
Vol.14 (2024) No. 1

ISSN: 2088-5334

An Empirical Evaluation on the Effect of Refactoring Code Smells

Mobile Applications Android with ASATs on Resource Usage

Indira Syawanodya a,*, Dian Anggraini a, Fajar Muhammad Al-Hijri a, Mochamad Iqbal Ardimansyah a
a Department of Software Engineering, Universitas Pendidikan Indonesia, Bandung, 40625, Indonesia

Corresponding author: *indira@upi.edu

Abstract— The Application is closely connected to mobile devices designed for many people and has maintenance, However, even

maintenance can contain violations such as code smells that effect non-functional requirements, specifically the use of CPU and memory

resources. When the software has a rapid use of resources, it gives rise to the phenomenon that the user may switch or uninstall the

software. The solution to this phenomenon is to explore resource-related code smells and fix them by refactoring them. Developments

to explore code smells came with ASATs, namely SonarQube, which 85,000 organizations are already using to speed up analyzing code

in software. This topic is related to code smells, and the research objective is to analyze and compare the performance of the original

versions and single or cumulative refactored versions of Android mobile software using the Design Research Methodology (DRM)

approach. Code smells are represented based on the classification on SonarQube, namely Blocker, Critical, Major, and Minor, with

code smells such as HashMap Usage, Member Ignoring Method, and Slow Loop. Aspects tested include Fixed Detection Ratio (FDR),

improvement, CPU, and memory usage. Based on the results of the research, it shows the depreciation of code smells which is proven

to significantly increase CPU performance in a single refactoring, namely Member Ignoring Method and Critical by 7.7% and 9.90%,

respectively. Moreover, single refactoring offers developers advantages reducing high costs, diminished exertion, and truncated

maintenance duration. However, the cumulative refactoring occasionally endeavors hold the potential be high improvements.

Keywords— Software maintenance; refactoring; code smells; resource usage; Android.

Manuscript received 8 Apr. 2023; revised 21 Aug. 2023; accepted 3 Oct. 2023. Date of publication 29 Feb. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Technology is an integral section of people’s lives, with

application being a key component. Application is closely

connected to mobile devices designed for many people [1].

Given the widespread use of application, it becomes a

challenge for developers. Developers are responsible for the

maintenance of applications; poor coding and implementation

techniques can hinder long-term maintainability and lead to

poor code quality [2], [3]. These issues arise due to a lack of

awareness and lack of development experience or the need to

develop applications rapidly under deadline pressure [4], [5].

Consequently, the developer requires maintenance program
code on the application.

The maintenance of the application requires developers to

review and modify program code manually. However, manual

review can be time-consuming and inefficient [6]. The

solution to that problem is using Automatic Static Analysis

Tools (ASATs) that can automatically analyze program code

and suggest corrective modifications [7]. ASATs are designed

to help developers identify and understand deficiencies in

program code [8]. SonarQube is a popular ASAT [9]. Despite

the benefit of ASATs, during the maintenance of the

application, developers may make bad decisions by ignoring
rule violations that can cause conflicts and negative impacts

on the application; the violations that can damage the

maintenance of the application are code smells [10], which

can affect on resource usage [4].

Resource usage should be considered a critical factor for

the application’s success, affecting performance and resource

optimization [11]–[13]. The rapid consumption in

applications can cause users to switch or uninstall the

application from their device. However, the previous research

on code smells related to resource usage has not fully explored

the issue and has mainly used emulators [11], [14], [15]. It is
important to note that behavior of an emulator differs from

that of a physical device [1]. Therefore, there is a need to

explore code smells that affect resource usage and effectively

fix them to ensure optimal performance on physical devices

as suggest by study [16]. This paper aims to analyze the effect

214

of refactoring code smells using ASATs on resource usage of

the mobile application Android.

Hecht, et al. [4] have problems this study is on program

code as code smells, that cause resource leaks and

performance with metric frame time, number of delayed

frames, memory usage, and number of garbage collection.

There are three code smells i.e., HashMap Usage (HMU),

Internal Getter/Setter (IGS), Member Ignoring Method

(MIM) on two Android applications as corpus. The result of

this study with refactoring MIM could be improved 12.4%,
which means less frame delay. Furthermore, there was

significant impact on refactoring HMU as much 3.6%.

Kwan Kim [14] discusses performance with metric CPU

Time, problems this study is code smells, that cause

performance degradation. There are seven code smells

discusses i.e., Enhanced for Loop, Internal Getter/Setter,

Local Variables, Avoiding Creating Unnecessary String

Object, Use Static Final for Constants, Inefficient Data

Structure, Avoid Using Recursive Methods on two Android

applications. This study refactored the overall result CPU

time of 579ms on Snake Game and 5.897ms on Bitmap
Plasma. However, the study was incorrect in providing

quantity code smells and not using tools to identification the

code smells. Our study is not using IGS, because the code

smells outdated and has no effect on performance [12].

Carette, et al. [13] assess code smells i.e., HashMap Usage

(HMU), Internal Getter/Setter (IGS), and Member Ignoring

Method (MIM) on five Android applications as a corpus.

Three code smells cause the effect of leakage of battery

energy consumption with metric average intensity and

average voltage. The result of this study is that refactoring a

single type such as MIM can reduce 3.86%, but refactoring
cumulative reduce up to 4.83%.

Cruz and Abreu. [12] discuss problems related to the

energy consumption of mobile devices using file changes and

power measurement metrics. The study analyzed six

applications, Loop – Habit Tracker, Writeily Pro, Talalarmo

Alarm Clock, GnuCash, Acrylic Paint, and Simple Gallery,

which are part of the F-Droid corpus. The study concluded

that energy consumption decreased after refactoring

ViewHolder (4.5%), DrawAllocation (1.5%), WakeLock

(1.5%), ObsoleteLayoutParam (0.7%), and Recycle (0.7%).

However, the study does not explore code smells.

Oliveira, et al. [1] present problem code smells on consume
resource usage with metric CPU usage and memory usage on

Android. There are three code smells discussed i.e., God

Class, God Method, Feature Envy on nine Android

applications as corpus. The results of this study can consume

higher resource usage, one of them is that the Travel-Mate

original version consumed 98.39 MB, after refactoring

increased to 625.58 MB. In their study, have not inferential

test to conclude the results are significant.

Verdecchia, et al. [17] discuss the problem of carbon

emissions that reach a global scale in the information

technology and communication sector. The problem requires
maintenance to optimize energy efficiency, which involves

aggressively fixing code smells using the Fisher-Yates

Shuffle algorithm. The study used the average power

consumption and time metrics on applications sourced from

the GitHub corpus, namely CashManager, JTrac, and Spring-

PetClinic. This study showed a decrease in energy

consumption from 49.9% to 47.8% after refactoring.

Additionally, cumulative refactoring of code smells can

reduce performance by 6.8%, translating to a 10.7% decrease

in energy consumption. Their study has no significant result

and the metric used cannot be used to indicated impact of

energy consumption. Our study will contribution inferential

test to ensure and conclude the result.

Anwar, et al. [18] discuss problem energy consumption on

Android applications with metric power measurement and

refactoring using Fisher-Yates shuffle. There are five code
smells discusses i.e., Long Method (LM), Feature Envy (FE),

Type Checking (TC), Duplicated Code (DC), and God Class

(GC) on three applications as corpus. This study showed a

reduced energy consumption, on DC 10.8% and TC 10.5%.

According to the author their result has significant result on

DC and TC.

Alkandari, et al. [11] studied three code smells i.e.,

HashMap Usage (HMU), Member Ignoring Method (MIM),

and Slow Loop (SL), on eight applications as a corpus. This

study discusses problem resource usage in Android

applications with metric CPU usage and memory usage. The
result of this study performance improved on CPU usage

12.7% and 13.7% with single refactoring HMU and MIM.

Furthermore, cumulative refactoring enhanced memory usage

by 7.1%. Their result is not using a physical device and it is

still questionable whether it has an effect. In our study we

using physical device to ensure an impact.

Etemadi Someoliayi, et al. [19] another study discusses

automatic refactoring code smells namely Sorald, this study

discusses tools refactoring with deep analysis. This study

related code smells raised by SonarQube.

Wibowo, et al. [15] discusses two code smells i.e., no-
equal-then-else and prefer-conditional-expressions on one

application. This study discusses problem code smells impact

to performance in agricultural mobile applications. The result

of this study, CPU usage increases 3.27% and memory usage

decreases from 200M to 100M. In their study are not using

physical device to ensure an effect and no significant result.

Previous studies have focused on non-functional energy

has been extensively study and concluded the refactoring code

smells can save energy consumption on applications, even

though there are drawbacks. However, the study of code

smells on non-functional resource usage remains insufficient.

There exists a device gap between emulated and physical
device. The fact behavior of applications on emulated and

physical device is significantly different, even the emulated

version fully mimics to properties and settings of the physical

device [20]. Furthermore, a research gap regarding code

smells exists between the identification of code smells based

on previous studies and the characterization of code smells

through the SonarQube tool, because code smells based

SonarQube tool has not been studied on the resource usage in

mobile applications. Therefore, our study focuses on the

resource usage with metric CPU usage and memory usage,

similar to the study by Oliveira et al. [1], Alkandari et al. [11],
and Wibowo et al. [15]. For measures intensity ratio of code

smells our study using FDR metric, is also similarly to the

study conducted by Etemadi Someoliayi, et al. [19]. This

study adopts three code smells i.e., HashMap Usage, Slow

Loop, and Member Ignoring Method from conducted by

Palomba, et. al. [21] and Alkandari, et. al. [11]. Our study

215

using code smells from SonarQube which not have been

studied on resource usage Android i.e., Blocker, Critical

Major, and Minor. We made ObreusDroid for aggregation of

the resource usage and physical device to ensure the actually

effect. Furthermore, our study will scientific contribution on

software engineering related refactoring single and

cumulative of mobile applications and tested using physical

device and inferential statistic to conclude result significant to

ensure the validity of the significance in line with previous

studies [11].

II. MATERIAL AND METHOD

This paper focused on refactoring code smells for mobile

applications. Aggregation of the resource usage using manual

testing which focused on Graphical User Interface (GUI)

events only [22], [23]. Thus, our study used ObreusDroid

which was designed and developed using bash scripting and

Android Debug Bridge (ADB). Our study consists of six main
steps as shown in Fig 1.

Fig. 1 Analysis Steps

A. Step 1: Selected Corpus of Android Applications

The Android applications selected were sourced from F-
Droid which redirected to GitHub; we chose only mobile

applications from a previous study by Anwar et al. We

believed that paper because the applications have been

researched, according to their author, the applications has

been downloaded more than 10.000 on Google Play Store

(GPS) with ‘4’ review [18] as shown Table I and ease to find

code smells. Then, we declared the configuration to be able to

be analyzed by SonarQube. The configuration assigned to

each application in the Android Gradle file is shown in the

example Fig 2.

TABLE I

CHARACTERISTICS OF MOBILE APPLICATIONS ANDROID

Characteristics Calculator Todo-List Openflood

Category Tools Tools Puzzle

Line of Code

(LoC)
5935 5466 948

Project age 6.8 3 3.1

Downloaded

(GPS)

More than

1.000

More than

10.000

More than

10.000

Average user

review
4.5 4 4.6

Fig. 2 Configuration of SonarQube

B. Step 2: Manual Testing Applications with Code Smells

After the previous step, we ran each application

individually as much as three times. For several reasons, we

made a test case, as shown in Table II, to collect data on

resource usage, i.e., CPU and memory, through ObreusDroid
with ADB. First, another research [21]–[23] uses the top

commands to measure the CPU usage and memory usage; we

believe the result is to evaluate each application. Second, we

exported the result of resource usage to a CSV file.

C. Step 3: Detecting Code Smells

After manual testing in the previous step, we detected the

code smells automatically and manually. We manually chose

three code smells from the previous study, i.e., HMU, MIM,
and SL, because three code smells are easy to refactor.

Automatically, we use popular ASATs, specifically

SonarQube [7], [24]–[26], to find other code smells that have

not been studied in focused resource usage on Android

applications, detailed code smells of SonarQube as shown in

Table III. SonarQube is already used by over 85.000

organizations [9], [10].

TABLE II

TEST SCENARIOS OF APPLICATIONS

Android

Applications
Scenarios

Approximate

Duration (Seconds)

Calculator

1. Add up both numbers and press the result.

2. Subtraction on both numbers and hit results.

3. Multiply on both numbers and hit result.

4. Division on both numbers and hit result

5. Clear all history on the calculator

6. Launches advanced calculator and returns to basic calculator

7. Draw a chart

8. Zoom in and zoom out the chart

84

216

Android

Applications
Scenarios

Approximate

Duration (Seconds)
9. Select the hex calculator

10. Add up both hex numbers and hit the result.

11. Subtraction on both hex numbers and hit results.

12. Multiply on both hex numbers and hit result.

13. Division on both hex numbers and hit result

14. Back to basic calculator

15. Open the calculator history list

16. Select a history

17. Close history list

18. Press a number, select an arithmetic operation, and press result to display errors in calculations

19. Switch to the advanced calculator and press the square root and pi keys, then delete the result

20. Switch to the basic calculator and select a number, then long press on the screen to cut and paste from

the clipboard.

Todo-List

1. View the application tutorial and navigate to completion

2. Go to settings, then turn on progress by Subtasks

3. Add three new lists by typing each list uniquely, namely “list1”, “list2”, and “list3”

4. Press the “+” icon on the bottom right-side button on the screen

5. Add three new tasks by typing each task uniquely, namely "Task1", "Task2", and "Task3," and setting

the priority; each three task is given priority uniquely, namely "High," "Medium," and "Low."

6. Add deadlines and reminders of three tasks

7. Put the list of three different tasks

8. Enter three subtasks in the main task

9. Mark the subtask complete and see progress; on "Task1," mark one subtask; on "Task2," mark two

subtasks; on "Task3," mark three subtasks

10. Send the main task to the recycler by deleting it

11. View tasks based on priority

12. View tasks by deadline

13. Open the calendar from the left menu

14. In the calendar, click a date to open the task

15. View tasks in the recycler

16. View and use the help options

17. View info about the app

18. Search for tasks by one of the names

188

Openflood

1. Launch activity info

2. Play the game and lose

3. Close the "game over" pop-up by selecting Start a new game

4. Launch settings and change the board size to 12x12

5. Press all the color buttons in the game

6. Launch settings and choose color blind mode (blind mode)

7. Press all color buttons in the game on color blind mode (blind mode)

8. Launch settings and select the old color scheme

9. Press all color buttons in-game on the old schema color

10. Launch settings and change the board size to 24x24

32

TABLE III

DETAILED CODE SMELLS OF SONARQUBE

Key rule Classifications Descriptions

S3516 Blocker The return value on the method doesn't be invariant
S2387 Blocker Child class fields cannot have the same naming attribute as the parent class.
S1192 Critical String literals cannot be duplicated
S1186 Critical The method cannot be empty
S131 Critical The switch statement must have a “default” clause

S2093 Critical Try with resources must be used
S3973 Critical The single conditional must fit the indentation

S115 Critical Constants must obey naming conventions
S1604 Major A class containing one method must be a lambda
S1144 Major Unused “private” method must be removed
S1161 Major “@Override” must be used on overridden methods and implementations
S1172 Major Parameters in methods that are not used should be removed
S125 Major Sections of code should not be commented

S1066 Major The collapsible if statements must be concatenated
S5993 Major The "abstract" class constructor cannot be declared "public."
S1068 Major The unused “private” field should be deleted

S108 Major Nested code cannot be left blank
S1854 Major Values that are stored in variables but not used must be deleted
S4165 Major Variables containing hold values cannot be redundant
S2589 Major Boolean expressions cannot be arbitrary
S1117 Major Local variables cannot duplicate class fields
S3740 Major Generic data types may not be used
S1301 Minor Changed the "switch" statement to an "if" statement to improve readability
S1874 Minor The code "@Deprecated" is not required

217

Key rule Classifications Descriptions

S2293 Minor The diamond (“<>”) operation must be used
S1596 Minor “Collections.EMPTY_LIST”, “EMPTY_MAP”, and “EMPTY_SET” must not be used
S1450 Minor Private local variables outside the method must be local variables within the method.
S1155 Minor Collection.isEmpty() should be used to test for empty values
S1643 Minor Strings cannot be concatenated using "+" into one
S1128 Minor Unnecessary imports should be removed
S3400 Minor Methods cannot return constant values
S1905 Minor Redundancy casts should not be used

S1659 Minor Variables cannot be declared on a single line
S3008 Minor Non-final static naming must comply with naming conventions
S1125 Minor Boolean literals cannot be redundant
S1488 Minor Local variables must be undeclared and must be returned.
S1124 Minor Modifiers must be declared in order
S1116 Minor Blank statements must be deleted or filled in
S1126 Minor Boolean expression returns cannot be wrapped in an if-else statement
S1104 Minor Variables in class fields must not have public accessibility

S1319 Minor The declaration must use a Java collection interface such as "List" rather than its implementation-
specific class like “LinkedList”

S1197 Minor The array pointer “[]” must be a data type, not a variable.
S1153 Minor String.valueOf() cannot be added to a String
S1481 Minor Unused variables must be deleted
S1640 Minor Maps with keys are enum values that must be changed with EnumMap
S3626 Minor Jump statements must not be redundant
S4201 Minor A blank value check should not be used with "instanceof."
S117 Minor Local variable and parameter names must conform to convention

S116 Minor The naming of class fields must be according to the convention
S1170 Minor Constants on initialized fields should be declared “static final” rather than just “final.”

D. Step 4: Refactoring Code Smells

After manual testing in previous step, we manually

refactoring code smells individually and cumulatively. The

refactoring purpose is to improve internal quality applications

[30]–[34]. Furthermore, we separated to be another edition, as

follows:

EOriginal - Code smells in the original edition are not refactored.

EHMU - Code smells HashMap Usage in this edition has been

refactored.

ESL - Code smells Slow Loop in this edition has been

refactored.

EMIM - Code smells Member Ignoring Method in this edition
has been refactored.

EBlocker - Code smells Blocker classification in this edition has

been refactored.

ECritical - Code smells Critical classification in this edition has

been refactored.

EMajor - Code smells Major classification in this edition has

been refactored.

EMinor - Code smells Minor classification in this edition has

been refactored.

EAll - All code smells in this edition have been refactored.

E. Step 5: Manual Testing Applications After Refactoring

After refactoring code smells manually, we run each

application, which has been done refactoring individually and

cumulatively with manual testing similar to previous step 2.

We run each application 24 times in appropriate editions

except Eori. The result of resource usage collected and

evaluated related consumption.

F. Step 6: Comparative Analysis

After completing all the previous steps, we compared the

resource consumption of Android applications before and

after refactoring. We measure the average CPU [1], [11] and

memory usage [1], [11] as well as the improvement [12].

Furthermore, we conducted inferential statistical analysis to

conclude the results. The formulation of measure as shown
below:

��� =
|��� 	
�
��

 �
���
 �
����|�|��� 	
�
��

 ���
� �
����|

|��� 	
�
��

 �
���
 �
����|
 (1)

����������� =
 !"#$%&'!"(� '!)*)+$,

 '!)*)+$,
 (2)

III. RESULT AND DISCUSSION

The measure results of resource usage were using three

(3) applications with different categories and benchmark LoC,
which has been described in Table I.

Experimental Setup. An Android physical device is

needed to test a mobile application. This study used the device

specifically Xiaomi Redmi S2 (YSL) running Android 10

operating system with processor 2 GHz octa-core Qualcomm

MSM8953 Snapdragon 625 and 3GB RAM. Furthermore,

experiments for monitoring used with Windows 10. The PC

has an i3 7th Gen Intel processor with 12GB of RAM. The

analysis of the result in this study is measure FDR between

the original edition and refactored edition, evaluate CPU

usage, and evaluated memory usage.

A. Intensity of Refactoring Code Smells

The analysis of results in this study is measure FDR

between the original edition and the refactored edition. The

code smells of all Android applications are covered and the

whole code smells was detected automatically and manually.

Information on all the intensity of code smells is shown in

Table IV without HMU, SL, MIM because it does not have a

key rule and we detailed result intensity refactored.

218

TABLE IV

RESULT CODE SMELLS OF SONARQUBE REFACTORED

Applications Key Rules Refactoring Code Smells Code Smells Detected FDR

Calculator

Java: S3516 1 1 100%
Java: S1186 18 18 100%
Java: S131 10 17 59%
Java: S1604 32 32 100%
Java: S1144 2 2 100%
Java: S1161 6 6 100%

Java: S1172 5 6 83%
Java: S125 1 1 100%
Java: S1066 3 5 60%
Java: S5993 2 2 100%
Java: S2589 1 1 100%
Java: S1068 2 2 100%
Java: S108 1 1 100%
Java: S1301 9 9 100%

Java: S1874 10 20 50%
Java: S2293 8 8 100%
Java: S1596 1 1 100%
Java: S1450 2 2 100%
Java: S1155 1 2 50%
Java: S1643 3 3 100%
Java: S1640 1 1 100%
Java: S1128 1 1 100%
Java: S1124 1 3 33%

Java: S3400 2 2 100%
Java: S1905 2 2 100%
Java: S1659 1 1 100%
Java: S3008 1 1 100%
Java: S1125 2 2 100%
Java: S1488 2 2 100%
Java: S117 2 2 100%

Total 133 157 85%

Todo-List

Java: S2387 6 6 100%
Java: S1192 12 12 100%
Java: S2093 1 1 100%
Java: S1186 5 5 100%
Java: S131 8 8 100%
Java: S3973 2 2 100%
Java: S115 1 1 100%

Java: S5993 2 2 100%
Java: S1068 20 20 100%
Java: S125 38 38 100%
Java: S1161 10 10 100%
Java: S108 5 5 100%
Java: S1854 10 10 100%
Java: S1604 51 51 100%
Java: S1066 2 3 67%

Java: S4165 1 1 100%
Java: S2589 2 2 100%
Java: S1117 7 7 100%
Java: S3740 1 1 100%
Java: S1144 1 1 100%
Java: S1172 2 2 100%
Java: S1128 28 28 100%

Kotlin: S1128 7 7 100%

Java: S1874 6 83 7%
Java: S1116 2 2 100%
Java: S1155 4 6 67%
Java: S2293 21 21 100%
Java: S1319 10 17 59%
Java: S1125 2 2 100%
Java: S1126 4 4 100%
Java: S1104 20 23 87%

Java: S1197 9 9 100%
Java: S1153 1 1 100%

219

Applications Key Rules Refactoring Code Smells Code Smells Detected FDR

Java: S116 1 2 50%
Java: S1659 6 6 100%
Java: S1450 11 14 79%
Java: S1481 8 8 100%
Java: S1301 8 8 100%
Java: S1640 1 1 100%
Java: S3626 2 2 100%
Java: S1488 2 2 100%

Java: S1124 2 2 100%
Java: S4201 1 1 100%
Java: S117 2 2 100%

Total 345 439 78%

Openflood

Java: S1192 8 8 100%
Java: S131 1 1 100%
Java: S1161 2 2 100%

Java: S1604 19 19 100%
Java: S2589 1 1 100%
Java: S1066 1 1 100%
Java: S3626 18 18 100%
Java: S1197 4 4 100%
Java: S1643 1 1 100%
Java: S1905 1 1 100%
Java: S2293 2 2 100%

Java: S1659 4 4 100%
Java: S116 1 1 100%
Java: S1170 1 1 100%
Java: S1128 3 3 100%
Java: S1301 1 1 100%

Total 68 68 100%

Code smells in the Calculator have been refactored 85%,

the code smells of Todo-List have been refactored 78%, and

code smells of Openflood have been refactored 100%.

B. Interpretation CPU Usage

In Figs. 3, 4, and 5 we visualized CPU usage of all editions

of applications. CPU usage interpretation has different result
at any moment run. In the Table V. We present average and

standard deviation of the CPU usage of nine editions

applications, which then measured relative change to see

improvement. The negative value indicated that the result of

refactoring caused improvement in performance, and the

value positive indicated that the result of refactoring caused

poor performance.

Fig. 3 CPU usage of Calculator

Fig. 4 CPU usage of Todo-List

Fig. 5 CPU usage of Openflood

Refactoring HashMap Usage, one of the two applications

shows an improvement in CPU performance, with an average

of 4.14%. For Slow Loop refactoring, the three pieces of

applications improved CPU performance, by an average of
4.39%. In the Member Ignoring Method, two of the three

applications generate improvement in CPU performance, with

an average of 7.87%. In Blocker, refactoring of one of the two

applications resulted in CPU performance, averaging 4.75%.

Furthermore, Critical refactoring of the three of applications

220

improved CPU, with an average of 9.90%. Major refactoring

of one in three pieces of applications resulted in CPU

performance, with an average of 0.28%. At the same time,

Minor refactoring of one in three applications results in CPU

performance, with an average of 0.90%. Finally, two of the

three applications resulted in CPU performance in cumulative

refactoring, with an average of 3.96%.

TABLE V

PERCENTAGE DIFFERENT EDITIONS OF AVERAGE CPU USAGE

% Calculator Todo-List Openflood

Editions Average
Standard

Deviation
Improvement Average

Standard

Deviation
Improvement Average

Standard

Deviation
Improvement

EOri 32,02% 26,38% 0% 26,18% 27,72% 0% 28.56% 27.79% 0%
EHMU 34,74% 23,55% +8,49% 21,79% 25,06% -16,77% - - -
ESL 31,15% 25,90% -2,72% 25,06% 30,83% -4,28% 26,80% 22,85% -6,16%
EMIM 32,37% 23,56% +1,09% 21,33% 23,14% -18,53% 26,80% 24,16% -6,16%
EBlocker 34,58% 21,22% +8,00% 21,60% 24,30% -17,49% - - -
ECritical 28,97% 21,55% -9,53% 23,44% 26,18% -10,47% 25,79% 25,98% -9,70%

EMajor 28,61% 22,48% -10,65% 26,61% 30,87% +1,64% 30,89% 36,38% +8,16%
EMinor 33,21% 24,40% +3,72% 23,58% 29,97% -9,93% 29,56% 21,10% +3,50%
EAll 32,17% 26,18% +0,47% 23,61% 28,26% -9,82% 27,84% 23,79% -2,52%

Based on the statistical analysis in Table VI, the refactoring

of code smells significantly impacts Android applications. In

previous studies the results of a p-value of less than 0.1 certain

percentage of 90%, has a significant effect [12] or a p-value
of less than equal to 0.1 certain percentage 90%. These results

show that statistically refactoring Member Ignoring Method

and Critical can improve with refactoring singly, with an

average of 7.87% and 9.90% in Table VI. In the results of the

p-value with 0.074 belonging to the Member Ignoring Method

and 0.109 belonging to Critical, even though Critical is
slightly more than 0.1 it is enough to produce statistically

significant results present 80%.

TABLE VI

WILCOXON SIGNED-RANK INFERENTIAL TEST OF CPU USAGE

 EOri EHMU ESL EMIM EBlocker ECritical EMajor EMinor

EHMU 0.219 - - - - - - -
ESL 0.284 0.757 - - - - - -
EMIM 0.074 0.706 0.448 - - - - -
EBlocker 0.529 0.981 0.963 0.620 - - - -
ECritical 0.109 0.727 0.536 0.897 0.503 - - -
EMajor 0.745 0.841 0.777 0.394 0.596 0.044 - -

EMinor 0.346 0.854 0.663 0.556 0.852 0.336 0.603 -
EAll 0.449 0.823 0.905 0.410 0.824 0.483 0.925 0.762

C. Interpretation Memory Usage

Fig. 6, Fig. 7, and Fig. 8, we visualized memory usage of

all editions in the same applications. Memory usage

interpretation has different results at any moment run. In the

Table VII. We present the average and standard deviation of

the memory usage of nine editions applications, which then

measured relative change to see improvement. Improvement

of memory usage has improved variative similar CPU usage.

Fig. 6 Memory Usage of Calculator

Fig. 7 Memory usage of Todo-List

Fig. 8 Memory usage of Openflood

Refactoring HashMap Usage, the two applications show an

improvement in memory performance, with an average of

221

1.48%. For the Slow Loop refactoring, one in three pieces of

applications resulted in an improvement in memory

performance by an average of 1.17%. In the Member Ignoring

Method, one out of three applications result in an

improvement in memory performance, with an average of

0.59%. The Blocker refactoring of the two applications results

in memory performance, averaging 3.52%. Subsequent

Critical refactoring of one in three pieces of applications

resulted in a memory improvement by an average of 0.25%.

Major refactoring on two of the three applications resulted in

memory performance, averaging 1.10%. Minor refactoring on

one of the three applications results in memory performance,

with an average of 1.94%. Finally, one in three applications

results in memory performance on refactoring seven code

smells, with an average of 2.09%.

TABLE VII

PERCENTAGE DIFFERENT EDITIONS OF AVERAGE MEMORY USAGE

% Calculator Todo-List Openflood

Editions Average
Standard

Deviation
Improvement Average

Standard

Deviation
Improvement Average

Standard

Deviation
Improvement

EOri 3,30% 0,19% 0% 4,57% 0,60% 0% 3,08% 0,21% 0%

EHMU 3,26% 0,19% -1,21% 4,49% 0,62% -1,75% - - -
ESL 3,35% 0,26% +1,52% 4,34% 0,50% -5,03% 3,08% 0,21% 0%
EMIM 3,34% 0,25% +1,21% 4,39% 0,49% -3,94% 3,11% 0,21% +0,97%
EBlocker 3,27% 0,15% -0,91% 4,29% 0,56% -6,13% - - -
ECritical 3,41% 0,22% +3,33% 4,31% 0,55% -5,69% 3,13% 0,23% +1,62%
EMajor 3,35% 0,27% +1,52% 4,32% 0,56% -5,47% 3,10% 0,23% +0,65%
EMinor 3,30% 0,23% 0% 4,29% 0,51% -6,13% 3,09% 0,17% +0,32%
EAll 3,31% 0,18% +0,30% 4,24% 0,47% -7,22% 3,10% 0,15% +0,65%

Based on the statistical analysis in Table VIII, the

refactoring code smells has a significant effect on Android

applications. These results show that statistically refactoring

the seven code smells singly or cumulatively can significantly

improvement memory usage. So, it was concluded that

refactoring HMU, SL, MIM, Blocker, Critical, Major, and

Minor can result in an improvement in memory performance.

Despite one of application (openflood) is poor memory after

refactoring in Table VII. This concludes refactoring singly or

cumulatively significant, but not whole improvement.

TABLE VIII

WILCOXON SIGNED-RANK INFERENTIAL TEST OF CPU USAGE

 EOri EHMU ESL EMIM EBlocker ECritical EMajor EMinor

EHMU 0.000 - - - - - - -

ESL 0.000 0.000 - - - - - -
EMIM 0.000 0.359 0.000 - - - - -
EBlocker 0.000 0.000 0.000 0.000 - - - -
ECritical 0.000 0.000 0.819 0.344 0.000 - - -
EMajor 0.000 0.000 0.027 0.001 0.000 0.664 - -
EMinor 0.000 0.000 0.000 0.000 0.353 0.000 0.000 -
EAll 0.000 0.000 0.000 0.000 0.544 0.000 0.000 0.000

IV. CONCLUSION

Based on the result of our study, we concluded that

refactoring with ASATs can help detect code smells and

refactoring code smells with percentage on each application

i.e., Calculator 85%, Todo-List 78%, and Openflood 100%.

The test results each application obtained on real device with
test case represent that refactoring Member Ignoring Method

and Critical results in an improvement performance on CPU

usage with an average of 7.87% and 9.90%, there is an

improvement in memory performance in refactoring Blocker

and cumulative refactoring on seven code smells with an

average of 3.52% and 2.09%, this signifies code smells

classification as “Blocker” and “Critical” have an impact on

the improvement performance CPU usage and memory usage

other than found in previous studies. The statistical results

obtained can significantly prioritize that refactoring code

smells is crucial to adjusting especially in the use of resources

or the performance for multitasking. In addition, single
refactoring offers developers advantages reducing high cost,

diminished exertion, and truncated maintenance duration.

However, the cumulative refactoring occasionally endeavors

hold the potential be high improvements. Our study has a

limitation concerning the relatively small size of the corpus,

testing each application manually. In the future work, we

intend to develop automatically tools with setting specific

code smells to improvement resource usage which combine

code smells has been studied, impacting either CPU usage

exclusively (such as Critical, MIM, SL, and Cumulative

improvements for CPU usage) or memory usage exclusively

(including HMU, Blocker, and Cumulative improvements for
memory usage) and will be implemented on large size of the

corpus and each application will testing automatically.

REFERENCES

[1] J. Oliveira, M. Viggiato, M. Santos, E. Figueiredo, and H. Marques-

Neto, “An Empirical Study on the Impact of Android Code Smells on

Resource Usage,” Jul. 2018, pp. 314–359, doi: 10.18293/SEKE2018-

157.

[2] S. Habchi, N. Moha, and R. Rouvoy, “Android code smells: From

introduction to refactoring,” J. Syst. Softw., vol. 177, p. 110964, 2021,

doi:10.1016/j.jss.2021.110964.

[3] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen,

“Understanding code smells in android applications,” Proc. - Int.

222

Conf. Mob. Softw. Eng. Syst. MOBILESoft 2016, pp. 225–236, 2016,

doi: 10.1145/2897073.2897094.

[4] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the

performance impacts of Android code smells,” in Proceedings of the

International Conference on Mobile Software Engineering and

Systems, May 2016, pp. 59–69, doi:10.1145/2897073.2897100.

[5] G. Rasool and Z. Arshad, “A Lightweight Approach for Detection of

Code Smells,” Arab. J. Sci. Eng., vol. 42, no. 2, pp. 483–506, 2017,

doi:10.1007/s13369-016-2238-8.

[6] D. Stefanović, D. Nikolić, D. Dakić, I. Spasojević, and S. Ristić,

“Static code analysis tools: A systematic literature review,” Ann.

DAAAM Proc. Int. DAAAM Symp., vol. 31, no. 1, pp. 565–573, 2020,

doi: 10.2507/31st.daaam.proceedings.078.

[7] D. Marcilio, C. A. Furia, R. Bonifácio, and G. Pinto, “SpongeBugs:

Automatically generating fix suggestions in response to static code

analysis warnings,” J. Syst. Softw., vol. 168, p. 110671, 2020.

doi:10.1016/j.jss.2020.110671.

[8] D. Nikolic, D. Stefanovic, D. Dakic, S. Sladojevic, and S. Ristic,

“Analysis of the Tools for Static Code Analysis,” 2021 20th Int. Symp.

INFOTEH-JAHORINA, INFOTEH 2021 - Proc., no. March, pp. 17–

19, 2021, doi:10.1109/infoteh51037.2021.9400688.

[9] J. Wang, Y. Huang, S. Wang, and Q. Wang, “Find Bugs in Static Bug

Finders,” IEEE Int. Conf. Progr. Compr., vol. 2022-March, pp. 516–

527, 2022, doi:10.1145/3377811.3380380.

[10] D. Marcilio, R. Bonifacio, E. Monteiro, E. Canedo, W. Luz, and G.

Pinto, “Are static analysis violations really fixed? a closer look at

realistic usage of sonarqube,” IEEE Int. Conf. Progr. Compr., vol.

2019-May, pp. 209–219, 2019, doi:10.1109/ICPC.2019.00040.

[11] M. A. Alkandari, A. Kelkawi, and M. O. Elish, “An Empirical

Investigation on the Effect of Code Smells on Resource Usage of

Android Mobile Applications,” IEEE Access, vol. 9, pp. 61853–

61863, 2021, doi:10.1109/access.2021.3075040.

[12] L. Cruz and R. Abreu, “Performance-Based Guidelines for Energy

Efficient Mobile Applications,” in 2017 IEEE/ACM 4th International

Conference on Mobile Software Engineering and Systems

(MOBILESoft), May 2017, pp. 46–57,

doi:10.1109/MobileSoft.2017.19.

[13] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,

“Investigating the energy impact of Android smells,” in 2017 IEEE

24th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Feb. 2017, pp. 115–126,

doi:10.1109/saner.2017.7884614.

[14] D. Kwan Kim, “Towards Performance-Enhancing Programming for

Android Application Development,” Int. J. Contents, vol. 13, no. 4,

pp. 39–46, 2017, doi:10.5392/IJoC.2017.13.4.039.

[15] A. Wibowo, A. R. Chrismanto, M. N. A. Rini, and L. Chrisantyo,

“Mobile Application Performance Improvement with the

Implementation of Code Refactor Based on Code Smells

Identification: Dutataniku Agriculture Mobile App Case Study,” in

2022 Seventh International Conference on Informatics and

Computing (ICIC), Dec. 2022, pp. 1–7, doi:

10.1109/ICIC56845.2022.10006961.

[16] Q. Xu, J. C. Davis, Y. C. Hu, and A. Jindal, “An Empirical Study on

the Impact of Deep Parameters on Mobile App Energy Usage,” in

2022 IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER), Mar. 2022, pp. 844–855, doi:

10.1109/SANER53432.2022.00103.

[17] R. Verdecchia, R. Aparicio Saez, G. Procaccianti, and P. Lago,

“Empirical Evaluation of the Energy Impact of Refactoring Code

Smells,” 2018, pp. 365–345, doi: 10.29007/dz83.

[18] H. Anwar, D. Pfahl, and S. N. Srirama, “Evaluating the Impact of

Code Smell Refactoring on the Energy Consumption of Android

Applications,” in 2019 45th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), Aug. 2019, pp. 82–

86, doi: 10.1109/SEAA.2019.00021.

[19] K. Etemadi Someoliayi et al., “Sorald: Automatic Patch Suggestions

for SonarQube Static Analysis Violations,” IEEE Trans. Dependable

Secur. Comput., pp. 1–17, 2022, doi:10.1109/TDSC.2022.3167316.

[20] A. Guerra-Manzanares and M. Välbe, “Cross-device behavioral

consistency: Benchmarking and implications for effective android

malware detection,” Mach. Learn. with Appl., vol. 9, p. 100357, Sep.

2022, doi: 10.1016/j.mlwa.2022.100357.

[21] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,

“Lightweight detection of Android-specific code smells: The aDoctor

project,” in 2017 IEEE 24th International Conference on Software

Analysis, Evolution and Reengineering (SANER), Feb. 2017, pp. 487–

491, doi: 10.1109/saner.2017.7884659.

[22] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android apps

with minimal restart and approximate learning,” ACM SIGPLAN Not.,

vol. 48, no. 10, pp. 623–639, 2013, doi: 10.1145/2544173.2509552.

[23] M. Nass, E. Alegroth, and R. Feldt, “Augmented testing: Industry

feedback to shape a new testing technology,” Proc. - 2019 IEEE 12th

Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 2019, pp. 176–

183, 2019, doi: 10.1109/ICSTW.2019.00048.

[24] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang, “Houdini’s Escape:

Breaking the Resource Rein of Linux Control Groups,” in

Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, Nov. 2019, pp. 1073–1086,

doi:10.1145/3319535.3354227.

[25] J. Lee, A. V. Raja, and D. Gao, “SplitSecond: Flexible Privilege

Separation of Android Apps,” in 2019 17th International Conference

on Privacy, Security and Trust (PST), Aug. 2019, pp. 1–10,

doi:10.1109/PST47121.2019.8949067.

[26] E. Wen, J. Cao, J. Shen, and X. Liu, “Fraus: Launching Cost-efficient

and Scalable Mobile Click Fraud Has Never Been So Easy,” in 2018

IEEE Conference on Communications and Network Security (CNS),

May 2018, pp. 1–9, doi: 10.1109/CNS.2018.8433126.

[27] V. Lenarduzzi, N. Saarimäki, and D. Taibi, “Some SonarQube issues

have a significant but small effect on faults and changes. A large-scale

empirical study,” J. Syst. Softw., vol. 170, p. 110750, Dec. 2020,

doi:10.1016/j.jss.2020.110750.

[28] P. H. De Andrade Gomes, R. E. Garcia, G. Spadon, D. M. Eler, C.

Olivete, and R. C. M. Correia, “Teaching software quality via source

code inspection tool,” Proc. - Front. Educ. Conf. FIE, vol. 2017-

Octob, pp. 1–8, 2017, doi: 10.1109/FIE.2017.8190658.

[29] D. Stefanović, D. Nikolić, S. Havzi, T. Lolić, and D. Dakić,

“Identification of strategies over tools for static code analysis,” Identif.

Strateg. over tools static code Anal., vol. 1163, no. 012012, pp. 1–9,

2021.

[30] I. Blasquez and H. Leblanc, “Experience in learning test-driven

development: space invaders project-driven,” in Proceedings of the

23rd Annual ACM Conference on Innovation and Technology in

Computer Science Education, Jul. 2018, pp. 111–116, doi:

10.1145/3197091.3197132.

[31] O. Hamdi, A. Ouni, E. A. AlOmar, M. O Cinneide, and M. W.

Mkaouer, “An Empirical Study on the Impact of Refactoring on

Quality Metrics in Android Applications,” in 2021 IEEE/ACM 8th

International Conference on Mobile Software Engineering and

Systems (MobileSoft), May 2021, pp. 28–39,

doi:10.1109/MobileSoft52590.2021.00010.

[32] T. Oo, H. Liu, and B. Nyirongo, “Dynamic Ranking of Refactoring

Menu Items for Integrated Development Environment,” IEEE Access,

vol. 6, pp. 76025–76035, 2018, doi: 10.1109/ACCESS.2018.2883769.

[33] N. Pombo and C. Martins, “Test driven development in action: Case

study of a cross-platform web application,” EUROCON 2021 - 19th

IEEE Int. Conf. Smart Technol. Proc., no. July, pp. 352–356, 2021,

doi: 10.1109/eurocon52738.2021.9535554.

[34] S. Romano, F. Zampetti, M. T. Baldassarre, M. Di Penta, and G.

Scanniello, “Do Static Analysis Tools Affect Software Quality when

Using Test-driven Development?,” Int. Symp. Empir. Softw. Eng.

Meas., pp. 80–91, 2022, doi:10.1145/3544902.3546233.

223

