. This is adjusted to the reference mutant. The number of

selected alive mutants (NSA) was identified during mutation

testing. The NSA counts not all alive mutants. As with NSK,

the number of living mutants is calculated based on the type

of mutant that is the reference. Number of Mutants (NM) is a
mutant that appears after mutation testing. Mutants were

counted and grouped. Mutants use several types of operators.

Mutation testing using MUCLIPSE has two types of mutant

operators: traditional and class operators.

D. MT-Forward Algorithm

MT-Forward is an algorithm that connects the Advanced

Choice algorithm with classification. The selected

classification is the k nearest neighbor algorithm. An
algorithm is a sequence of several logical and systematic steps

that are used to solve certain problems. Forward selection is

part of the method for feature selection. The forward method

is modeling from zero variables. Then the variables are

entered one by one until certain criteria are met. After the

mutant selection process is complete, it will be connected with

the classification process. It uses the nearest k neighbor

(KNN). So this method is called MT-Forward. The flow steps

of the MT-Forward algorithm are shown in the flowchart as

shown in Figure 1.

The MT-Forward algorithm starts from the similarity

correction between mutants and the similarity correction
between mutant data lines. Next is to calculate the partial

correlation value first. Check for non-correlation values. If

there is no correlation, the mutants will be eliminated. The

mutant operator used is the one with the largest correlation

value. The correlation equation used is as follows:

 � = � ∑ ���(∑ �)(∑ �)

{� ∑ ���(∑ �)�}{� ∑ ���(∑ �)�}

 (1)

The x symbol shows the independent variable that is the

selected feature. Meanwhile, the y symbol is the dependent

variable, namely the project category. The simple f test uses

the mutant operator. The next selection process is by

comparing the f-count and the f-table. The mutant operator

will enter the model if the value of f is greater than the f-table.

The regression coefficient is calculated based on the

remaining variables. This is done to find the mutant operator
which has the largest coefficient. The next step is to test f

simultaneously by the mutant operator and the selected

mutant from the previous model. The process will be repeated

until the value is smaller than the f-table. After the selection

process, it enters the prediction process. Data originating from

the selected operator will be processed. The f-test formula is

shown:

 � = ��/(���)
(����)/(���) (2)

R is the Correlation Coefficient. The n symbol is the
amount of data. Meanwhile, k represents the number of

independent variables. The next step in the MT-Forward

algorithm is classification. The KNN algorithm starts by

specifying the value of the k parameter. The Euclidian

distance from the training data is calculated. The euclidean

distance formula is shown:

 �(�,�) = �(�� − ��)� + (�� − ��)� (3)

The x symbol is the data record. Meanwhile, y is the data

centroid. Data is sorted from high to low values. The next

process is to collect the nearest neighbors' classification based

on k. The type of class determines the classification results.
The final stage is to measure the performance of the model.

III. RESULTS AND DISCUSSION

A high Mutation Score means that many mutants detected

on the mutation test are killed. So, the programmer just needs

a little improvement in the source code being developed. A

low Mutation Score means that a small number of killed

mutants were detected on mutation testing. So, the

programmer needs a lot of improvement on the developed
source code. However, the project category clusters involve

other attributes to differentiate levels. Apart from the

mutation score, the attributes that are entered are the number

of killed mutants, SLOC-P, and SLOC-L. Cluster models

obtained after iterations are as follows:

TABLE I
ABSOLUTE COUNT CLUSTER COEFFICIENT

Index Nominal Value Absolute Count Fraction

1 cluster_0 28 0.757

2 cluster_1 7 0.119

3 cluster_2 2 0.054

Based on project clustering in Table I, information was

obtained that 28 projects were part of the low category.

Medium status is 7 projects and in the high category is 2

projects. At the Clustering Evaluation stage, it was carried out
using the Davies Bouldin Index (DBI). It determines the

optimal number of clusters in the clustering process. The best

number of clusters is the cluster that has the lowest DBI value

compared to the number of other clusters. The most optimal

value in the study amounted to 3 where the DBI value was

0.656. This means that the mutation value is high, medium,

and low. MT-Forward starts with forwarding selection.

Forward Selection is selecting variables based on correlation

coefficients and regressing independent variables X one by

one until perfect equations are obtained. The study of

conducting a selection using the Forward Selection algorithm.
The result obtained is 7 mutant operators from 21 mutant

operators. The results of the forward selection obtained are as

follows:

TABLE III

THE RESULT OF FORWARD SELECTION

Model F Sig.

1 Predictors: (Constant), AOIS 31.479 .000a

2 Predictors: (Constant), AOIS, COD 31.348 .000b

3 Predictors: (Constant), AOIS, COD, JID 40.692 .000c

4 Predictors: (Constant), AOIS, COD, JID, AORB 39.000 .000d

5 Predictors: (Constant), AOIS, COD, JID, AORB,

COI

43.509 .000e

6 Predictors: (Constant), AOIS, COD, JID, AORB,

COI, ASRS

52.463 .000f

7 Predictors: (Constant), AOIS, COD, JID, AORB,

COI, ASRS, LOI

52.303 .000g

1941

Table II shows that the mutant selection obtained is AOIS,

COD, JID, AORB, COI, ASRS, LOI. Mutants selected

operators were collected after obtaining the f test with a

significant value below 0.05. Meanwhile, the mutants that

were not selected were AORS, AOIU, ROR, COR, IOD,

OAN, JTI, JTD, JSI. Unselected mutant operators were

collected after the regression test with a significant value

above 0.05. Shrinkage of the selected mutants was from 1,019

live mutants to 749 live mutants as priority. It is obtained after

selecting operator mutants based on the forward selection

method.
The features used in the classification of mutation testing

project categories are Project categories (CP), Covered Line

(CL), Coverage Method (CM), Covered Branch (CB),

Coverage Complexity (CC), Covered Instruction (CI), Missed

Line (ML), Missed Method (MM), Missed Branch (MB),

Missed Instruction (MI), Missed Complexity (MC), Line of

Code (LOC), number of mutants killed selected (NSK),

number of mutants alive selected (NSA), and Number of

Mutants (NM). The classification feature obtains the average

value as shown in the following Figure 2.

Fig. 2 The Average of Features

Mutant classification uses the KNN algorithm. The

majority of classifications that emerge are category 1.

Predictive data test results are classified into low mutations.

This means that the project under study has a low mutation

score, so the mutants live more than the dead ones. The

classification method requires measurement so that it can be

said to be the best method.

Fig. 3 Accuracy of Cross Validation

The method used is the confusion matrix. The confusion

matrix results are compared with the results of other

classification confusion matrices. Accuracy is defined as the

level of closeness between the predicted value and the actual

value. The accuracy value is taken from the correct prediction

ratio (positive and negative) with the whole data. The KNN

algorithm predicts project categories based on features. The

k-optimal search using the k-Fold Cross Validation method

can be seen in the following figure 2.

The number of folds that can be maximized in the MT-

Forward method is k-fold = 5 with an accuracy of 95.00%.

The method that has been generated is compared with other

methods. Among the methods being compared are the PMT
method and the PMS method. The results obtained are as

follows:

TABLE III

COMPARE ALGORITHM

 Kevin Jalbert

(PMS

Method)

Zhang Jie

(PMT

Method)

Sasa Ani

Arnomo (MT-

Forward)

Year 2012 2018 2020

Mutation

Operator

43 Operator 22 Operator

(14 pit and 8

major)

21 Operator

Reduction - - 7 Operator

Feature 4 Feature 14 Feature 15 Feature

Classification SVM Random forest KNN

Accuracy 57.14% 57.14% 95%

The use of many operators to detect mutants will be

increasingly influential, with much testing that must be done.
The repair will also require a long time for any errors in

programming. Table 3 above shows a comparison of methods

for predicting mutation testing. The accuracy value of each

method is almost the same which distinguishes this research

is choosing an important operator that is a priority. Although

reduced, it does not reduce the level of prediction accuracy in

mutation testing. Where PMS Method uses 43 Mutant

Operators, PMT Method 22 Mutant Operators while MT-

Forward uses 7 mutant operators as priority mutant operators.

IV. CONCLUSION

A high Mutation Score means that many mutants detected

on the mutation test are killed. So, the programmer just needs

a little improvement on the source code being developed. A

low Mutation Score means that a small number of killed

mutants were detected on mutation testing. So, the

programmer needs much improvement on the developed

source code. However, the project category clusters involve

other attributes to differentiate levels. Where apart from the

mutation score, the attributes that are entered are the number
of killed mutants, SLOC-P, and SLOC-L. Based on

clustering, most of the mutation testing project categories

were obtained at cluster_0 (Low). There are 28 low level

projects, 7 medium level projects and 2 high level projects.

The mutant selection and project category clusters were

completed and then predicted. The accuracy value of each

method is almost the same which distinguishes this research

is choosing an important operator that is a priority. Although

reduced, it does not reduce the level of prediction accuracy in

mutation testing. Where the PMS Method uses 43 Mutant

Operators, the PMT Method is 22, while Mutant Operators
MT-Forward uses 7 mutant operators as priority mutant

1942

operators. While the accuracy of each method is PMS

57.14%, PMT Method 57.14%, and MT-Forward are 95.00%

ACKNOWLEDGMENT

This research was supported by Universiti Tun Hussein

Onn Malaysia. The institution provides facilities in the form

of a computer laboratory that helps provide complete

software.

REFERENCES

[1] A. Mustafa, W. M. N. Wan-Kadir, and N. Ibrahim, “Comparative

evaluation of the state-of-art requirements-based test case generation

approaches,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 4–2 Special

Issue, pp. 1567–1573, 2017.

[2] F. F. Ismail, R. Razali, and Z. Mansor, “Considerations for cost

estimation of software testing outsourcing projects,” Int. J. Adv. Sci.

Eng. Inf. Technol., vol. 9, no. 1, pp. 142–152, 2019.

[3] A. Aghamohammadi, S. H. Mirian-Hosseinabadi, and S. Jalali,

“Statement frequency coverage: A code coverage criterion for

assessing test suite effectiveness,” Inf. Softw. Technol., vol. 129, no.

September 2020, p. 106426, 2021.

[4] A. Usman, N. Ibrahim, and I. A. Salihu, “TEGDroid: Test case

generation approach for android apps considering context and GUI

events,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 1, pp. 16–23,

2020.

[5] R. Romli, S. Sarker, M. Omar, and M. Mahmod, “Automated test cases

and test data generation for dynamic structural testing in automatic

programming assessment using MC/DC,” Int. J. Adv. Sci. Eng. Inf.

Technol., vol. 10, no. 1, pp. 120–127, 2020.

[6] P. Ma, H. Cheng, J. Zhang, and J. Xuan, “Can this fault be detected:

A study on fault detection via automated test generation,” J. Syst.

Softw., vol. 170, p. 110769, 2020.

[7] J. M. Zhang, L. Zhang, D. Hao, L. Zhang, and M. Harman, “An

empirical comparison of mutant selection assessment metrics,” Proc.

- 2019 IEEE 12th Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW

2019, pp. 90–101, 2019.

[8] M. A. Guimaraes, L. Fernandes, M. Ribeiro, M. D’Amorim, and R.

Gheyi, “Optimizing Mutation Testing by Discovering Dynamic

Mutant Subsumption Relations,” Proc. - 2020 IEEE 13th Int. Conf.

Softw. Testing, Verif. Validation, ICST 2020, pp. 198–208, 2020.

[9] E. Guerra, J. Sánchez Cuadrado, and J. De Lara, “Towards Effective

Mutation Testing for ATL,” Proc. - 2019 ACM/IEEE 22nd Int. Conf.

Model Driven Eng. Lang. Syst. Model. 2019, no. label 1, pp. 78–88,

2019.

[10] X. Dang, X. Yao, D. Gong, T. Tian, and B. Sun, “Multi-Task

Optimization-Based Test Data Generation for Mutation Testing via

Relevance of Mutant Branch and Input Variable,” IEEE Access, vol.

8, pp. 144401–144412, 2020.

[11] A. V. Pizzoleto, F. C. Ferrari, L. D. Dallilo, and J. Offutt, “SiMut:

Exploring Program Similarity to Support the Cost Reduction of

Mutation Testing,” Proc. - 2020 IEEE 13th Int. Conf. Softw. Testing,

Verif. Valid. Work. ICSTW 2020, pp. 264–273, 2020.

[12] Z. Cui, M. Jia, X. Chen, L. Zheng, and X. Liu, “Improving software

fault localization by combining spectrum and mutation,” IEEE Access,

vol. 8, pp. 172296–172307, 2020.

[13] N. Chetouane, F. Wotawa, H. Felbinger, and M. Nica, “On Using k-

means Clustering for Test Suite Reduction,” Proc. - 2020 IEEE 13th

Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 2020, pp. 380–

385, 2020.

[14] A. Derezińska, “Soft Computing in Computer and Information

Science,” vol. 342, 2015.

[15] J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang,

“Predictive Mutation Testing,” IEEE Trans. Softw. Eng., vol. 14, no.

8, 2018.

[16] A. Derezińska, “A quality estimation of mutation clustering in C#

programs,” Adv. Intell. Syst. Comput., vol. 224, pp. 119–129, 2013.

[17] M. Al-Hajjaji, J. Krüger, F. Benduhn, T. Leich, and G. Saake,

“Efficient Mutation Testing in Configurable Systems,” Proc. - 2017

IEEE/ACM 2nd Int. Work. Var. Complex. Softw. Des. VACE 2017, pp.

2–8, 2017.

[18] Dana H Halabi & Adnan Shaout, “Mutation Testing Tools for Java

Programs – a Survey,” Int. J. Comput. Sci. Eng. , vol. 5, no. 4, pp. 11–

22, 2016.

[19] A. Duque-Torres, N. Doliashvili, D. Pfahl, and R. Ramler, “Predicting

Survived and Killed Mutants,” Proc. - 2020 IEEE 13th Int. Conf. Softw.

Testing, Verif. Valid. Work. ICSTW 2020, pp. 274–283, 2020.

[20] L. Madeyski and N. Radyk, “Judy – a mutation testing tool for Java,”

IET Softw., vol. 4, no. 1, pp. 32–42, 2010.

[21] S. A. Arnomo, N. B. Ibrahim, and A. Maslan, “Mutation score

prediction based on traditional operator of MUJAVA using logistic

regression,” J. Adv. Res. Dyn. Control Syst., vol. 11, no. 8 Special Issue,

pp. 1230–1238, 2019.

[22] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and M.

Harman, “Detecting Trivial Mutant Equivalences via Compiler

Optimisations,” IEEE Trans. Softw. Eng., vol. 44, no. 4, pp. 308–333,

2018.

[23] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata, “Employing Dynamic

Symbolic Execution for Equivalent Mutant Detection,” IEEE Access,

vol. 7, pp. 163767–163777, 2019.

[24] X. Dang, X. Yao, D. Gong, and T. Tian, “Efficiently Generating Test

Data to Kill Stubborn Mutants by Dynamically Reducing the Search

Domain,” IEEE Trans. Reliab., vol. 69, no. 1, pp. 334–348, 2020.

[25] H. Gu, J. Zhang, M. Chen, T. Wei, L. Lei, and F. Xie, “Specification-

Driven Conformance Checking for Virtual/Silicon Devices Using

Mutation Testing,” IEEE Trans. Comput., vol. 70, no. 3, pp. 400–413,

2021.

[26] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated Test Case

Generation as a Many-Objective Optimisation Problem with Dynamic

Selection of the Targets,” IEEE Trans. Softw. Eng., vol. 44, no. 2, pp.

122–158, 2018.

[27] P. Delgado-Pérez and F. Chicano, “An experimental and practical

study on the equivalent mutant connection: An evolutionary approach,”

Inf. Softw. Technol., vol. 124, no. April, 2020.

[28] S. A. Arnomo and N. Binti Ibrahim, “Priority path for mutant repairs

on mutation testing,” Proc. ICAITI 2019 - 2nd Int. Conf. Appl. Inf.

Technol. Innov. Explor. Futur. Technol. Appl. Inf. Technol. Innov., pp.

71–76, 2019.

[29] K. Jalbert and J. S. Bradbury, “Predicting mutation score using source

code and test suite metrics,” 2012 1st Int. Work. Realiz. AI Synerg.

Softw. Eng. RAISE 2012 - Proc., pp. 42–46, 2012.

[30] M. R. Naeem, T. Lin, H. Naeem, F. Ullah, and S. Saeed, “Scalable

Mutation Testing Using Predictive Analysis of Deep Learning Model,”

IEEE Access, vol. 7, pp. 158264–158283, 2019.

[31] M. Deon Bordignon and R. A. Silva, “Mutation Operators for

Concurrent Programs in Elixir,” 21st IEEE Latin-American Test Symp.

LATS 2020, 2020.

[32] X. Yao, G. Zhang, F. Pan, D. Gong, and C. Wei, “Orderly Generation

of Test Data via Sorting Mutant Branches Based on Their Dominance

Degrees for Weak Mutation Testing,” IEEE Trans. Softw. Eng., vol.

5589, no. c, pp. 1–17, 2020.

[33] G. Grano, F. Palomba, and H. C. Gall, “Lightweight Assessment of

Test-Case Effectiveness Using Source-Code-Quality Indicators,”

IEEE Trans. Softw. Eng., vol. 47, no. 4, pp. 758–774, 2019.

[34] J. Zhang et al., “A Study of Programming Languages and Their Bug

Resolution Characteristics,” IEEE Trans. Softw. Eng., vol. PP, no. X,

p. 1, 2019.

[35] L. Villalobos-Arias, C. Quesada-López, A. Martínez, and M. Jenkins,

“Evaluation of a model-based testing platform for Java applications,”

IET Softw., vol. 14, no. 2, pp. 115–128, 2020.

[36] J. Lee, S. Kang, and P. Jung, “Test coverage criteria for software

product line testing: Systematic literature review,” Inf. Softw. Technol.,

vol. 122, no. January, p. 106272, 2020.

[37] S. Yang, S. Huang, and Z. Hui, “Theoretical Analysis and Empirical

Evaluation of Coverage Indictors for Closed Source APP Testing,”

IEEE Access, vol. 7, pp. 162323–162332, 2019.

[38] C. Lu, J. Zhong, Y. Xue, L. Feng, and J. Zhang, “Ant Colony System

with Sorting-Based Local Search for Coverage-Based Test Case

Prioritization,” IEEE Trans. Reliab., vol. 69, no. 3, pp. 1004–1020,

2020.

[39] K. Amanullah and T. Bell, “Evaluating the Use of Remixing in Scratch

Projects Based on Repertoire, Lines of Code (LOC), and Elementary

Patterns,” Proc. - Front. Educ. Conf. FIE, vol. 2019-Octob, pp. 1–8,

2019.

1943

