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Abstract— The Application is closely connected to mobile devices designed for many people and has maintenance, However, even 

maintenance can contain violations such as code smells that effect non-functional requirements, specifically the use of CPU and memory 

resources. When the software has a rapid use of resources, it gives rise to the phenomenon that the user may switch or uninstall the 

software. The solution to this phenomenon is to explore resource-related code smells and fix them by refactoring them. Developments 

to explore code smells came with ASATs, namely SonarQube, which 85,000 organizations are already using to speed up analyzing code 

in software. This topic is related to code smells, and the research objective is to analyze and compare the performance of the original 

versions and single or cumulative refactored versions of Android mobile software using the Design Research Methodology (DRM) 

approach. Code smells are represented based on the classification on SonarQube, namely Blocker, Critical, Major, and Minor, with 

code smells such as HashMap Usage, Member Ignoring Method, and Slow Loop. Aspects tested include Fixed Detection Ratio (FDR), 

improvement, CPU, and memory usage. Based on the results of the research, it shows the depreciation of code smells which is proven 

to significantly increase CPU performance in a single refactoring, namely Member Ignoring Method and Critical by 7.7% and 9.90%, 

respectively. Moreover, single refactoring offers developers advantages reducing high costs, diminished exertion, and truncated 

maintenance duration. However, the cumulative refactoring occasionally endeavors hold the potential be high improvements. 
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I. INTRODUCTION

Technology is an integral section of people’s lives, with 

application being a key component. Application is closely 

connected to mobile devices designed for many people [1]. 

Given the widespread use of application, it becomes a 

challenge for developers. Developers are responsible for the 

maintenance of applications; poor coding and implementation 

techniques can hinder long-term maintainability and lead to 

poor code quality [2], [3]. These issues arise due to a lack of 

awareness and lack of development experience or the need to 

develop applications rapidly under deadline pressure [4], [5]. 

Consequently, the developer requires maintenance program 
code on the application. 

The maintenance of the application requires developers to 

review and modify program code manually. However, manual 

review can be time-consuming and inefficient [6]. The 

solution to that problem is using Automatic Static Analysis 

Tools (ASATs) that can automatically analyze program code 

and suggest corrective modifications [7]. ASATs are designed 

to help developers identify and understand deficiencies in 

program code [8]. SonarQube is a popular ASAT [9]. Despite 

the benefit of ASATs, during the maintenance of the 

application, developers may make bad decisions by ignoring 
rule violations that can cause conflicts and negative impacts 

on the application; the violations that can damage the 

maintenance of the application are code smells [10], which 

can affect on resource usage [4]. 

Resource usage should be considered a critical factor for 

the application’s success, affecting performance and resource 

optimization [11]–[13]. The rapid consumption in 

applications can cause users to switch or uninstall the 

application from their device. However, the previous research 

on code smells related to resource usage has not fully explored 

the issue and has mainly used emulators [11], [14], [15]. It is 
important to note that behavior of an emulator differs from 

that of a physical device [1]. Therefore, there is a need to 

explore code smells that affect resource usage and effectively 

fix them to ensure optimal performance on physical devices 

as suggest by study [16]. This paper aims to analyze the effect 
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of refactoring code smells using ASATs on resource usage of 

the mobile application Android. 

Hecht, et al. [4] have problems this study is on program 

code as code smells, that cause resource leaks and 

performance with metric frame time, number of delayed 

frames, memory usage, and number of garbage collection. 

There are three code smells i.e., HashMap Usage (HMU), 

Internal Getter/Setter (IGS), Member Ignoring Method 

(MIM) on two Android applications as corpus. The result of 

this study with refactoring MIM could be improved 12.4%, 
which means less frame delay. Furthermore, there was 

significant impact on refactoring HMU as much 3.6%.  

Kwan Kim [14] discusses performance with metric CPU 

Time, problems this study is code smells, that cause 

performance degradation. There are seven code smells 

discusses i.e., Enhanced for Loop, Internal Getter/Setter, 

Local Variables, Avoiding Creating Unnecessary String 

Object, Use Static Final for Constants, Inefficient Data 

Structure, Avoid Using Recursive Methods on two Android 

applications. This study refactored the overall result CPU 

time of 579ms on Snake Game and 5.897ms on Bitmap 
Plasma. However, the study was incorrect in providing 

quantity code smells and not using tools to identification the 

code smells. Our study is not using IGS, because the code 

smells outdated and has no effect on performance [12]. 

Carette, et al. [13] assess code smells i.e., HashMap Usage 

(HMU), Internal Getter/Setter (IGS), and Member Ignoring 

Method (MIM) on five Android applications as a corpus. 

Three code smells cause the effect of leakage of battery 

energy consumption with metric average intensity and 

average voltage. The result of this study is that refactoring a 

single type such as MIM can reduce 3.86%, but refactoring 
cumulative reduce up to 4.83%.  

Cruz and Abreu. [12] discuss problems related to the 

energy consumption of mobile devices using file changes and 

power measurement metrics. The study analyzed six 

applications, Loop – Habit Tracker, Writeily Pro, Talalarmo 

Alarm Clock, GnuCash, Acrylic Paint, and Simple Gallery, 

which are part of the F-Droid corpus. The study concluded 

that energy consumption decreased after refactoring 

ViewHolder (4.5%), DrawAllocation (1.5%), WakeLock 

(1.5%), ObsoleteLayoutParam (0.7%), and Recycle (0.7%). 

However, the study does not explore code smells. 

Oliveira, et al. [1] present problem code smells on consume 
resource usage with metric CPU usage and memory usage on 

Android. There are three code smells discussed i.e., God 

Class, God Method, Feature Envy on nine Android 

applications as corpus. The results of this study can consume 

higher resource usage, one of them is that the Travel-Mate 

original version consumed 98.39 MB, after refactoring 

increased to 625.58 MB. In their study, have not inferential 

test to conclude the results are significant. 

Verdecchia, et al. [17] discuss the problem of carbon 

emissions that reach a global scale in the information 

technology and communication sector. The problem requires 
maintenance to optimize energy efficiency, which involves 

aggressively fixing code smells using the Fisher-Yates 

Shuffle algorithm. The study used the average power 

consumption and time metrics on applications sourced from 

the GitHub corpus, namely CashManager, JTrac, and Spring-

PetClinic. This study showed a decrease in energy 

consumption from 49.9% to 47.8% after refactoring. 

Additionally, cumulative refactoring of code smells can 

reduce performance by 6.8%, translating to a 10.7% decrease 

in energy consumption. Their study has no significant result 

and the metric used cannot be used to indicated impact of 

energy consumption. Our study will contribution inferential 

test to ensure and conclude the result.  

Anwar, et al. [18] discuss problem energy consumption on 

Android applications with metric power measurement and 

refactoring using Fisher-Yates shuffle. There are five code 
smells discusses i.e., Long Method (LM), Feature Envy (FE), 

Type Checking (TC), Duplicated Code (DC), and God Class 

(GC) on three applications as corpus. This study showed a 

reduced energy consumption, on DC 10.8% and TC 10.5%. 

According to the author their result has significant result on 

DC and TC. 

Alkandari, et al. [11] studied three code smells i.e., 

HashMap Usage (HMU), Member Ignoring Method (MIM), 

and Slow Loop (SL), on eight applications as a corpus. This 

study discusses problem resource usage in Android 

applications with metric CPU usage and memory usage. The 
result of this study performance improved on CPU usage 

12.7% and 13.7% with single refactoring HMU and MIM. 

Furthermore, cumulative refactoring enhanced memory usage 

by 7.1%. Their result is not using a physical device and it is 

still questionable whether it has an effect. In our study we 

using physical device to ensure an impact. 

Etemadi Someoliayi, et al. [19] another study discusses 

automatic refactoring code smells namely Sorald, this study 

discusses tools refactoring with deep analysis. This study 

related code smells raised by SonarQube. 

Wibowo, et al. [15] discusses two code smells i.e., no-
equal-then-else and prefer-conditional-expressions on one 

application. This study discusses problem code smells impact 

to performance in agricultural mobile applications. The result 

of this study, CPU usage increases 3.27% and memory usage 

decreases from 200M to 100M. In their study are not using 

physical device to ensure an effect and no significant result.  

Previous studies have focused on non-functional energy 

has been extensively study and concluded the refactoring code 

smells can save energy consumption on applications, even 

though there are drawbacks. However, the study of code 

smells on non-functional resource usage remains insufficient. 

There exists a device gap between emulated and physical 
device. The fact behavior of applications on emulated and 

physical device is significantly different, even the emulated 

version fully mimics to properties and settings of the physical 

device [20]. Furthermore, a research gap regarding code 

smells exists between the identification of code smells based 

on previous studies and the characterization of code smells 

through the SonarQube tool, because code smells based 

SonarQube tool has not been studied on the resource usage in 

mobile applications. Therefore, our study focuses on the 

resource usage with metric CPU usage and memory usage, 

similar to the study by Oliveira et al. [1], Alkandari et al. [11], 
and Wibowo et al. [15]. For measures intensity ratio of code 

smells our study using FDR metric, is also similarly to the 

study conducted by Etemadi Someoliayi, et al. [19]. This 

study adopts three code smells i.e., HashMap Usage, Slow 

Loop, and Member Ignoring Method from conducted by 

Palomba, et. al. [21] and Alkandari, et. al. [11]. Our study 
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using code smells from SonarQube which not have been 

studied on resource usage Android i.e., Blocker, Critical 

Major, and Minor. We made ObreusDroid for aggregation of 

the resource usage and physical device to ensure the actually 

effect. Furthermore, our study will scientific contribution on 

software engineering related refactoring single and 

cumulative of mobile applications and tested using physical 

device and inferential statistic to conclude result significant to 

ensure the validity of the significance in line with previous 

studies [11]. 

II. MATERIAL AND METHOD 

This paper focused on refactoring code smells for mobile 

applications. Aggregation of the resource usage using manual 

testing which focused on Graphical User Interface (GUI) 

events only [22], [23]. Thus, our study used ObreusDroid 

which was designed and developed using bash scripting and 

Android Debug Bridge (ADB). Our study consists of six main 
steps as shown in Fig 1. 

 

Fig. 1 Analysis Steps 

 

A. Step 1: Selected Corpus of Android Applications 

The Android applications selected were sourced from F-
Droid which redirected to GitHub; we chose only mobile 

applications from a previous study by Anwar et al. We 

believed that paper because the applications have been 

researched, according to their author, the applications has 

been downloaded more than 10.000 on Google Play Store 

(GPS) with ‘4’ review [18] as shown Table I and ease to find 

code smells. Then, we declared the configuration to be able to 

be analyzed by SonarQube. The configuration assigned to 

each application in the Android Gradle file is shown in the 

example Fig 2. 

TABLE I 

CHARACTERISTICS OF MOBILE APPLICATIONS ANDROID 

Characteristics Calculator Todo-List Openflood 

Category Tools Tools Puzzle 

Line of Code 

(LoC) 
5935 5466 948 

Project age 6.8 3 3.1 

Downloaded 

(GPS) 

More than 

1.000 

More than 

10.000 

More than 

10.000 

Average user 

review 
4.5 4 4.6 

 
Fig. 2 Configuration of SonarQube 

 

B. Step 2: Manual Testing Applications with Code Smells 

After the previous step, we ran each application 

individually as much as three times. For several reasons, we 

made a test case, as shown in Table II, to collect data on 

resource usage, i.e., CPU and memory, through ObreusDroid 
with ADB. First, another research [21]–[23] uses the top 

commands to measure the CPU usage and memory usage; we 

believe the result is to evaluate each application. Second, we 

exported the result of resource usage to a CSV file. 

 

C. Step 3: Detecting Code Smells  

After manual testing in the previous step, we detected the 

code smells automatically and manually. We manually chose 

three code smells from the previous study, i.e., HMU, MIM, 
and SL, because three code smells are easy to refactor. 

Automatically, we use popular ASATs, specifically 

SonarQube [7], [24]–[26], to find other code smells that have 

not been studied in focused resource usage on Android 

applications, detailed code smells of SonarQube as shown in 

Table III. SonarQube is already used by over 85.000 

organizations [9], [10]. 

TABLE II 

TEST SCENARIOS OF APPLICATIONS 

Android 

Applications 
Scenarios 

Approximate 

Duration (Seconds) 

Calculator 

1. Add up both numbers and press the result. 

2. Subtraction on both numbers and hit results. 

3. Multiply on both numbers and hit result. 

4. Division on both numbers and hit result 

5. Clear all history on the calculator 

6. Launches advanced calculator and returns to basic calculator 

7. Draw a chart 

8. Zoom in and zoom out the chart 

84 
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Android 

Applications 
Scenarios 

Approximate 

Duration (Seconds) 
9. Select the hex calculator 

10. Add up both hex numbers and hit the result. 

11. Subtraction on both hex numbers and hit results. 

12. Multiply on both hex numbers and hit result. 

13. Division on both hex numbers and hit result 

14. Back to basic calculator 

15. Open the calculator history list 

16. Select a history 

17. Close history list 

18. Press a number, select an arithmetic operation, and press result to display errors in calculations 

19. Switch to the advanced calculator and press the square root and pi keys, then delete the result 

20. Switch to the basic calculator and select a number, then long press on the screen to cut and paste from 

the clipboard. 

Todo-List 

1. View the application tutorial and navigate to completion 

2. Go to settings, then turn on progress by Subtasks 

3. Add three new lists by typing each list uniquely, namely “list1”, “list2”, and “list3” 

4. Press the “+” icon on the bottom right-side button on the screen 

5. Add three new tasks by typing each task uniquely, namely "Task1", "Task2", and "Task3," and setting 

the priority; each three task is given priority uniquely, namely "High," "Medium," and "Low." 

6. Add deadlines and reminders of three tasks 

7. Put the list of three different tasks 

8. Enter three subtasks in the main task 

9. Mark the subtask complete and see progress; on "Task1," mark one subtask; on "Task2," mark two 

subtasks; on "Task3," mark three subtasks 

10. Send the main task to the recycler by deleting it 

11. View tasks based on priority 

12. View tasks by deadline 

13. Open the calendar from the left menu 

14. In the calendar, click a date to open the task 

15. View tasks in the recycler 

16. View and use the help options 

17. View info about the app 

18. Search for tasks by one of the names 

188 

Openflood 

1. Launch activity info 

2. Play the game and lose 

3. Close the "game over" pop-up by selecting Start a new game 

4. Launch settings and change the board size to 12x12 

5. Press all the color buttons in the game 

6. Launch settings and choose color blind mode (blind mode) 

7. Press all color buttons in the game on color blind mode (blind mode) 

8. Launch settings and select the old color scheme 

9. Press all color buttons in-game on the old schema color 

10. Launch settings and change the board size to 24x24 

32 

TABLE III 

DETAILED CODE SMELLS OF SONARQUBE 

Key rule Classifications Descriptions 

S3516 Blocker The return value on the method doesn't be invariant 
S2387 Blocker Child class fields cannot have the same naming attribute as the parent class. 
S1192 Critical String literals cannot be duplicated 
S1186 Critical The method cannot be empty 
S131 Critical The switch statement must have a “default” clause 

S2093 Critical Try with resources must be used 
S3973 Critical The single conditional must fit the indentation 

S115 Critical Constants must obey naming conventions 
S1604 Major A class containing one method must be a lambda 
S1144 Major Unused “private” method must be removed 
S1161 Major “@Override” must be used on overridden methods and implementations 
S1172 Major Parameters in methods that are not used should be removed 
S125 Major Sections of code should not be commented 

S1066 Major The collapsible if statements must be concatenated 
S5993 Major The "abstract" class constructor cannot be declared "public." 
S1068 Major The unused “private” field should be deleted 

S108 Major Nested code cannot be left blank 
S1854 Major Values that are stored in variables but not used must be deleted 
S4165 Major Variables containing hold values cannot be redundant 
S2589 Major Boolean expressions cannot be arbitrary 
S1117 Major Local variables cannot duplicate class fields 
S3740 Major Generic data types may not be used 
S1301 Minor Changed the "switch" statement to an "if" statement to improve readability 
S1874 Minor The code "@Deprecated" is not required 
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Key rule Classifications Descriptions 

S2293 Minor The diamond (“<>”) operation must be used 
S1596 Minor “Collections.EMPTY_LIST”, “EMPTY_MAP”, and “EMPTY_SET” must not be used 
S1450 Minor Private local variables outside the method must be local variables within the method. 
S1155 Minor Collection.isEmpty() should be used to test for empty values 
S1643 Minor Strings cannot be concatenated using "+" into one 
S1128 Minor Unnecessary imports should be removed 
S3400 Minor Methods cannot return constant values 
S1905 Minor Redundancy casts should not be used 

S1659 Minor Variables cannot be declared on a single line 
S3008 Minor Non-final static naming must comply with naming conventions 
S1125 Minor Boolean literals cannot be redundant 
S1488 Minor Local variables must be undeclared and must be returned. 
S1124 Minor Modifiers must be declared in order 
S1116 Minor Blank statements must be deleted or filled in 
S1126 Minor Boolean expression returns cannot be wrapped in an if-else statement 
S1104 Minor Variables in class fields must not have public accessibility 

S1319 Minor The declaration must use a Java collection interface such as "List" rather than its implementation-
specific class like “LinkedList” 

S1197 Minor The array pointer “[]” must be a data type, not a variable. 
S1153 Minor String.valueOf() cannot be added to a String 
S1481 Minor Unused variables must be deleted 
S1640 Minor Maps with keys are enum values that must be changed with EnumMap 
S3626 Minor Jump statements must not be redundant 
S4201 Minor A blank value check should not be used with "instanceof." 
S117 Minor Local variable and parameter names must conform to convention 

S116 Minor The naming of class fields must be according to the convention 
S1170 Minor Constants on initialized fields should be declared “static final” rather than just “final.” 

 

D. Step 4: Refactoring Code Smells  

After manual testing in previous step, we manually 

refactoring code smells individually and cumulatively. The 

refactoring purpose is to improve internal quality applications 

[30]–[34]. Furthermore, we separated to be another edition, as 

follows: 

EOriginal - Code smells in the original edition are not refactored. 

EHMU - Code smells HashMap Usage in this edition has been 

refactored. 

ESL - Code smells Slow Loop in this edition has been 

refactored. 

EMIM - Code smells Member Ignoring Method in this edition 
has been refactored. 

EBlocker - Code smells Blocker classification in this edition has 

been refactored. 

ECritical - Code smells Critical classification in this edition has 

been refactored. 

EMajor - Code smells Major classification in this edition has 

been refactored. 

EMinor - Code smells Minor classification in this edition has 

been refactored. 

EAll - All code smells in this edition have been refactored. 

E. Step 5: Manual Testing Applications After Refactoring 

After refactoring code smells manually, we run each 

application, which has been done refactoring individually and 

cumulatively with manual testing similar to previous step 2. 

We run each application 24 times in appropriate editions 

except Eori. The result of resource usage collected and 

evaluated related consumption. 

F. Step 6: Comparative Analysis 

After completing all the previous steps, we compared the 

resource consumption of Android applications before and 

after refactoring. We measure the average CPU [1], [11] and 

memory usage [1], [11] as well as the improvement [12]. 

Furthermore, we conducted inferential statistical analysis to 

conclude the results. The formulation of measure as shown 
below: 
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III. RESULT AND DISCUSSION 

The measure results of resource usage were using three     

(3) applications with different categories and benchmark LoC, 
which has been described in Table I. 

Experimental Setup. An Android physical device is 

needed to test a mobile application. This study used the device 

specifically Xiaomi Redmi S2 (YSL) running Android 10 

operating system with processor 2 GHz octa-core Qualcomm 

MSM8953 Snapdragon 625 and 3GB RAM. Furthermore, 

experiments for monitoring used with Windows 10. The PC 

has an i3 7th Gen Intel processor with 12GB of RAM. The 

analysis of the result in this study is measure FDR between 

the original edition and refactored edition, evaluate CPU 

usage, and evaluated memory usage. 

A. Intensity of Refactoring Code Smells 

The analysis of results in this study is measure FDR 

between the original edition and the refactored edition. The 

code smells of all Android applications are covered and the 

whole code smells was detected automatically and manually. 

Information on all the intensity of code smells is shown in 

Table IV without HMU, SL, MIM because it does not have a 

key rule and we detailed result intensity refactored.
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TABLE IV 

RESULT CODE SMELLS OF SONARQUBE REFACTORED 

Applications Key Rules Refactoring Code Smells Code Smells Detected FDR 

Calculator 

Java: S3516 1 1 100% 
Java: S1186 18 18 100% 
Java: S131 10 17 59% 
Java: S1604 32 32 100% 
Java: S1144 2 2 100% 
Java: S1161 6 6 100% 

Java: S1172 5 6 83% 
Java: S125 1 1 100% 
Java: S1066 3 5 60% 
Java: S5993 2 2 100% 
Java: S2589 1 1 100% 
Java: S1068 2 2 100% 
Java: S108 1 1 100% 
Java: S1301 9 9 100% 

Java: S1874 10 20 50% 
Java: S2293 8 8 100% 
Java: S1596 1 1 100% 
Java: S1450 2 2 100% 
Java: S1155 1 2 50% 
Java: S1643 3 3 100% 
Java: S1640 1 1 100% 
Java: S1128 1 1 100% 
Java: S1124 1 3 33% 

Java: S3400 2 2 100% 
Java: S1905 2 2 100% 
Java: S1659 1 1 100% 
Java: S3008 1 1 100% 
Java: S1125 2 2 100% 
Java: S1488 2 2 100% 
Java: S117 2 2 100% 

Total 133 157 85% 

Todo-List 

Java: S2387 6 6 100% 
Java: S1192 12 12 100% 
Java: S2093 1 1 100% 
Java: S1186 5 5 100% 
Java: S131 8 8 100% 
Java: S3973 2 2 100% 
Java: S115 1 1 100% 

Java: S5993 2 2 100% 
Java: S1068 20 20 100% 
Java: S125 38 38 100% 
Java: S1161 10 10 100% 
Java: S108 5 5 100% 
Java: S1854 10 10 100% 
Java: S1604 51 51 100% 
Java: S1066 2 3 67% 

Java: S4165 1 1 100% 
Java: S2589 2 2 100% 
Java: S1117 7 7 100% 
Java: S3740 1 1 100% 
Java: S1144 1 1 100% 
Java: S1172 2 2 100% 
Java: S1128 28 28 100% 

Kotlin: S1128 7 7 100% 

Java: S1874 6 83 7% 
Java: S1116 2 2 100% 
Java: S1155 4 6 67% 
Java: S2293 21 21 100% 
Java: S1319 10 17 59% 
Java: S1125 2 2 100% 
Java: S1126 4 4 100% 
Java: S1104 20 23 87% 

Java: S1197 9 9 100% 
Java: S1153 1 1 100% 
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Applications Key Rules Refactoring Code Smells Code Smells Detected FDR 

Java: S116 1 2 50% 
Java: S1659 6 6 100% 
Java: S1450 11 14 79% 
Java: S1481 8 8 100% 
Java: S1301 8 8 100% 
Java: S1640 1 1 100% 
Java: S3626 2 2 100% 
Java: S1488 2 2 100% 

Java: S1124 2 2 100% 
Java: S4201 1 1 100% 
Java: S117 2 2 100% 

Total 345 439 78% 

Openflood 

Java: S1192 8 8 100% 
Java: S131 1 1 100% 
Java: S1161 2 2 100% 

Java: S1604 19 19 100% 
Java: S2589 1 1 100% 
Java: S1066 1 1 100% 
Java: S3626 18 18 100% 
Java: S1197 4 4 100% 
Java: S1643 1 1 100% 
Java: S1905 1 1 100% 
Java: S2293 2 2 100% 

Java: S1659 4 4 100% 
Java: S116 1 1 100% 
Java: S1170 1 1 100% 
Java: S1128 3 3 100% 
Java: S1301 1 1 100% 

Total 68 68 100% 

Code smells in the Calculator have been refactored 85%, 

the code smells of Todo-List have been refactored 78%, and 

code smells of Openflood have been refactored 100%. 

B. Interpretation CPU Usage 

In Figs. 3, 4, and 5 we visualized CPU usage of all editions 

of applications. CPU usage interpretation has different result 
at any moment run. In the Table V. We present average and 

standard deviation of the CPU usage of nine editions 

applications, which then measured relative change to see 

improvement. The negative value indicated that the result of 

refactoring caused improvement in performance, and the 

value positive indicated that the result of refactoring caused 

poor performance. 

 

 
Fig. 3  CPU usage of Calculator 

 
Fig. 4  CPU usage of Todo-List 

 
Fig. 5  CPU usage of Openflood 

 

Refactoring HashMap Usage, one of the two applications 

shows an improvement in CPU performance, with an average 

of 4.14%. For Slow Loop refactoring, the three pieces of 

applications improved CPU performance, by an average of 
4.39%. In the Member Ignoring Method, two of the three 

applications generate improvement in CPU performance, with 

an average of 7.87%. In Blocker, refactoring of one of the two 

applications resulted in CPU performance, averaging 4.75%. 

Furthermore, Critical refactoring of the three of applications 
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improved CPU, with an average of 9.90%. Major refactoring 

of one in three pieces of applications resulted in CPU 

performance, with an average of 0.28%. At the same time, 

Minor refactoring of one in three applications results in CPU 

performance, with an average of 0.90%. Finally, two of the 

three applications resulted in CPU performance in cumulative 

refactoring, with an average of 3.96%.

TABLE V 

PERCENTAGE DIFFERENT EDITIONS OF AVERAGE CPU USAGE 

% Calculator Todo-List Openflood 

Editions Average 
Standard 

Deviation 
Improvement Average 

Standard 

Deviation 
Improvement Average 

Standard 

Deviation 
Improvement 

EOri 32,02% 26,38% 0% 26,18% 27,72% 0% 28.56% 27.79% 0% 
EHMU 34,74% 23,55% +8,49% 21,79% 25,06% -16,77% - - - 
ESL 31,15% 25,90% -2,72% 25,06% 30,83% -4,28% 26,80% 22,85% -6,16% 
EMIM 32,37% 23,56% +1,09% 21,33% 23,14% -18,53% 26,80% 24,16% -6,16% 
EBlocker 34,58% 21,22% +8,00% 21,60% 24,30% -17,49% - - - 
ECritical 28,97% 21,55% -9,53% 23,44% 26,18% -10,47% 25,79% 25,98% -9,70% 

EMajor 28,61% 22,48% -10,65% 26,61% 30,87% +1,64% 30,89% 36,38% +8,16% 
EMinor 33,21% 24,40% +3,72% 23,58% 29,97% -9,93% 29,56% 21,10% +3,50% 
EAll 32,17% 26,18% +0,47% 23,61% 28,26% -9,82% 27,84% 23,79% -2,52% 

Based on the statistical analysis in Table VI, the refactoring 

of code smells significantly impacts Android applications. In 

previous studies the results of a p-value of less than 0.1 certain 

percentage of 90%, has a significant effect [12] or a p-value 
of less than equal to 0.1 certain percentage 90%. These results 

show that statistically refactoring Member Ignoring Method 

and Critical can improve with refactoring singly, with an 

average of 7.87% and 9.90% in Table VI. In the results of the 

p-value with 0.074 belonging to the Member Ignoring Method 

and 0.109 belonging to Critical, even though Critical is 
slightly more than 0.1 it is enough to produce statistically 

significant results present 80%.

TABLE VI 

WILCOXON SIGNED-RANK INFERENTIAL TEST OF CPU USAGE 

 EOri EHMU ESL EMIM EBlocker ECritical EMajor EMinor 

EHMU 0.219 - - - - - - - 
ESL 0.284 0.757 - - - - - - 
EMIM 0.074 0.706 0.448 - - - - - 
EBlocker 0.529 0.981 0.963 0.620 - - - - 
ECritical 0.109 0.727 0.536 0.897 0.503 - - - 
EMajor 0.745 0.841 0.777 0.394 0.596 0.044 - - 

EMinor 0.346 0.854 0.663 0.556 0.852 0.336 0.603 - 
EAll 0.449 0.823 0.905 0.410 0.824 0.483 0.925 0.762 

C. Interpretation Memory Usage 

Fig. 6, Fig. 7, and Fig. 8, we visualized memory usage of 

all editions in the same applications. Memory usage 

interpretation has different results at any moment run. In the 

Table VII. We present the average and standard deviation of 

the memory usage of nine editions applications, which then 

measured relative change to see improvement. Improvement 

of memory usage has improved variative similar CPU usage. 

 
Fig. 6  Memory Usage of Calculator 

 
Fig. 7  Memory usage of Todo-List 

 
Fig. 8  Memory usage of Openflood 

 

Refactoring HashMap Usage, the two applications show an 

improvement in memory performance, with an average of 
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1.48%. For the Slow Loop refactoring, one in three pieces of 

applications resulted in an improvement in memory 

performance by an average of 1.17%. In the Member Ignoring 

Method, one out of three applications result in an 

improvement in memory performance, with an average of 

0.59%. The Blocker refactoring of the two applications results 

in memory performance, averaging 3.52%. Subsequent 

Critical refactoring of one in three pieces of applications 

resulted in a memory improvement by an average of 0.25%. 

Major refactoring on two of the three applications resulted in 

memory performance, averaging 1.10%. Minor refactoring on 

one of the three applications results in memory performance, 

with an average of 1.94%. Finally, one in three applications 

results in memory performance on refactoring seven code 

smells, with an average of 2.09%.

TABLE VII 

PERCENTAGE DIFFERENT EDITIONS OF AVERAGE MEMORY USAGE 

% Calculator Todo-List Openflood 

Editions Average 
Standard 

Deviation 
Improvement Average 

Standard 

Deviation 
Improvement Average 

Standard 

Deviation 
Improvement 

EOri 3,30% 0,19% 0% 4,57% 0,60% 0% 3,08% 0,21% 0% 

EHMU 3,26% 0,19% -1,21% 4,49% 0,62% -1,75% - - - 
ESL 3,35% 0,26% +1,52% 4,34% 0,50% -5,03% 3,08% 0,21% 0% 
EMIM 3,34% 0,25% +1,21% 4,39% 0,49% -3,94% 3,11% 0,21% +0,97% 
EBlocker 3,27% 0,15% -0,91% 4,29% 0,56% -6,13% - - - 
ECritical 3,41% 0,22% +3,33% 4,31% 0,55% -5,69% 3,13% 0,23% +1,62% 
EMajor 3,35% 0,27% +1,52% 4,32% 0,56% -5,47% 3,10% 0,23% +0,65% 
EMinor 3,30% 0,23% 0% 4,29% 0,51% -6,13% 3,09% 0,17% +0,32% 
EAll 3,31% 0,18% +0,30% 4,24% 0,47% -7,22% 3,10% 0,15% +0,65% 

Based on the statistical analysis in Table VIII, the 

refactoring code smells has a significant effect on Android 

applications. These results show that statistically refactoring 

the seven code smells singly or cumulatively can significantly 

improvement memory usage. So, it was concluded that 

refactoring HMU, SL, MIM, Blocker, Critical, Major, and 

Minor can result in an improvement in memory performance. 

Despite one of application (openflood) is poor memory after 

refactoring in Table VII. This concludes refactoring singly or 

cumulatively significant, but not whole improvement. 

 

TABLE VIII 

WILCOXON SIGNED-RANK INFERENTIAL TEST OF CPU USAGE 

 EOri EHMU ESL EMIM EBlocker ECritical EMajor EMinor 

EHMU 0.000 - - - - - - - 

ESL 0.000 0.000 - - - - - - 
EMIM 0.000 0.359 0.000 - - - - - 
EBlocker 0.000 0.000 0.000 0.000 - - - - 
ECritical 0.000 0.000 0.819 0.344 0.000 - - - 
EMajor 0.000 0.000 0.027 0.001 0.000 0.664 - - 
EMinor 0.000 0.000 0.000 0.000 0.353 0.000 0.000 - 
EAll 0.000 0.000 0.000 0.000 0.544 0.000 0.000 0.000 

IV. CONCLUSION 

Based on the result of our study, we concluded that 

refactoring with ASATs can help detect code smells and 

refactoring code smells with percentage on each application 

i.e., Calculator 85%, Todo-List 78%, and Openflood 100%. 

The test results each application obtained on real device with 
test case represent that refactoring Member Ignoring Method 

and Critical results in an improvement performance on CPU 

usage with an average of 7.87% and 9.90%, there is an 

improvement in memory performance in refactoring Blocker 

and cumulative refactoring on seven code smells with an 

average of 3.52% and 2.09%, this signifies code smells 

classification as “Blocker” and “Critical” have an impact on 

the improvement performance CPU usage and memory usage 

other than found in previous studies. The statistical results 

obtained can significantly prioritize that refactoring code 

smells is crucial to adjusting especially in the use of resources 

or the performance for multitasking. In addition, single 
refactoring offers developers advantages reducing high cost, 

diminished exertion, and truncated maintenance duration. 

However, the cumulative refactoring occasionally endeavors 

hold the potential be high improvements. Our study has a 

limitation concerning the relatively small size of the corpus, 

testing each application manually. In the future work, we 

intend to develop automatically tools with setting specific 

code smells to improvement resource usage which combine 

code smells has been studied, impacting either CPU usage 

exclusively (such as Critical, MIM, SL, and Cumulative 

improvements for CPU usage) or memory usage exclusively 

(including HMU, Blocker, and Cumulative improvements for 
memory usage) and will be implemented on large size of the 

corpus and each application will testing automatically. 

REFERENCES 

[1] J. Oliveira, M. Viggiato, M. Santos, E. Figueiredo, and H. Marques-

Neto, “An Empirical Study on the Impact of Android Code Smells on 

Resource Usage,” Jul. 2018, pp. 314–359, doi: 10.18293/SEKE2018-

157. 

[2] S. Habchi, N. Moha, and R. Rouvoy, “Android code smells: From 

introduction to refactoring,” J. Syst. Softw., vol. 177, p. 110964, 2021, 

doi:10.1016/j.jss.2021.110964. 

[3] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen, 

“Understanding code smells in android applications,” Proc. - Int. 

222



Conf. Mob. Softw. Eng. Syst. MOBILESoft 2016, pp. 225–236, 2016, 

doi: 10.1145/2897073.2897094. 

[4] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the 

performance impacts of Android code smells,” in Proceedings of the 

International Conference on Mobile Software Engineering and 

Systems, May 2016, pp. 59–69, doi:10.1145/2897073.2897100. 

[5] G. Rasool and Z. Arshad, “A Lightweight Approach for Detection of 

Code Smells,” Arab. J. Sci. Eng., vol. 42, no. 2, pp. 483–506, 2017, 

doi:10.1007/s13369-016-2238-8. 

[6] D. Stefanović, D. Nikolić, D. Dakić, I. Spasojević, and S. Ristić, 

“Static code analysis tools: A systematic literature review,” Ann. 

DAAAM Proc. Int. DAAAM Symp., vol. 31, no. 1, pp. 565–573, 2020, 

doi: 10.2507/31st.daaam.proceedings.078. 

[7] D. Marcilio, C. A. Furia, R. Bonifácio, and G. Pinto, “SpongeBugs: 

Automatically generating fix suggestions in response to static code 

analysis warnings,” J. Syst. Softw., vol. 168, p. 110671, 2020. 

doi:10.1016/j.jss.2020.110671. 

[8] D. Nikolic, D. Stefanovic, D. Dakic, S. Sladojevic, and S. Ristic, 

“Analysis of the Tools for Static Code Analysis,” 2021 20th Int. Symp. 

INFOTEH-JAHORINA, INFOTEH 2021 - Proc., no. March, pp. 17–

19, 2021, doi:10.1109/infoteh51037.2021.9400688. 

[9] J. Wang, Y. Huang, S. Wang, and Q. Wang, “Find Bugs in Static Bug 

Finders,” IEEE Int. Conf. Progr. Compr., vol. 2022-March, pp. 516–

527, 2022, doi:10.1145/3377811.3380380. 

[10] D. Marcilio, R. Bonifacio, E. Monteiro, E. Canedo, W. Luz, and G. 

Pinto, “Are static analysis violations really fixed? a closer look at 

realistic usage of sonarqube,” IEEE Int. Conf. Progr. Compr., vol. 

2019-May, pp. 209–219, 2019, doi:10.1109/ICPC.2019.00040. 

[11] M. A. Alkandari, A. Kelkawi, and M. O. Elish, “An Empirical 

Investigation on the Effect of Code Smells on Resource Usage of 

Android Mobile Applications,” IEEE Access, vol. 9, pp. 61853–

61863, 2021, doi:10.1109/access.2021.3075040. 

[12] L. Cruz and R. Abreu, “Performance-Based Guidelines for Energy 

Efficient Mobile Applications,” in 2017 IEEE/ACM 4th International 

Conference on Mobile Software Engineering and Systems 

(MOBILESoft), May 2017, pp. 46–57, 

doi:10.1109/MobileSoft.2017.19. 

[13] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy, 

“Investigating the energy impact of Android smells,” in 2017 IEEE 

24th International Conference on Software Analysis, Evolution and 

Reengineering (SANER), Feb. 2017, pp. 115–126, 

doi:10.1109/saner.2017.7884614. 

[14] D. Kwan Kim, “Towards Performance-Enhancing Programming for 

Android Application Development,” Int. J. Contents, vol. 13, no. 4, 

pp. 39–46, 2017, doi:10.5392/IJoC.2017.13.4.039. 

[15] A. Wibowo, A. R. Chrismanto, M. N. A. Rini, and L. Chrisantyo, 

“Mobile Application Performance Improvement with the 

Implementation of Code Refactor Based on Code Smells 

Identification: Dutataniku Agriculture Mobile App Case Study,” in 

2022 Seventh International Conference on Informatics and 

Computing (ICIC), Dec. 2022, pp. 1–7, doi: 

10.1109/ICIC56845.2022.10006961. 

[16] Q. Xu, J. C. Davis, Y. C. Hu, and A. Jindal, “An Empirical Study on 

the Impact of Deep Parameters on Mobile App Energy Usage,” in 

2022 IEEE International Conference on Software Analysis, Evolution 

and Reengineering (SANER), Mar. 2022, pp. 844–855, doi: 

10.1109/SANER53432.2022.00103. 

[17] R. Verdecchia, R. Aparicio Saez, G. Procaccianti, and P. Lago, 

“Empirical Evaluation of the Energy Impact of Refactoring Code 

Smells,” 2018, pp. 365–345, doi: 10.29007/dz83. 

[18] H. Anwar, D. Pfahl, and S. N. Srirama, “Evaluating the Impact of 

Code Smell Refactoring on the Energy Consumption of Android 

Applications,” in 2019 45th Euromicro Conference on Software 

Engineering and Advanced Applications (SEAA), Aug. 2019, pp. 82–

86, doi: 10.1109/SEAA.2019.00021. 

 

[19] K. Etemadi Someoliayi et al., “Sorald: Automatic Patch Suggestions 

for SonarQube Static Analysis Violations,” IEEE Trans. Dependable 

Secur. Comput., pp. 1–17, 2022, doi:10.1109/TDSC.2022.3167316. 

[20] A. Guerra-Manzanares and M. Välbe, “Cross-device behavioral 

consistency: Benchmarking and implications for effective android 

malware detection,” Mach. Learn. with Appl., vol. 9, p. 100357, Sep. 

2022, doi: 10.1016/j.mlwa.2022.100357. 

[21] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, 

“Lightweight detection of Android-specific code smells: The aDoctor 

project,” in 2017 IEEE 24th International Conference on Software 

Analysis, Evolution and Reengineering (SANER), Feb. 2017, pp. 487–

491, doi: 10.1109/saner.2017.7884659. 

[22] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android apps 

with minimal restart and approximate learning,” ACM SIGPLAN Not., 

vol. 48, no. 10, pp. 623–639, 2013, doi: 10.1145/2544173.2509552. 

[23] M. Nass, E. Alegroth, and R. Feldt, “Augmented testing: Industry 

feedback to shape a new testing technology,” Proc. - 2019 IEEE 12th 

Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 2019, pp. 176–

183, 2019, doi: 10.1109/ICSTW.2019.00048. 

[24] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang, “Houdini’s Escape: 

Breaking the Resource Rein of Linux Control Groups,” in 

Proceedings of the 2019 ACM SIGSAC Conference on Computer and 

Communications Security, Nov. 2019, pp. 1073–1086, 

doi:10.1145/3319535.3354227. 

[25] J. Lee, A. V. Raja, and D. Gao, “SplitSecond: Flexible Privilege 

Separation of Android Apps,” in 2019 17th International Conference 

on Privacy, Security and Trust (PST), Aug. 2019, pp. 1–10, 

doi:10.1109/PST47121.2019.8949067. 

[26] E. Wen, J. Cao, J. Shen, and X. Liu, “Fraus: Launching Cost-efficient 

and Scalable Mobile Click Fraud Has Never Been So Easy,” in 2018 

IEEE Conference on Communications and Network Security (CNS), 

May 2018, pp. 1–9, doi: 10.1109/CNS.2018.8433126. 

[27] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some SonarQube issues 

have a significant but small effect on faults and changes. A large-scale 

empirical study,” J. Syst. Softw., vol. 170, p. 110750, Dec. 2020, 

doi:10.1016/j.jss.2020.110750. 

[28] P. H. De Andrade Gomes, R. E. Garcia, G. Spadon, D. M. Eler, C. 

Olivete, and R. C. M. Correia, “Teaching software quality via source 

code inspection tool,” Proc. - Front. Educ. Conf. FIE, vol. 2017-

Octob, pp. 1–8, 2017, doi: 10.1109/FIE.2017.8190658. 

[29] D. Stefanović, D. Nikolić, S. Havzi, T. Lolić, and D. Dakić, 

“Identification of strategies over tools for static code analysis,” Identif. 

Strateg. over tools static code Anal., vol. 1163, no. 012012, pp. 1–9, 

2021. 

[30] I. Blasquez and H. Leblanc, “Experience in learning test-driven 

development: space invaders project-driven,” in Proceedings of the 

23rd Annual ACM Conference on Innovation and Technology in 

Computer Science Education, Jul. 2018, pp. 111–116, doi: 

10.1145/3197091.3197132. 

[31] O. Hamdi, A. Ouni, E. A. AlOmar, M. O Cinneide, and M. W. 

Mkaouer, “An Empirical Study on the Impact of Refactoring on 

Quality Metrics in Android Applications,” in 2021 IEEE/ACM 8th 

International Conference on Mobile Software Engineering and 

Systems (MobileSoft), May 2021, pp. 28–39, 

doi:10.1109/MobileSoft52590.2021.00010. 

[32] T. Oo, H. Liu, and B. Nyirongo, “Dynamic Ranking of Refactoring 

Menu Items for Integrated Development Environment,” IEEE Access, 

vol. 6, pp. 76025–76035, 2018, doi: 10.1109/ACCESS.2018.2883769. 

[33] N. Pombo and C. Martins, “Test driven development in action: Case 

study of a cross-platform web application,” EUROCON 2021 - 19th 

IEEE Int. Conf. Smart Technol. Proc., no. July, pp. 352–356, 2021, 

doi: 10.1109/eurocon52738.2021.9535554. 

[34] S. Romano, F. Zampetti, M. T. Baldassarre, M. Di Penta, and G. 

Scanniello, “Do Static Analysis Tools Affect Software Quality when 

Using Test-driven Development?,” Int. Symp. Empir. Softw. Eng. 

Meas., pp. 80–91, 2022, doi:10.1145/3544902.3546233. 

 

223




