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Abstract—Facial skin type analysis is a critical task in several fields, including dermatology, cosmetics, and biometrics, and has been 

the subject of significant research in recent years. Traditional facial skin type analysis approaches rely on large, labeled datasets, which 

can be time-consuming and costly to collect. This study proposes a novel few-shot learning (FSL) approach for facial skin type analysis 

that can accurately classify skin types with limited labeled data. A diverse dataset of facial images with varying skin tones and conditions 

was curated. The proposed approach leverages pre-trained deep neural networks and an FSL algorithm based on prototypical networks 

(PNs) and matching networks (MNs) to address the challenge of limited labeled data. Importantly, this study has significant implications 

for improving access to dermatological care, especially in underserved populations, as many individuals are unaware of their skin type, 

which can lead to ineffective or even harmful skincare practices. Our approach can help individuals quickly determine their skin type 

and develop a personalized skincare routine based on their unique skin characteristics. The results of our experiments demonstrate the 

effectiveness of the proposed approach. PNs achieved the highest accuracy in the 2-way, 10-shot, 15-query scenario with an accuracy of 

95.78 ± 2.79%, while MNs achieved the highest accuracy of 90.33 ± 4.10% in the 2-way, 5-shot, 10-query scenario. In conclusion, this 

study highlights the potential of FSL and deep neural networks to overcome the limitations of traditional approaches to facial skin 

analysis, offering a promising avenue for future research in this field. 
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I. INTRODUCTION

Analyzing facial skin types is paramount in various 

domains, including dermatology, cosmetics, and biometrics. 

Extensive research efforts have been dedicated to 

understanding skin characteristics and developing effective 

skincare practices through facial skin type analysis. However, 

traditional approaches to this analysis rely heavily on large, 

labeled datasets, which pose challenges in terms of time and 

resources for collection [1]. Consequently, alternative 

methodologies are needed to classify skin types with limited 

labeled data accurately. 

In addition, the specific context of Malaysian facial skin 
types further compounds the challenges in this field [2], [3], 

[4]. There is a notable absence of a labeled facial dataset 

tailored to Malaysian skin types [5], [6]. Moreover, existing 

applications that aim to determine skin type often lack a 

specific focus on Malaysian individuals. Many popular 

applications, such as L’Oréal Paris Skin Genius, Olay Skin 

Advisor, and others that belong to well-known brands, 

primarily cater to a broader audience and do not adequately 

represent the diverse range of Malaysian skin types. This 

significant gap in dedicated resources for Malaysian facial 

skin types highlights the need for our collection of a 
comprehensive Malaysian facial dataset. 

Therefore, this paper proposes a novel few-shot learning 

(FSL) approach for facial skin type analysis with prototypical 

networks (PNs) and matching networks (MNs) to overcome 

these limitations [7], [8]. By leveraging the power of these 

networks, we aim to address the challenges associated with 

traditional methods of classifying facial skin types [9]. Our 

approach enables accurate classification of skin types even 

with a limited amount of labeled data, thus reducing reliance 

on extensive labeled datasets. This advancement solves the 

scarcity of labeled facial datasets and opens new possibilities 
for accurate facial skin type analysis in the Malaysian context. 

The research is motivated by its critical implications for 

improving access to dermatological care, particularly among 

underserved populations [10], [11]. It is common for 

individuals to be unaware of their skin type, leading to 

ineffective or potentially harmful skincare practices [12], 
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[13]. By addressing the challenges of limited labeled data and 

the lack of dedicated applications for Malaysian facial skin 

types, our proposed approach offers individuals an easy and 

reliable method to determine their skin type. This, in turn, 

empowers them to develop personalized skincare routines 

based on their unique skin characteristics, contributing to 

improved skincare practices and overall well-being among the 

Malaysian population [14], [15]. 

In Section 2, we present an extensive literature review, 

discussing previous research on facial skin type analysis, 
highlighting the limitations of traditional approaches, and 

exploring the potential of FSL in this context. Section 3 

outlines the data collection and pre-processing procedures, 

including creating a diverse dataset of facial images and the 

necessary annotations. Section 4 presents the methodology, 

providing a detailed explanation of the proposed approach 

utilizing PNs and FSL. Section 5 presents the experimental 

setup and results. In contrast, Section 6 concludes the paper 

by summarizing the findings, suggesting future research 

directions in dermatology cosmetics, and suggesting avenues 

for future research. 

A. Justification of Study 

This literature review aims to investigate the application of 

FSL methods, particularly utilizing PNs, in the analysis and 

classification of facial skin types. While existing research 

predominantly focuses on skin disease classification [16]-

[24], limited studies specifically address facial skin type 

classification. By examining relevant studies on facial skin 

type analysis and adapting their methodologies, we aim to 

bridge this research gap and develop accurate and efficient 
approaches for facial skin type analysis. The review will 

compare traditional machine learning algorithms, deep 

learning architectures, and state-of-the-art skin analysis apps, 

ultimately providing insights and establishing a foundation 

for our proposed approach utilizing FSL and PNs in facial 

skin type classification [25], [26]. 

1) Facial Skin Typing System: Skin typing systems are 

crucial in classifying and categorizing different skin types 

based on various parameters, providing a framework for 

understanding and addressing individual skin characteristics 

in personalized skincare approaches. Several skin typing 
systems have been developed and utilized in dermatology and 

skincare [1]. 

One widely recognized skin typing system is the Baumann 

Skin Type System (BSTS), which incorporates four main 

parameters: dry or oily, sensitive or resistant, pigmented or 

non-pigmented, and wrinkle-prone or tight. Combining these 
parameters, the BSTS creates 16 distinct skin types, offering 

a comprehensive classification approach [27]. The BSTS 

employs a validated questionnaire, the Baumann Skin Type 

Indicator (BSTI), to assess and assign individuals to their skin 

types. This versatile system applies to all ethnicities, ages, and 

genders, comprehensively understanding diverse skin 

characteristics [28]–[33]. 

Another commonly used skin typing system is the 

Fitzpatrick scale, which primarily focuses on categorizing 

skin based on its response to sun exposure and its tendency to 

tan or burn. The Fitzpatrick scale classifies skin into six types 
ranging from very fair (Type I) to very dark (Type VI). This 

system is particularly relevant in determining the risk of sun 

damage, guiding appropriate sun protection measures, and 

predicting the likelihood of certain skin conditions, such as 

skin cancer [34]–[37]. 

The Roberts Skin Type Classification System is another 

comprehensive approach that evaluates four elements: 

phototype, hyperpigmentation, photoaging, and scarring, to 

classify an individual’s skin type and predict their response to 

insult and inflammation. This system combines quantitative 

and qualitative assessments, including ancestral and clinical 
history, visual examination, test site reactions, and physical 

examination. It provides valuable information for treatment 

planning, managing patient expectations, and optimizing 

outcomes, ultimately improving physician-patient 

communication, patient compliance, and preventive measures 

[38]. 

During the early 1900s, Helena Rubinstein introduced a 

primary system for classifying skin types, which has since 

remained a traditional and widely utilized approach in the 

skincare industry. This system establishes four fundamental 

skin types: normal, dry, oily, and sensitive. While these 
classifications have been valuable in providing a general 

understanding of skin characteristics, scholars have raised 

concerns about their limited capacity to encompass intricate 

descriptions such as pigmentation irregularities or the 

presence of wrinkles [27]. 

In addition to these established systems, various other skin 

typing approaches exist, emphasizing specific aspects of the 

skin, such as sebum production, skin barrier function, or acne 

susceptibility. These systems aim to understand individual 

skin characteristics better and address specific skincare 

concerns [1]. However, this study employs a simplified skin 
typing system to evaluate the viability of FSL techniques for 

classifying skin types. Thus, the traditional skin typing system 

by Helena Rubinstein is chosen, and the efficacy of FSL 

methodologies in achieving accurate skin type classification 

will be assessed. 

2) Few-shot Learning (FSL): FSL employs the N-way K-

shot classification approach, which aims to differentiate 

between N classes using K examples. Specifically, the N- way 

K-shot image classification task involves a support set 

containing K-labelled images. Additionally, a query set 

comprising Q query images is provided. The goal is to 

accurately classify the query images into the N classes based 
on the information provided by the N×K images in the support 

set. In the context of FSL, K is typically a small value, often 

less than 10. When K equals 1, it is commonly called one-shot 

classification [39]–[42]. 

Fig. 1 provides an example of a few-shot classification 

task. In this case, the support set includes K = 2 instances for 
each of the N = 3 classes: duck, penguin, and chicken. The 

objective is to assign labels to the Q = 4 birds in the query set 

accurately, categorizing them as duck, penguin, or chicken. 

While humans can effortlessly accomplish this task without 

familiarity with these specific bird species, solving it using 

artificial intelligence requires meta-learning techniques to 

achieve successful classification [43]. 
 

2250



 

Fig. 1  Few-shot classification task example. 

 

FSL can be considered a form of meta-learning or learning 

to learn, as it involves acquiring experience from other related 

problems [44]–[50]. Recent FSL advancements have been 

achieved primarily through applying meta-learning 

techniques, especially metric-based meta-learning [51]–[54]. 
Therefore, this paper is dedicated to exploring and discussing 

metric-based meta-learning, as it aligns with the chosen 

approach for this study. 

Metric learning involves learning a distance function 

between data points, such as images. The core idea is to 

extract embeddings from all images in both the support and 

query sets with a Convolutional Neural Network (CNN) and 

assign the label corresponding to the image with the shortest 

distance, similar to k-nearest neighbors’ algorithms (k-NN). 

At the end of each episode, the CNN parameters are updated 

through backpropagation of the loss computed from the 
classification error on the query set, typically using a cross- 

entropy loss. 

Metric learning is prevalent in few-shot image 

classification due to its proven effectiveness and abundant 

opportunities for innovation and improvement in feature 

extraction and comparison techniques [55]–[59]. In the 

upcoming section, we will dive into a few existing solutions. 

Matching Networks (MNs) are the first metric learning 

algorithm using meta-learning, MNs presents a meta- 

learning-based metric learning algorithm for few-shot image 

classification. It adopts distinct feature extraction procedures 

for the support set images and query images. The query 
embeddings are then compared to each support set image 

using cosine similarity and classified through a SoftMax 

operation. Notably, the authors propose using Long Short- 

term Memory Networks (LSTM) to enable comprehensive 

interaction among all images during the feature extraction 

process, referred to as Full Context Embedding [8]. This 

approach demonstrates improved performance compared to a 

simple CNN-based approach but at the cost of increased 

computational requirements and GPU resources [8], [60], 

[61]. [8, Fig. 2] illustrates the architecture of MNs, where 

separate feature extractors are employed for the support set 
images on the left and query images at the bottom. The 

embedding of the query image is compared to each image in 

the support set using cosine similarity. Then, a SoftMax 

classification is performed to assign a class label to the query 

based on the computed similarities. 

 

Fig. 2  MNs architecture. Adapted from [8] 

 

Next, recent studies of Prototypical Networks (PNs) have 

shifted away from the traditional approach of comparing 

query images with every image in the support set. An example 

of such a departure is the introduction of PNs by Snell et al. 

[7], [62]–[66]. This metric learning algorithm computes 

prototypes for each class by averaging the embeddings of all 
images within the class, allowing for various ways of 

computing these embeddings as long as the function is 

differentiable. Subsequently, queries are classified based on 

their Euclidean distance to the prototypes. PNs have 

demonstrated state-of-the-art performance in few-shot image 

classification tasks despite their simplicity. While more 

complex metric-learning architectures, such as neural 

networks representing the distance function, have been 

developed with slight accuracy improvements, prototypes 

remain highly valuable in metric-learning algorithms for few- 

shot image classification [67]–[73]. Fig. 3 demonstrates that 

the few-shot prototypes are computed as the means of 
embedded support examples for each class. 
 

 
Fig. 3  PNs in the FSL scenario. Adapted from [7]. 

 
The use of few-shot learning methods in skin-related 

studies has shown promise and can be applied to the 

classification of facial skin types, which is one of the 

contributions of this paper. Although there is a lack of specific 

research on determining facial skin types using FSL, the 

methods employed in skin disease image classification can 

offer valuable insights and potentially be adapted for this 

purpose. 

For instance, Prabhu et al. [74] utilized Prototypical 

Clustering Networks (PCN) to classify the age of 

dermatological images. Mahajan et al. [75] employed meta- 

learning techniques and G-convolutions to successfully 
identify skin diseases, surpassing the performance of previous 
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methods. Additionally, Liu et al. [76] achieved remarkable 

accuracy in categorizing skin lesion images using FSL. These 

studies demonstrate the effectiveness and potential of few-

shot learning in skin-related classification tasks. Therefore, 

drawing inspiration from these approaches, this paper aims to 

leverage FSL techniques for classifying facial skin types. 

II. MATERIALS AND METHOD 

This part of the research paper introduces how a machine- 

learning classifier can analyze skin texture. It provides 

detailed insights into the designed approach in the following 

sections. 

A. Dataset Collection 

For this research, the data collection utilizes a skin typing 

system by Helena Rubinstein: normal, dry, oily, and sensitive. 
This method is suitable for testing the original skin types 

found in Malaysia due to the limited availability of existing 

data. This research aims to contribute to creating a 

comprehensive dataset that represents the diverse range of 

skin types prevalent in Malaysia and Asia. Our data collection 

aims to support the skincare industry in Malaysia and Asia, 

two of the most significant beauty and personal skincare 

markets globally [77]. Gathering a valuable dataset enables 

research, innovation, and collaboration in skincare, benefiting 

the industry and advancing global progress. Through the data 

collection from Malaysia and Asia, we contribute to 

enhancing skincare practices and boosting well-being in the 
region. 

1) Questionnaires: The dataset collection process 

commences at Multimedia University (MMU) Melaka 

Campus, where participants were invited to participate in the 

study. The initial data collection phase occurred in a 

controlled environment, utilizing a booth set up at MMU. This 

environment allows precise control over image quality, 

lighting conditions, and participant positioning. 

Within this controlled environment, participants were 

requested to complete the modified version of the BSTI 

questionnaire [28], consisting of 15 questions tailored to align 

with the tone and context suitable for university students. The 

questionnaire aims to efficiently capture essential information 

about participants’ skin conditions while ensuring a precise 

classification into the skin types of normal, dry, oily, and 

sensitive without directly replicating the wording of the 

original version. The modified version of the questionnaire is 
presented in Table 4 in Appendix A of this paper. 

Completing the modified BSTI questionnaire typically 

took participants approximately 3 to 5 minutes. This concise 

timeframe minimizes the burden on participants while 

allowing for efficient data collection. Following the 

questionnaire, participants’ facial images were captured using 

a designated device, the Canon EOS Rebel T4i, an 18.0- 

megapixel digital single-lens reflex (DSLR) camera, to ensure 

consistent and standardized image quality. The device is 

positioned carefully to ensure accurate framing and optimal 

lighting during image capture. This approach aims to 
minimize variations that could affect the quality and 

comparability of facial images. Throughout the process, 

participants were provided with supervision and assistance to 

ensure that their questions and concerns were addressed 

promptly, creating a supportive and comfortable environment 

and enhancing the quality and accuracy of the collected data. 

In parallel, data collection was also conducted in an 

uncontrolled environment using an online platform. A 

dedicated Google site (https://sites.google.com/view/msftd- 

survey/home) has been created to inform participants about 

the research project and provide instructions for uploading 

their photos. Participants followed specific guidelines when 

capturing their photos, including removing makeup, 

removing glasses and tying back hair, maintaining a neutral 
expression, and ensuring normal lighting conditions. 

Additionally, participants in the uncontrolled environment 

must complete the modified BSTI questionnaire and upload 

their photos through the provided domain. At the same time, 

the uncontrolled environment represents real-world 

conditions with variations in lighting and environmental 

factors. This dual approach of controlled and uncontrolled 

environments helps capture a diverse range of facial images 

and mitigate the effects of domain shift. 

By initiating the dataset collection process at MMU and 

employing both controlled and uncontrolled environments, 
we aim to gather a comprehensive dataset encompassing 

various skin types and conditions for further analysis and 

research. After the initial phase of dataset collection, a total of 

218 participants were involved. Among them, 140 

participants were in a controlled environment, while 78 were 

in an uncontrolled environment. The gender distribution 

consisted of 137 men and 81 women. All participants were 

aged between 18 and 24 years. 

2) Calculation Process for Determining Participant’s 

Skin Type: In this subsection, we outline the calculation 

process of classifying skin types based on the scores obtained 
from the questionnaire responses. The questionnaire is 

divided into four sections based on BSTS’s four main 

parameters for determining skin type. Section 1 includes 

questions 1-7 assessing the dry or oily parameter. Section 2 

comprises questions 8-11, focusing on the sensitive or 

resistant parameter. Section 3 addresses the pigmented or 

non-pigmented parameter and consists of questions 12-13. 

Finally, Section 4 examines the wrinkle-prone or tight 

parameter and includes questions 14-15. 

After participants completed the questionnaire, the 

collected data was analyzed using a scoring system to assign 

individuals to different skin types. The survey assigned an 

equal weight to each question since they were all considered 

equally relevant in determining the participant’s skin type. A 

scoring system was implemented, assigning each answer 

option a specific point value. 

In Section 1 of the questionnaire, the scoring system 

assigned point values to each answer option as follows: “a” = 
1 point, “b” = 2 points, “c” = 3 points, and “d” = 4 points. 

However, if a participant selected option “e” for any question, 

it indicated that they were unsure or did not provide a 

response. In such cases, those specific questions were omitted 

from the calculation. Adjustments were made to the score 

range to accommodate this omission as shown in Table 1 and 

ensure accurate determination of the participant’s skin type. 
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TABLE I 

CUT OFF POINTS FOR DETERMINING SKIN TYPE IN SECTION 1 OF THE 

QUESTIONNAIRE. 
 

Option “e” Count Dry Skin Range Oily Skin Range 

0 7-14 15-28 

1 6-12 13-24 

2 5-10 11-20 

3 4-18 9-16 

4 3-6 7-12 

 

In Section 2, the scoring system assigned point values to 

each answer option as follows: “a” = 1 point, “b” = 2 points, 

“c” = 3 points, and “d” = 4 points. Participants scoring 
between 4 and 8 were categorized as having sensitive skin, 

while scores ranging from 9 to 16 indicated resistant skin. In 

Section 3, if the participant answered “yes” to question 12, it 

signified the presence of wrinkles and “no” to represent tight. 

Lastly, in Section 4, if the participant selected “none” for 

pigmented in question 13, it indicated the absence of 

pigmentation. By following this step-by-step calculation 

process for each parameter, the participant’s BSTI was 

determined. 

3) Classification of Helena Rubinstein Skin Types Based 

on Modified BSTI Questionnaire: After classifying 

participants into their BSTI, the next step is to convert the 
BSTI into the Helena Rubinstein skin typing system: normal, 

dry, oily, and sensitive. The categorizations are as follows: 

 Normal: The normal skin type was defined as ORNT 

[78]. Participants with ORNT skin type were 

considered to have a normal skin type in the context of 
this paper as they have normal sebum production and 

resistance to environmental factors. 

 Dry: Participants classified as dry (D) indicators were 

categorized as having dry skin. 

 Oily: Participants classified as oily (O) indicators were 

categorized as having oily skin. 

 Sensitive: To simplify the analysis, participants 

classified as sensitive (S) indicators were categorized 

as having sensitive skin regardless of their specific dry 

or oily classification. This category included 

participants with skin types such as DSPT, DSNT, 

DSPW, DSNW, OSPT, OSNT, OSPW, and OSNW, as 

all these skin types had sensitive parameters. 

The decision to exclude the two parameters: pigmented (P) 

or non-pigmented (N) and wrinkle-prone (W) or tight (T) 

parameters from specific categorization in this study was 

made to maintain the focus on the normal, dry, oily, and 

sensitive skin types outlined in the Helena Rubinstein system. 
Instead, skin types that exhibited characteristics under the 

these two parameters were considered part of dry or oily skin 

types. For example, in this paper, ORNW and ORNT were 

both classified as oily skin; ORPW and ORNW were both 

classified as oily skin in this paper, regardless of their P or N 

and W or T parameters. 

This approach aimed to simplify the analysis and maintain 

the research objectives of focusing on normal, dry, oily, and 

sensitive skin types. It is important to note that skin type 

classifications may vary depending on the specific system or 

parameters considered. The categorizations made in this study 
were designed to align with the research objectives and 

provide clarity and practicality in analyzing participants’ skin 

characteristics. Additional parameters, such as wrinkled-

prone or tight and pigmented or non-pigmented, could be 

explored in future studies for a more comprehensive 

understanding of skin types. 

After analyzing the questionnaire responses and 

conducting calculations, the dataset consisted of 33 

participants with normal skin (15%), 50 with dry skin (23%), 

74 with oily skin (34%), and 61 with sensitive skin (28%). 

Additionally, the participants represented diverse ethnic 
backgrounds, including Malay, Chinese, and Indian. These 

demographic details provide valuable insights into the sample 

population and ensure a diverse representation of various skin 

types and ethnicities within the dataset. This diversity 

enhances the robustness and applicability of the dataset for 

future studies in the field. 

 

 

 
 

Fig. 4  The BSTI skin types. Adapted from [79]. 

 

Our skin type classification in the dataset was based on 

participant survey responses following established 

frameworks and literature reviews. While we acknowledge 

that self-reported skin type may have varying degrees of 

accuracy, we took necessary precautions and provided 

comprehensive information to enhance participants’ 
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understanding. Although expert verification was not 

conducted, relying on participant responses is common in 

many studies involving skin type classification. 

To enhance participants’ understanding, we have provided 

comprehensive information on our website to help them grasp 

the study’s purpose, process, and the relevant concepts 

associated with skin typing. Our intention is to ensure 

transparency and provide participants with the necessary 

knowledge to make informed responses. 

It is important to note that self-reported skin types may 
have varying degrees of accuracy, and further research or 

expert assessment may be necessary for more precise 

categorization. However, we have strived to ensure the 

reliability and validity of our findings by conducting 

extensive research, reviewing relevant literature, and seeking 

guidance from reliable sources during the questionnaire 

design process. 

B. Image Pre-processing 

Various techniques are applied during the pre-processing 

step of the collected facial images to enhance their quality and 

ensure consistency across the dataset. First, intelligent filters 

are applied to retain the adjustment settings, allowing 

reproducibility of the pre-processing steps. This enables the 

retention of filter settings and facilitates further refinements if 

necessary. Additionally, normalization is performed to 

standardize the range of values in the images, minimizing 

variations in lighting conditions and color intensity. 

An algorithm within Adobe Photoshop matches the colour 

tone, contrast, and lighting between images captured in 

controlled and uncontrolled environments. This algorithm 

analyses the characteristics of the controlled images and 

applies appropriate adjustments to the uncontrolled images, 

aligning them as closely as possible. This process helps create 

a uniform appearance and visual consistency across the 

dataset, reducing visual disparities caused by the domain shift. 
Furthermore, a spatial transformation technique is 

implemented to resize the images and align each individual’s 

facial features. This step involves adjusting the size and 

positioning of the facial features to ensure consistency and 

accuracy. The images are standardized by aligning the facial 

features, enabling accurate analysis and comparison of 

various facial attributes across all domains. 

After the image processing and segmentation, the dataset 

of 218 participants was divided into 1,962 facial part images. 

Among the participants, 33 had normal skin, resulting in 297 

normal skin facial part images. There were 50 participants 
with dry skin, resulting in 450 dry skin facial part images. 

Additionally, 74 participants had oily skin, contributing 666 

oily skin facial part images. Finally, there were 61 participants 

with sensitive skin, resulting in 549 sensitive skin facial part 

images. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5  Example images illustrating the impact of different environments on image quality and appearance. In (a) image captured in a controlled environment 

showing normal skin, (b) image captured in an uncontrolled environment showing sensitive skin, and (c) image captured in an uncontrolled environment showing 

dry skin. The differences in lighting, image quality, and environmental factors are apparent. All participants have consented to this project, and a black bar has 

been added to protect their anonymity. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6  Examples of image pre-processing techniques applied to images (a), (b), and (c) to align facial features through spatial transformation, resizing, and 

adjusting color tone to match natural lighting conditions. These pre-processing steps ensure consistency in facial feature alignment, enhance visual consistency, 

and improve the overall image quality for subsequent analysis. 
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(a) 

 

(b) 

 

(c) 

Fig. 7  Segmentation based on facial features. The segmented areas include the forehead, right cheek, left cheek, nose, and chin. A total of 9 images per participant 

are extracted, each representing a specific facial region. 
 

 

(a) 
 

(b) 

 

(c) 

Fig. 8  Example of images after segmentation and resizing. The images are resized to 84x84 pixels to facilitate training with limited computational resources. 

Each row represents a different facial region: the first row corresponds to the forehead, the second row to the right cheek, the third row to the left cheek, the fourth 

row to the nose, and the fifth row to the chin. Before training, a careful selection process is conducted to ensure image quality and suitability. For instance, in the 

image (c) of the forehead, the presence of hair obscuring the region leads to its exclusion from the dataset. Similarly, any other obscured images are also discarded 

during the selection process. 
 

Following the selection process to exclude obscured 

images, the final dataset consisted of 259 normal skin facial 
part images, 408 dry facial skin part images, 592 oily skin 

facial part images, and 516 sensitive skin facial part images. 

A random selection of 300 images from each class was made 

to ensure a balanced dataset for few-shot learning. Data 

augmentation techniques [80] were then applied to the normal 

skin class to expand the dataset to 300 images while 

maintaining the class balance among the other classes. 

By keeping the class balance, the dataset enables effective 

few-shot learning, where models can be trained with limited 

examples from each class. This approach promotes better 

generalization and performance when faced with new and 

unseen facial skin images. The initial version of the Malaysian 
Facial Skin Texture Dataset (MFSTD) has been completed. 

The dataset comprises 1,200 images, with 300 images per 

class representing normal, dry, oily, and sensitive skin types. 

C. Implementation 

In this section, we provide a detailed overview of the 

implementation process for our FSL approach. We cover data 

pre-processing, architecture selection, model training, and 

optimization techniques employed in our experiments. 

1) Data Pre-processing: In the context of traditional few-

shot learning benchmark datasets, a common practice 

involves splitting the data into predefined train, test, and 

validation sets with a disjoint distribution of classes [81]. 

However, when working with our dataset consisting of only 

four classes, it is not possible to maintain a disjoint 
distribution of classes across these sets. Consequently, we 

adopt a modified approach to ensure the evaluation of model 

generalization, which split our dataset into three sets: train, 

test, and validation, using a ratio of 6:2:2, respectively. This 

distribution ensured that 60% of the data was assigned to the 

training set, while 20% each was allocated to the test and 

validation sets. This division also allowed us a sufficiently 

large training set to train our models while ensuring a fair 

evaluation of the test and validation sets. 

It is important to note that although the train, test, and 

validation sets shared the same four classes, each set 

contained distinct images. This ensured that the model was 
exposed to different samples during training, testing, and 

validation. While this approach deviates from the traditional 

few-shot learning setting, where disjoint class distributions 

are typically used, we found support for our methodology, 

stating that disjoint classes are not a technical requirement, 

thereby validating our approach [43]. 

One concern with the original disjoint approach, 

particularly in our case, is that assigning only one class to the 

validation set will expose the model to the same class it needs 

to predict, resulting in potentially inflated accuracy scores. 

This is because the FSL scenario involves training the model 
on a small support set and evaluating its performance on a 

query set consisting of samples from the same class. Thus, the 

model is expected to achieve high accuracy on the validation 
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set due to its familiarity with the specific class. While this 

modified approach may yield higher accuracy on the 

validation set due to the shared classes, it still provides 

valuable insights into the model’s ability to learn and 

generalize within those classes. 

For all the datasets used in our experiments, we uniformly 

resized the images to 84x84 pixels, in line with the 

specifications of the mini-ImageNet dataset. This standard 

image size allows for consistent and comparable analysis 

across different datasets and ensures that the images suit our 
specific model and computational resources. 

2) Architecture: In all our experiments, we use the 

custom Residual Neural Network 12 (ResNet12) architecture 

for representing the embedding function. This custom 

ResNet12 architecture consists of four blocks with widths [64, 

160, 320, 640]. This specific architecture was chosen based 

on its frequent adoption by recent FSL methods, initially 

introduced by [47]. Unlike many other methods, our 

experiments did not incorporate the DropBlock regulariser. 

This decision was based on the findings of Ghiasi et al. [82], 

who reported that the inclusion of DropBlock did not 

significantly contribute to the performance of their models. 

3) Training Model: To ensure a fair comparison between 

PNs and MNs, we construct the episodes by aligning the 

number of shots during training and testing [8], [81]. In our 

evaluation, episodes consist of 2-, 3-, or 4-way classification 

and 1-, 5-, or 10-shot learning, with 5-, 10-, or 15-query 

samples which adhere to standard practices in FSL 

benchmarks [39]. To accommodate our dataset size and 

computational limitations, we train each model for 100 tasks 

per epoch and validate on 20 tasks. During testing, we assess 

performance using 200 tasks with the model state of the best 
validation result. We also use the same random seeds to train 

both models by controlling for random initialization to ensure 

consistency and reliability of results across experiments. 

4) Optimization: During the training of our models, we 

utilized the SGD optimizer with Nesterov momentum and a 

weight decay of 0.0005. Initially, the learning rate was set to 

0.1, and we employed the MultiStepLR scheduling technique 

to adjust the learning rate during training. Specifically, we 

trained the models for 50 epochs and applied a decrease factor 

of 10 to the learning rate after reaching 60% and 80% of the 

total training progress. However, to improve the training 

process further, we extended the training duration from 50 to 

100 epochs while maintaining the same decrease factor for the 

learning rate. This extension allowed for more training 

iterations, potentially enhancing the model’s performance. 

The selection of these parameter values was influenced by the 

research conducted by Laenen and Bertinetto [83], which 

provided valuable insights into effective training strategies. 

III. RESULTS AND DISCUSSION 

In this section, we compare the findings of other 

researchers who utilized different benchmark datasets, 

enabling a broader assessment of our approach’s effectiveness 

and generalizability. Additionally, we present the results of 

our experiments, comparing the performance of PNs and MNs 

across different training settings, including varying ways, 

shots, and query samples. 

A. Comparative Evaluation of FSL Using Novel Dataset 

We conducted a comparative evaluation to assess the 

effectiveness of our proposed method for skin type 

classification, an image classification task. Leveraging the 

PNs and matching networks MNs methods, originally 

evaluated on the Omniglot and miniImageNet datasets, we 

evaluated their performance on our novel skin type dataset 

[7], [8]. 

Our proposed method achieved competitive performance 

on the skin type dataset compared to the benchmark datasets 

for both PNs and MNs. Despite the differences in content and 

characteristics, our method demonstrated promising accuracy, 
showcasing its robustness and effectiveness in skin type 

classification. 

These results in Table 2 validate the generalizability of PNs 

and MNs methods, originally designed for image 

classification tasks on Omniglot and miniImageNet, to the 

skin type classification task. The high accuracy achieved on 

the MFSTD dataset highlights the adaptability of our 

approach for diverse image classification tasks, including skin 

type classification. 

In summary, our comparative evaluation confirms the 

robustness and effectiveness of our proposed method for skin 
type classification. By leveraging PNs' and MNs' methods and 

comparing the results with benchmark datasets, we establish 

the generalizability and performance of our approach. Table 

2 provides a concise overview of the classification accuracies, 

reinforcing the efficacy of our method for image classification 

tasks, specifically in the context of skin type classification. 

TABLE II 

COMPARATIVE RESULTS OF OUR SKIN TYPE CLASSIFICATION USING THE MFSTD DATASET ALONGSIDE THE RESULTS REPORTED ON THE OMNIGLOT AND 

MINIIMAGENET DATASETS FOR PNS AND MNS. 
 

Model Omniglot 5-way Accuracy 

1-shot 5-shot 

miniImageNet 
5-way Accuracy 

1-shot 5-shot 

MFSTD (Ours) 
4-way Accuracy 

1-shot 5-shot 

PNs 98.80% 99.70% 41.20% 56.20% 89.66% 91.52% 

MNs 98.10% 98.90% 46.60% 60.00% 58.25% 31.67% 

 

B. Comparison of PNs and MNs 

In this section, we present a detailed comparison between 

PNs and MNs regarding their performance and 

characteristics. The objective is to highlight the strengths and 

weaknesses of each model and provide insights into their 

suitability for our specific use case. 

1) Performance on Few-Shot Classification: We evaluate 
the performance of PNs and MNs on few-shot classification 

tasks across various shot settings and report the corresponding 
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classification accuracies. Based on Table 3, we can draw 

several key findings from the results obtained after 50 and 100 

training epochs. PNs consistently outperform MNs in terms 

of accuracy across different shot settings. PNs demonstrate 

increasing accuracy as the number of shots increases, 

indicating their ability to leverage additional training 

examples per class. In contrast, MNs exhibit varying 

accuracy, achieving high accuracy in low-shot scenarios but 

struggling to maintain comparable performance in the 10-shot 

scenario. 

After 50 training epochs, PNs achieve impressive 

accuracies ranging from 77.48% to 94.93% across different 

shot settings. This highlights the effectiveness of PNs in FSL 

tasks, showcasing their ability to generalize and make 

accurate predictions even with limited training examples. 
MNs, on the other hand, show accuracy ranging from 

45.02% to 90.27% after 50 epochs of training. While MNs 

perform well in low-shot scenarios, their accuracy drops 

significantly in the 10-shot scenario, suggesting challenges in 

generalization when faced with a more significant number of 

training examples per class. 

Continuing the training for 100 epochs further improves 

the performance of both PNs and MNs. PNs consistently 

exhibit higher accuracies compared to MNs across different 

shot settings. PNs achieve accuracies ranging from 82.68% to 

95.78% after 100 epochs, demonstrating their robustness and 

capability to handle increased shot settings. 

MNs, on the other hand, still struggle to maintain 

comparable accuracy in the 10-shot scenario even after 100 

epochs of training. Their accuracy ranges from 31.67% to 

90.13%, indicating limitations in effectively generalizing 

with more training examples per class. 

The result shows the significance of PNs as a powerful 

approach for FSL. The consistent superiority of PNs over 

MNs, particularly in scenarios with more training examples, 

demonstrates their potential for accurate classification in 
various real-world applications. Furthermore, the observed 

improvements with longer training durations emphasize the 

importance of model optimization and suggest the potential 

for further enhancements through extended training. 

2) Sensitivity to Distance Metrics: We also investigate the 

impact of different distance metrics on the performance of 

PNs and MNs. MNs commonly employ cosine distance, 

which is bounded between -1 and 1. This bounded nature 

limits the attention function’s ability to strongly emphasize a 

specific sample in the support set, potentially leading to 

slower convergence [84]. In contrast, PNs utilize unbounded 
Euclidean distance, which provides a broader range of values. 

Euclidean distance allows for faster convergence and better 

differentiation between samples, enabling the model to 

distinguish between fine-grained differences. 

 

TABLE III 

FEW-SHOT CLASSIFICATION ACCURACIES OF PNS AND MNS FOR COMPARISON. THE ACCURACIES ARE COMPUTED OVER 200 TEST EPISODES, WITH A FIXED 

15 QUERIES, AND EVALUATED AT BOTH 50 EPOCHS AND 100 EPOCHS. THE BEST RESULT FOR EACH CATEGORY IS HIGHLIGHTED IN BOLD. 
 

Model 1-shot 
2-way 
Accuracy 

5-shot 

10-shot 1-shot 
3-way 
Accuracy 

5-shot 

10-shot 1-shot 
4-way 
Accuracy 

5-shot 

10-shot 

PNs (50 epochs) 77.48% 93.70% 94.93% 85.49% 93.38% 93.52% 81.33% 89.01% 90.55% 

MNs (50 epochs) 82.32% 90.27% 67.97% 86.88% 79.76% 52.76% 87.08%45.02% 52.98% 
PNs (100 epochs) 88.53% 94.18% 95.78% 87.48% 93.54% 93.93% 82.68% 89.66% 91.52% 

MNs (100 
epochs) 

90.13% 63.95% 72.68% 89.24% 90.11% 62.89% 87.61%58.25% 31.67% 

 

 
 

Fig. 9  Comparison graph illustrates the effect of classes on 2-, 3-, and 4-way classification accuracy for PNs and MNs. 
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Fig. 10  Impact of training epochs on the classification accuracy of PNs in different few-shot classification scenarios. The results include 2-way, 3-way, and 

4- way classification tasks with different shots per class while keeping the number of query samples constant at 15. 

 

 
Fig. 11  Impact of the number of ways, shots, and queries on the accuracy of FSL models. The accuracy is evaluated with a fixed number of 50 training epochs. 

 
Fig. 12  Impact of the number of ways, shots, and queries on the accuracy of FSL models. The accuracy is evaluated with a fixed number of 100 training 

epochs. 

 

These findings highlight the sensitivity of the models to the 

choice of a distance metric, suggesting that Euclidean 

distance used by PNs can be advantageous for faster 

convergence and improved discrimination between samples 

compared to cosine distance commonly employed by MNs. 

3) Generalization and robustness: PNs demonstrate 

strong generalization abilities, performing well even with 

limited training examples per class. On the other hand, MNs 

may face challenges in effectively generalizing when 
confronted with a more significant number of training 

examples per class, leading to a decrease in accuracy. Hence, 

the choice between PNs and MNs should consider the specific 

requirements of the task, particularly the availability of 

training data. 

4) Model complexity and training efficiency: PNs have a 

relatively more straightforward architecture involving 

calculating prototype vectors for each class. On the other 

hand, MNs require the generation of attention weights for 
each sample in the support set, which can be computationally 

intensive. PNs also exhibit faster convergence compared to 

MNs, as discussed earlier. 

These results provide insights into the performance, 

sensitivity to distance metrics, generalization abilities, and 
model complexity of PNs and MNs. Researchers and 

practitioners can utilize this information to make informed 

decisions when selecting the appropriate model for their 

specific few-shot classification tasks, considering factors such 

as available training data and desired trade-offs between 

accuracy and computational efficiency. 
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C. Performance of PNs on Our Dataset 

In this section, we conduct an extensive performance 

analysis of PNs on our dataset. We emphasize PNs as they are 

more suitable than MNs in our research context. Additionally, 
we will discuss the impact of training epochs, the combined 

influence of way, shot, and query on performance, and the 

entire test classification accuracy comparison between PNs 

and MNs. 

1) Impact of training epochs: We first investigate the 

impact of the number of training epochs on the performance 

of PNs. Fig. 10 shows the classification accuracy results for 

50 and 100 epochs. It can be observed that increasing the 

number of epochs generally leads to improved classification 

accuracy. 

The accuracy of the 2-way classification scenario 

significantly improves with more training epochs. For 1-shot 

15-query tasks, the accuracy increases from 77.48% after 50 

epochs to 88.53% after 100 epochs. This improvement 

highlights the model’s ability to learn and generalize patterns 

with additional training iterations. However, for 5-shot and 

10-shot tasks, accuracy remains consistently high throughout 
the 50 and 100 epochs, with scores ranging from 93.70% to 

95.78%. These results suggest that even a limited number of 

training epochs is sufficient for the model to perform strongly 

in distinguishing between two classes. 

Moving on to the 3-way classification, we find that the 

impact of training epochs is less pronounced. The accuracy 

for 1-shot 15-query tasks shows a modest improvement from 

85.49% to 87.48% as the number of epochs increases from 50 

to 100. The accuracy remains relatively stable for 5- and 10-

shot tasks, ranging from 93.38% to 93.93%. These findings 

indicate that additional training iterations have a limited 
impact on the model’s performance in discriminating among 

three classes. 

The accuracy in the 4-way classification scenario exhibits 

minor improvements with more training epochs. For 1-shot 

15-query tasks, the accuracy ranges from 81.33% to 82.68% 

across 50 and 100 epochs. The model’s performance remains 

relatively stable for 5-shot tasks, with accuracy scores ranging 

from 89.01% to 89.66%. However, for 10-shot tasks, 

accuracy shows a moderate improvement from 90.55% to 

91.52% with additional training epochs. 

Overall, the analysis reveals that the impact of training 

epochs on classification accuracy varies depending on the 
number of classes in the few-shot learning scenario. While 

increasing the number of epochs generally improves 

accuracy, the magnitude of improvement differs across 

different classification scenarios. Notably, 2- and 3-way 

classifications tend to achieve higher accuracy than 4-way 

classifications, indicating the increasing difficulty of 

discriminating between larger classes. 

D. The Combined Impact of Way, Shot, Query on 

Performance 

The findings from our analysis reveal exciting patterns 

regarding the impact of way, as well as the number of shots 

and query images. Analyzing the results, we observed specific 

patterns and trends in the accuracy based on these factors. We 

noticed a lower initial accuracy when examining scenarios of 

50 epochs with 5 query images. This can be attributed to the 

limited number of instances for the model to make 

predictions. A smaller data pool hinders the model’s ability to 

accurately discern the correct class labels. However, as we 

increased the number of classes from 2- to 3-way, we 

observed a subsequent increase in accuracy. This suggests 

that the model benefits from the additional discrimination 

patterns introduced by the extra class. However, the trend 

reversed when moving to 4-way, with a drop in accuracy. This 

could be due to the increased complexity of the task, 

exceeding the model’s capacity to differentiate between a 
more significant number of classes accurately. 

On the other hand, scenarios with 10 and 15 query images 

exhibited a higher initial accuracy. This can be attributed to 

the more significant number of instances the model can learn 

from. With more diverse sample data, the model can capture 

more representative patterns and improve its initial 

performance. However, as we increased the number of 

classes, we consistently observed a drop in accuracy. This 

suggests that as the task becomes more complex, with more 

classes to discriminate between, the model faces challenges in 

accurately distinguishing between them. 
The trends observed in the accuracy across different shot 

configurations are also noteworthy. Generally, an increase in 

the number of shots led to improved accuracy, as shown in 

Fig. 11 and Fig. 12. This can be attributed to the model having 

more examples to learn from during training. The additional 

shots provide more information and help the model better 

understand the distinguishing features of each class. 

However, it is essential to note that the impact of shots is 

intertwined with other factors, such as the number of query 

images and classes. Therefore, finding the optimal balance 

between these variables is crucial to achieving the highest 
accuracy in few-shot learning. These findings highlight the 

complex dynamics between the number of classes, shots, and 

query images in FSL scenarios. The relationships among 

these factors are interconnected, and their influence on 

accuracy can vary based on the specific configuration. 

E. Complete test classification accuracy of PNs and MNs 

The findings from our analysis reveal exciting patterns 

regarding the impact of way, as well as the number of shots 

and query images. Analyzing the results, we observed specific 
patterns and comprehensively compared our dataset’s 

complete test classification accuracy between PNs and MNs. 

By evaluating the performance of both models across various 

classification tasks, we determine the superior model in terms 

of accuracy and overall performance. This analysis validates 

our earlier assertion that PNs are more suitable than MNs for 

our specific research domain. The detailed results of PNs and 

MNs can be accessed in Appendix B and C, respectively. 

Based on the results obtained from our experiments, the best 

classification performance on the dataset was observed in the 

2-way classification scenario with 10 query images of PNs. In 
this configuration, the model achieved an accuracy of 94.93% 

after 50 epochs and improved to 95.78% after 100 epochs of 

training. 

This result suggests that combining a smaller number of 

classes (2-way) and a relatively more significant number of 

query images (10) yielded the highest accuracy in the few-

shot classification task. The model’s ability to effectively 

discriminate between a limited number of classes and the 
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availability of diverse instances for learning and inference 

likely contributed to this improved performance. It is 

important to note that these results are specific to our study’s 

dataset and experimental setup. Other factors, such as the 

dataset’s nature, the classification task’s complexity, and the 

choice of model architecture, may influence the optimal 

configuration for achieving the best performance. 

IV. CONCLUSION 

While there have been great advancements in the fields of 

face recognition [85]–[91] and facial expressions [92]–[98], 

not much attention has been given to using machine learning 

techniques for analyzing different skin types. This paper 

introduced a method called PNs for skin type classification 

using few-shot learning. PNs achieved state-of- the-art results 

of 95.78% accuracy in this task. Our approach focuses on the 

fundamental aspects of architecture and employs episodic 

training, resulting in a simple yet efficient solution. We also 
explored the potential of PNs in handling skin typing systems 

with a more significant number of classes, going beyond the 

typical few-shot setting. 

Looking ahead, there are several promising research 

directions. We aim to investigate the feasibility of using PNs 

for skin type classification with more classes and alternative 

skin typing systems. Additionally, comparing PNs with other 

few-shot learning models like Relation Networks or 

SimpleShot would provide valuable insights into their 

strengths and weaknesses [99], [100], [101]. It would also be 

beneficial to explore the compatibility of PNs with different 

ResNet backbone architectures to enhance their versatility. 
To validate the practicality of PNs, we plan to collaborate 

with dermatologists and conduct validation studies in clinical 

settings. This collaboration will help us understand the real- 

world applicability of PNs in skin type classification and 

improve their accuracy and reliability. 

In conclusion, our study demonstrates the promise of PNs 

for FSL in skin type classification. With their simplicity, 

efficiency, and competitive performance, PNs offer a 

compelling approach. By further exploring different 

variations, testing on alternative skin typing systems, 

comparing with other models, and collaborating with domain 
experts, we can advance the field of skin type classification 

and develop more accurate and robust solutions. 
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APPENDIX A 

TABLE IV 

MODIFIED BSTI QUESTIONNAIRE: SKIN CONDITION ASSESSMENT 
 

 

Question 

 

1. In photos, your skin tends to appear: 

a) Matte 

b) Mostly matte 

c) Sometimes, shiny 

d) I shine like a diamond 

e) I have never noticed anything 

2. When you wake up in the morning, your skin feels: 

a) Tight or dry 

b) Comfortable 

c) Oily in T-zone 

d) Oily 

e) Not sure 

3. After a shower, your face tends to feel: 

a) Tight or dry 

b) No particular sensation 

c) Slight sheen 

d) Oily 

e) I have never noticed anything 

4. In the afternoon, my skin needs: 

a) Moisturizing all over 

b) A refreshing spritzes of facial spray 

c) Blotting or powdering on the forehead, nose, and chin 

d) Blotting or powder all over 

5. How does it feel when you touch your skin? 

a) Rough and scaly 

b) Oily in places and dry in others 

c) Slick and greasy 

d) Irritated and angry 

6. How would you describe your skin type? 

a) Dry 

b) Neutral/ Normal 

c) Combination 

d) Oily 

e) Not sure 

7. I would describe the shine of my skin like this: 

a) Dull everywhere 

b) Shinny in my T-zone, but dull on my cheeks 

c) Bright like a diamond 

d) I get more stinging than shine 

8. How does your skin feel after you wash your face? 

a) Itchy and dry 

b) Stripped of moisture 

c) Clean and great in my T-zone, but my cheeks are a little bit dried out 

d) Clean for now, but the oil is coming soon 

9. Which most closely describes the look of your pores? 

a) Large and visible all over 
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b) Larger or medium and only visible in the T- zone 

c) Medium-sized all over 

d) Small and not easily noticed all over 

10. When does your skin look red? 

a) More often than I care to admit 

b) Whenever and wherever I use new products 

c) Sometimes, but only around my cheeks 

d) Anytime I have blemishes 

11. Pick the one that best describes your skin's relationship with pimples and blackheads. 

a) My blemishes are more likely to be broken capillaries or rashes 

b) They have their territory around my T-zone, and I have claimed the cheeks for my own 

c) I hate them, but they love me 

d) I would trade my skin flakiness and tightness for a few blackheads 

12. Is your skin wrinkled? 

a) Yes 

b) No 

13. If Yes, where do you have wrinkles? (You may choose more than one) 

a) Forehead 

b) Nose 

c) Cheeks 

d) Chin 

14. What is your skin-pigmented problem? (You may choose more than one). 

a) Melasma 

b) Solar lentigos 

c) Ephelides 

d) Post-inflammatory hyperpigmentation 

e) None of the above 

15. Do you require any skin-lightening products/ingredients? 
a) Yes 

b) No 
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APPENDIX  B 

TABLE V 

SUMMARY OF THE CLASSIFICATION ACCURACY OF PNS ON THE TEST SET AFTER 50 AND 100 TRAINING EPOCHS. THE REPORTED ACCURACY VALUES ARE 

AVERAGED OVER 200 RANDOMLY GENERATED TEST EPISODES, WITH 95% CONFIDENCE INTERVALS SHOWN TO INDICATE THE RESULTS’ CERTAINTY LEVEL. 

THE BEST RESULT FOR EACH CLASS IS HIGHLIGHTED IN BOLD. 

Train Episodes Classification Accuracy 
 

Model Way Shot Query 50 epochs 100 epochs 

PNs 2 1 5 77.10 ± 5.82% 84.45 ± 5.02% 

PNs 2 1 10 78.50 ± 5.69% 86.60 ± 4.72% 

PNs 2 1 15 77.48 ± 5.79% 88.53 ± 4.42% 

PNs 2 5 5 84.55 ± 5.01% 93.75 ± 3.35% 

PNs 2 5 10 92.90 ± 3.56% 93.25 ± 3.48% 

PNs 2 5 15 93.70 ± 3.37% 94.18 ± 3.24% 

PNs 2 10 5 87.65 ± 4.56% 93.45 ± 3.43% 

PNs 2 10 10 94.53 ± 3.15% 95.28 ± 2.94% 

PNs 2 10 15 94.93 ± 3.04% 95.78 ± 2.79% 

PNs 3 1 5 79.50 ± 5.60% 84.97 ± 4.95% 

PNs 3 1 10 82.82 ± 5.23% 86.33 ± 4.76% 

PNs 3 1 15 85.49 ± 4.88% 87.48 ± 4.59% 

PNs 3 5 5 91.73 ± 3.82% 93.43 ± 3.43% 

PNs 3 5 10 91.83 ± 3.80% 93.50 ± 3.42% 

PNs 3 5 15 93.38 ± 3.45% 93.54 ± 3.41% 

PNs 3 10 5 93.50 ± 3.42% 94.23 ± 3.23% 

PNs 3 10 10 92.55 ± 3.64% 93.78 ± 3.35% 

PNs 3 10 15 93.52 ± 3.41% 93.93 ± 3.31% 

PNs 4 1 5 82.15 ± 5.31% 81.85 ± 5.34% 

PNs 4 1 10 82.54 ± 5.26% 82.32 ± 5.29% 

PNs 4 1 15 81.33 ± 5.40% 82.68 ± 5.24% 

PNs 4 5 5 92.40 ± 3.67% 92.47 ± 3.66% 

PNs 4 5 10 90.04 ± 4.15% 89.35 ± 4.28% 

PNs 4 5 15 89.01 ± 4.33% 89.66 ± 4.22% 

PNs 4 10 5 91.47 ± 3.87% 90.83 ± 4.00% 

PNs 4 10 10 91.88 ± 3.79% 92.07 ± 3.74% 

PNs 4 10 15 90.55 ± 4.05% 91.52 ± 3.86% 
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APPENDIX C 

TABLE VI 

SUMMARY OF THE CLASSIFICATION ACCURACY OF MNS ON THE TEST SET AFTER 50 AND 100 TRAINING EPOCHS. THE REPORTED ACCURACY VALUES ARE 

AVERAGED OVER 200 RANDOMLY GENERATED TEST EPISODES, WITH 95% CONFIDENCE INTERVALS SHOWN TO INDICATE THE RESULTS’ CERTAINTY LEVEL. 

THE BEST RESULT FOR EACH CLASS IS HIGHLIGHTED IN BOLD. 

Train Episodes Classification Accuracy 
 

Model Way Shot Query 50 epochs 100 epochs 

MNs 2 1 5 77.70 ± 5.77% 83.95 ± 5.09% 

MNs 2 1 10 79.45 ± 5.60% 85.08 ± 4.94% 

MNs 2 1 15 82.32 ± 5.29% 90.13 ± 4.13% 

MNs 2 5 5 82.00 ± 5.32% 62.30 ± 6.72% 

MNs 2 5 10 92.85 ± 3.57% 90.33 ± 4.10% 

MNs 2 5 15 90.27 ± 4.11% 63.95 ± 6.65% 

MNs 2 10 5 61.55 ± 6.74% 64.35 ± 6.64% 

MNs 2 10 10 86.83 ± 4.69% 70.83 ± 6.30% 

MNs 2 10 15 67.97 ± 6.47% 72.68 ± 6.18% 

MNs 3 1 5 84.47 ± 5.02% 88.20 ± 4.47% 

MNs 3 1 10 86.60 ± 4.72% 89.82 ± 4.19% 

MNs 3 1 15 86.88 ± 4.68% 89.24 ± 4.29% 

MNs 3 5 5 54.53 ± 6.90% 56.73 ± 6.87% 

MNs 3 5 10 93.02 ± 3.53% 52.47 ± 6.92% 

MNs 3 5 15 79.76 ± 5.57% 90.11 ± 4.14% 

MNs 3 10 5 47.10 ± 6.92% 53.87 ± 6.91% 

MNs 3 10 10 75.18 ± 5.99% 51.43 ± 6.93% 

MNs 3 10 15 52.76 ± 6.92% 62.89 ± 6.70% 

MNs 4 1 5 85.17 ± 4.92% 85.55 ± 4.87% 

MNs 4 1 10 86.95 ± 4.67% 86.94 ± 4.67% 

MNs 4 1 15 87.08 ± 4.65% 87.61 ± 4.57% 

MNs 4 5 5 46.10 ± 6.91% 65.48 ± 6.59% 

MNs 4 5 10 31.96 ± 6.46% 31.87 ± 6.46% 

MNs 4 5 15 45.02 ± 6.90% 58.25 ± 6.83% 

MNs 4 10 5 36.83 ± 6.68% 35.62 ± 6.64% 

MNs 4 10 10 35.17 ± 6.62% 35.39 ± 6.63% 

MNs 4 10 15 31.67 ± 6.45% 52.98 ± 6.92% 
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