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Abstract— Training of artificial neural networks (ANN) is normally a time-consuming task due to iteratively search imposed by the 
implicit nonlinearity of the network behavior.  In this work an improvement to ‘batch-mode’ offline training methods, gradient-based 
or gradient free is proposed. The new procedure computes and improves the search direction along the negative gradient by 
introducing the ‘gain’ value of the activation functions and calculating the negative gradient on an error with respect to the weights as 
well as ‘gain’ values in minimizing the error function. The main advantage of this new procedure is that it is easy to implement into 
other faster optimization algorithms such as conjugate gradient method and Quasi-Newton method. The performance of the proposed 
method implemented into conjugate gradient method and Quasi-Newton method is demonstrated by comparing the simulation results 
to the neural network toolbox for the chosen benchmark. The simulation results clearly demonstrate that the proposed method 
significantly improves the convergence rate significantly faster the learning process of the general back propagation algorithm 
because of it new efficient search direction. 
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I. INTRODUCTION 

Methods to speed up and optimize the learning process in 
feed forward neural networks (MLFNN) have been recently 
studied and several new adaptive learning algorithms have 
been discovered. The most popular learning algorithm is the 
batch Back-propagation (BP) [1], [2] and it is the most 
common and widely used supervised training algorithm in 
solving a large number of classification and function 
interpolation problems. BP algorithms are based on the 
gradient descent algorithm which is well known in 
optimization theory, and they usually exhibit poor 
convergence rate and depend on parameters which have to 
be specified by the user, because no theoretical basis for 
choosing them exists [3]. The choices of selecting the best 
values for those parameters are often crucial for the success 
of the algorithm and definitely required the designer to 
arbitrarily select parameters such as initial weights and 
biases, a learning rate value, activation function, network 
topology and gain of the activation function. It has been 
found that very small variations in these values can make the 
difference between good, average or bad performance [4]. 
This is also the main reason why the BP algorithm is too 
slow, and generalization is not always good. 

 

Many studies have been done to improve back 
propagation learning algorithm, and those studies fall 
roughly into two categories. The first category involves the 
development of ad hoc techniques [5]-[6], [7]-[14]. In this 
technique some of them introduced the momentum term, 
others used the alternative cost function or dynamic 
adaptation of the learning parameters. Many apply special 
techniques of initialization of weights.   

Another category of research has focused on standard 
numerical optimization technique [15]-[17]. The most 
popular approaches from the second category have used 
conjugate gradient or quasi-Newton (Secant) methods. The 
quasi-Newton methods are considered to be more efficient, 
but their storage and computational requirements go up as 
the square of the size of the network. 

Another area of numerical optimization that has been 
applied to neural networks is nonlinear least squares [18]-
[20]. The more general optimization methods were designed 
to work effectively on all sufficiently smooth objective 
functions. Most of them apply the higher order gradient 
optimization routines to minimize the appropriately defined 
error function, the multivariable function that depends on the 
weight of the network. However, there is still the problem of 
accelerating the learning process, especially when large 
training sets and large networks are used. 
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Among those improvements, the researches focusing on 
using ‘gain’ parameter are among the easiest to implement. 
The gain parameter controls the steepness the activation 
function. A few researchers hypothesized about the existence 
of a relationship between gain of the activation function and 
the weights [21]-[22] or between the gain and learning rate 
[1], [3], [23]-[24], and Zurada [25] showed that using 
activation functions with large gains yield results similar to 
those with a high learning rate.  

In this paper, we demonstrate that by changing the gain of 
the activation functions in the gradient descent algorithm it 
is actually improving the search direction and not the 
learning rate. The motivation of this research is that 
changing the gain activation functions is very effective 
means for improving the search direction in general back 
propagation. Later on, we implement and evaluate the effect 
of adaptive gain value on the well-known non-linear 
conjugate gradient algorithm and Quasi-Newton methods.  

This research starts by initiating the basic iterations of 
those optimisation methods in the form of 

rrrr dww λ+=+1
 

where 
rd  is a descent search direction and 

rλ  is a learning 

rate obtained by one-dimensional search. In the conjugate 
gradient methods, it considers the search direction as 

1)( −+−∇= rrrr dwEd β , where the scalar 
rβ  is chosen in such 

manner that the method reduces to the linear conjugate 
gradient when the function is quadratic, and the line search 
is exact. The rest of methods define the search direction by 

)(1
rrr wEBd ∇−= −  where 

rB  is a nonsingular symmetric 

matrix. Mainly, the matrix 
rB  is selected as: IBr = (the 

steepest descent method), )(2
rr wEB ∇= (the Newton’s 

method) or an approximation of the Hessian )(2
rwE∇ (BFGS, 

DFP, etc.).  
In this paper, we are not a concern on how to determine 

the learning rate because our main interest is in finding the 
efficient search direction in order to improve the learning. 

By applying the new procedure in calculating an efficient 
search direction, this paper presents two improved learning 
algorithm which is conjugate gradient with Fletcher Reeves 
update (CGFR-AG) and Broyden-Fletcher-Goldfarb-Shanno 
(BFGS-AG) method for back propagation neural networks. 
The proposed approaches presented in the paper consist of 
three steps: (1) Modification of standard back propagation 
algorithm by introducing gain value of the activation 
function, (2) Calculating the gradient descent on error with 
respect to the weights and gains values and (3) the 
determination of the new search direction with the function 
of gain variation.  

In order to verify the efficacy of the proposed method, we 
perform simulation experiments on four selected benchmark 
problems. The remaining of the paper is organised as follows: 
In Section II we proposed our modification on standard back 
propagation algorithm with gain variation and validate the 
proposed algorithm with ‘sine curve’ example [26]. Some 
discussion of the proposed modification on Conjugate 
gradient with Fletcher Reeves update (CGFR-AG) and the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS-AG) algorithm 
with new search direction procedure is presented in Section 
III.  Experiments and simulation results are presented in 

Section IV. The final section contains concluding remarks 
and short discussion for further research. 

II. MATERIAL AND METHOD 

The standard back propagation algorithm has become the 
most popular algorithm used for training multi-layer feed 
forward network. In this paper, the training will be referring 
to batch training of the multi-layer perceptron (MLP) and 
can be formulated as a nonlinear unconstrained optimization 
problem. The objective of a learning process is to find a 

weight vectorw which minimizes the different between the 
actual output and the desired output. Namely, 

 

)(min wE
nw ℜ∈

             (1) 

Suppose for a particular input pattern 0o  and let the input 
layer is layer 0. The desired output is the teacher 

pattern T
nttt ]...[ 1= , and the actual output isLko , where L  

denotes the output layer. Define an error function on that 
pattern as,  

∑ −=
k

L
kk otE 2)(

2

1               (2) 

 

The overall error on the training set is simply the 
sum, across patterns, of the pattern errorE . The main 
purpose of the training is to search an optimal set of 
connection weights so that the errors of the network output 
can be minimized. 

Let s
ko  be the activation of the thk node of layers , and let 

Ts
n

ss ooo ]...[ 1=  be the column vector of the activation values 

in the layer s  and the input layer as layer 0.  Let sijw be the 

weight on the connection from the thi node in layer 1−s  to 

the thj node in layers , and let Ts
nj

s
j

s
j www ]...[ 1= be the 

column vector of weights from layer 1−s to the thj node of 

layers . The net input to thethj node of layer s  is defined 

as ∑ −− ==
k

s
k

s
kj

ss
j

s
j owownet 1

,
1),( , and let 

Ts
n

ss netnetnet ]...[ 1=  be the column vector of the net input 

values in layers . The activation of a node is given by a 
function of its net input, 

 

)( s
j

s
j

s
j netcfo =        (3) 

 

where f  is any function with bounded derivative, and 
s
jc  is a real value called the gain of the node.  

In neural network training, an activation function is used 
for limiting the amplitude of the output of a neuron to 
generates an output value for a node in a predefined range as 
the closed unit interval c or alternatively [-1, +1]. In this 
paper, we use a common choice of activation function of the 
neurons in multilayer neural network, which is the logistic or 
sigmoid activation function. For the thj node in layers  ,  

s
j

s
j netc

s
j

e
o

−+
=

1

1    (4) 

where, 
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   ( ) jk

s
k

s
kj

s
j ownet θ+= ∑ −1

,           (5) 

 
where

jθ is a bias for the thj  unit and s
jc   is a real value 

called the gain of the activation function. 
In general the value of the gain parameter,c , directly 

influences the slope of the activation function [27]. For large 
gain values (c >>1), the activation function approaches a 
‘step function’ whereas for small gain values (0 <c<< 1), 
the output values change from zero to unity over a large 
range of the weighted sum of the input values and the 
sigmoid function approximates a ‘linear function’ as shown 
in Fig. 1. 

 
Fig. 1  The effect of gain on sigmoid activation function 

 
To simplify the calculation, taken from the Equation (2) 

we then can perform gradient descent on E  with respect 

to s
ijw . The chain rule yields  
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where
s
j

s
j net

E

∂
∂−=δ . In particular, the first three factors of (6) 

indicate that  
 

∑ ++=
k

s
j

s
j

s
j

s
jk

s
k

s cnetcfw )(')( 1
,

1
1 δδ        (7) 

The iterative Equation (7) for s1δ  is the same as standard 

back propagation [4] except for the appearance of the value 
gain. By combining (6) and (7) yields the learning rule for 
weights: 

1−=∆ s
j

s
j

s
ij ow λδ          (8) 

whereλ is a small positive constant called ‘step length’ or 
‘learning rate’.  

Gradient descent on error with respect to the gain can also 
be calculated by using the chain rule as previously described; 
it is easy to compute as  
 

s
j

s
j

s
j

k

s
jk

s
ks

j

netnetcfw
c

E
)(')( 1

,
1∑ ++=

∂
∂ δ   (9) 

Then, 

 
s
j

s
js

j
s
j c

net
c λδ=∆            (10) 

The learning rule for gains (10) is easily incorporated into 
standard back propagation algorithms.  

As in the standard back propagation algorithm uses the 
gradient descent search direction with a fixed step length 
λ in order to perform the minimization of the error function. 
The iterative form of this algorithm is: 

 

 rrr www ∆+=+1            (11) 
 

where
rrr dw λ=∆ and 

rd is the search direction or gradient 

vector of the error function E  at 
rw . Let 

r
r w

E
d

δ
δ−= and rr gd = . 

It is well known that pure gradient descent methods with 
fixed step length tend to be inefficient [28] due to the fact 
that the choose of search directions and step sizes are not 
optimal, if the first step size does not lead directly to the 
minimum, gradient descent will zig-zag with many small 
steps leading to very long computation times. 

In order to avoid the oscillation, Rumelhart et. al. [4] 
modified the back propagation search direction (d ) by 
adding momentum term (α ): 

 

)( 111 −++ −+−= rrrrr wwgd α   (12) 
 

Although this extra term can avoid the oscillation, it 
will introduce another extra term that has to be 
considered. In our next section, we will show that by 
adding the momentum term (α ) is wise when the values 
λ and α are well chosen by using conjugate gradient 
method. 

Previous researches [1], [3], [4] claimed that the adaptive 
gain variation improved the learning rate or in order words, 
it improved the step length as they referred Equation (7) and 
(8) in calculating weight update expression with gain 
variation as: 

11
,

1 )(')( −++∑=∆ s
j

k

s
j

s
j

s
j

s
jk

s
k

s
ij ocnetcfww δλ  (13) 

 

                                     
s
jc*λ     

Previous researchers assumed that by coupling gain and 
learning rate in Equation (13) it would improve the learning 
rate automatically and as a result, the algorithm converge 
faster as illustrated in Fig. 2.   
     
 
 
 
 

rg
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This paper will show in our simulation results that the 

contribution of the adaptive gain value in Equation (13) is 
much more where it is actually improving the search 
direction and not the step length as shown in Fig. 3. 

We will show in our simulation results that the 
contribution of the adaptive gain value in Equation (13) is 
actually improving the search direction and not the step 
length as shown in Fig. 3. 

 
 
 
 
 
 
 
 

Fig. 3  Actual improvement on search direction by adaptive gain variation 
 
As we note from Equation (6) and (7), the proposed back 

propagation produces the new search direction with the new 
procedure in calculating gradient with respect to weights and 
gain value. In order to increase the convergence speed by 
using this new gradient information, we propose to use 
conjugate gradient and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm with this new search direction. In 
the sequel, we present the modified of conjugate gradient 
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm. 

A. Validation on Sine Curve Example  

The proposed approach was validated on a standard 
feedforward neural network with one hidden layer by having 
five hidden nodes. The training data set was created by using 
the function ]1,0[),**2sin( ∈+= xwherexxy π as 

been suggested by Bishop [24]. The network is trained using 
0.3 as the learning rate value to achieve a target error equal 
to 0.001. The batch mode training was employed in training 
the Gradient Descent algorithm with adaptive changes in 
weight, bias and gain values. The initial weight and bias 
values were chosen as small random numbers in the range [-
1, +1]. The network is trained with an adaptive gain with an 
initial value of unity for the gain parameter for all output as 
well as hidden nodes.  

In Fig. 4(a) the network output (continuous curve) is 
shown against the training data points (circles) 

)**2sin( xxy π+= . The output of the network using 

constant unit gain value is also plotted in Fig. 4(a) (dotted 
curve). Again, the result showed that the speed of 
convergence is high due to the modified gain values. As 

shown in Fig. 4(b), the network required 1154 epochs to 
achieve the target error using the proposed adaptive gain 
algorithm in batch mode, whereas using the same set of 
initial weight and biases the network required 6014 epochs 
to achieve the target error using constant unit gain value 
during training.  

Comparing both the curves in Fig. 4(a) it can be seen that 
the training performance of the adaptive gain algorithm is 
similar to that using constant gain value. However, the speed 
of convergence of the adaptive gain algorithm is very high as 
compared to that using constant gain value as shown in Fig. 
4(b). The results proved that there is a dramatic 
improvement in the learning speed of the back-propagation 
algorithm. 
 

 
(a) 

 
(b) 

Fig. 4  Output of the neural network training to learn a sine curve with and 
without using the adaptive gain in back propagation algorithm (a), and 
convergence speed for the sine function with and without using the adaptive 
gain algorithm in back propagation training (b) 
 

Next section, in order to confirm the claim in the previous 
section, by means of simulation, this paper demonstrated the 
implementation of the proposed method which used gradient 
information with adaptive gain into the Broyden-Fletcher-
Goldfarb-Shanno (BFGS).  

λ  

rg

s
jc*λ

Fig. 2  New step length with adaptive gain variation claimed by previous 
researchers [1]-[3] 
 

λ  

λ  

)( rr cg

rg
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B. Broyden-Fletcher-Goldfarb-Shahno (BFGS/AG) 
Algorithm with the Proposed New Search Direction 
Procedure 

While BP is a steepest descent algorithm, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [28]-[29] is an 
approximation to Newton's method. Suppose that we have an 

error function )(wE which we want to minimize with 

respect to the parameter vectorw , then the search direction  
d  for Newton’s method is found by solving the system of 
equations 

)()]([ 12 wEwEd ∇∇−= −   (14) 
 

where  HwE =∇ )(2  is the Hessian matrix and gwE =∇ )( . 

This method converges in one iteration for a quadratic 
function. Unfortunately, it needs the computation of the 
inverse of Hessian matrix. This becomes a very difficult task 
for real applications. The BFGS algorithm allows 
constructing )(2 wE∇  by using the only gradient 

information with the function of gain value 
)()( cgwE =∇  provided in Section II. The complete 

algorithm works are shown as follows: 
 

Step 1: Initializing the vector 
)0(w and a positive definite 

initialization of Hessian 
matrix )0(H . Select a 

convergence threshold CT .     
Step 2: Compute the descent search 

direction
rd   

     )( rrrr cgHd −=  

Step 3: Search the optimal value 

for *
rλ by using line search 

technique such as: 

)(min)(
0

*
rrrrrr dwEdwE λλ

λ
+=+

≥
 

Step 4: Update
rw : 

      
rrrr dww *

1 λ−=+  

Step 5: Compute 
     

rrr wws −= +1
 

     )()( 11 rrrrr cgcgy −= ++  

     

r
T
r

r
T
rr

r
T
r

T
rr

r
T
r

rr
T
r

r
ys

Hys

ys

ss

ys

yHy
−








+=∇ 1  

Step 6: Update the inverse 
matrix

rH : 

     
rrr HH ∇+=+1
 

Step 7: Compute the error function 
value )( rwE   

Step 8: If CTwE r >)( go to Step 2, 

else stop training 
 

C. Conjugate Gradient-Fletcher Reeves (CGFR/AG) 
Algorithm with the Proposed New Search Direction 
Procedure 

One of the main reason for choosing conjugate gradient 
method because of its known and remarkable properties in 
generating in a very economical fashion, a set of vectors 
with a property known as conjugacy [26]. The standard 

conjugate gradient method is an unconstrained 
optimization technique used to minimize the 
nonnegative error function )(wE  by generating a 

sequence of approximation 1+rw iteratively according to: 
 

rrrr dww λ+=+1   (15) 
 

The scalar rλ  is the step length, known in neural network 

notation as learning rate. As we mentioned earlier, we are 

not a concern in finding the optimal step lengthrλ because it 

can be determined by many line search techniques in the 
way that )( rrr dwf λ+ is minimized along the 

direction rd , given rw  and rd  fixed. We focused on 

finding the optimal search direction as in the standard 
conjugate gradient algorithm; it begins the minimization 
process with an initial estimate

0w and an initial search 

direction as: 

r
r

r g
w

E
d =−=

δ
δ

  (16) 

With adaptive gain variation the calculation for a 
new search direction with the function of gain is: 

)()( ,, rkrrk
r

r cgc
w

E
d =−=

δ
δ

     (17) 

As for standard conjugate gradient, each direction 
1+rd is 

chosen to be a linear combination of the gradient descent 
direction 

1+− rg and the previousrd . As written as: 

 

rrrr dgd β+−= ++ 11   (18) 

 
With adaptive gain, we calculated each new direction 

1+rd as: 

)()()( ,,1,
1

1 rkrrkrrk
r

r cdcc
w

E
d β

δ
δ +−= +

+
+

 (19) 

where the scalar rβ  is to be determined by the requirement 

that rd and 1+rd must fulfil the conjugacy property. There 

are many formulae for the parameterrβ . One of them is 

introduced by Fletcher and Reeves [28] and is given as: 

r
T
r

r
T
r

r gg

gg 11 ++=β    (20) 

The complete CGFR-AG algorithm works as indicated in the 
following algorithm: 
 
 

Step 1: Initializing the weight vector 

0w  randomly, the gradient 

vector 00 =g  and gain 

v ector 10 =c . Let the first 

s earch direction
00 gd = . 

Set 00 =β , 1=epoch  and 1=r . 

Let Nt  is the number of 
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weight parameters. Select a 
convergence threshold CT .     

Step 2: At step r , evaluate 
gradient vector )( rr cg  with 

r espect to gain vector
rc .  

Step 3: Evaluate )( rwE . If CTwE r <)(  

t hen STOP training ELSE go to 
Step 4. 

Step 4: Evaluate search direction:  

11)( −−+−= rrrrr dcgd β  

Step 5: For the first iteration, 
check if 1>r  THEN update 

)()(

)()( 1111
1

rrr
T
r

rrr
T
r

r cgcg

cgcg ++++
+ =β  ELSE go 

to step 6.   
Step 6: If 0]/)1[( =+ Ntepoch  THEN 

‘ restart’ the gradient vector 

with )( 11 −−−= rrr cgd  ELSE go to 

Step 7. 
Step 7: Calculate the search the 

optimal value for *
rλ by using 

line search technique such as: 

)(min)(
0

*
rrrrrr dwEdwE λλ

λ
+=+

≥
 

Step 8: Update
rw : 

     
rrrr dww *

1 λ−=+  

Step 9: Evaluate new gradient 
vector )( 11 ++ rr cg  with respect to 

gain value
1+rc . 

Step 10: Evaluate new search 
direction: 

rrrrrr dccgd )()( 111 β+−= +++  

Step 11: Set 1+= rr  and go to Step 
2. 

 
Conjugate gradient algorithm established much faster 

convergence rate than first-order gradient descent approach. 
This is because Conjugate Gradient uses its second order 
convergence property without complex calculation of the 
Hessian matrix.  

Conjugate gradient method relies on improved gradient 
descent search direction. Later we showed that with an 
adaptive gain in Conjugate Gradient method had improved 
further the search direction. As a result, it converges faster.  

III.  RESULTS AND DISCUSSION 

A computer simulation has been developed to evaluate the 
performance of the proposed the learning algorithms. The 
simulations have been carried out on a Pentium IV 3 GHz 
PC Dell with 1 GB RAM and using MATLAB version 6.5.0 
(R13). 

Six selected benchmark datasets were used as datasets as 
suggested by Prechelt [30] in order to study and evaluated 
the performance of the algorithm. Those six classification 
problems are 7-bit parity problem, Thyroid, Wisconsin 
breast cancer, Diabetes, Iris classification problem and glass 
classification problem.  

For the purposes of comparison, all algorithms were 
trained by using the same networks architecture and 

parameters setting for the same problem. Furthermore, the 
performances of all the proposed algorithms are also 
compared with respect to the neural network toolbox. For 
each problem, five algorithms have been analysed. The first 
algorithm is standard back propagation (BP), second 
Broyden-Fletcher-Goldfarb-Shanno (trainbfg) from ‘Matlab 
Neural Network Toolbox version 4.0.1’. The other two 
algorithms are standard Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) and our proposed Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method with adaptive gain (CGFR/AG).  

Since some of the values for parameters in Toolbox were 
set to default, therefore, both algorithms from Toolbox and 
proposed algorithm were fixed with the values of learning 
rate = 0.3, momentum term = 0.7 and standard sigmoid 
activation function is used for all nodes in the network. The 
gain parameters of all nodes are set to 1.0 initially. For all 
simulations, all algorithms were tested using the same initial 
weights, initialized randomly from the range [0, 1] and 
received the same sequence of input patterns.  

All results were presented as a table which summarizes the 
performance of the algorithms for simulations that have 
reached a solution. All algorithms were trained with 100 
trials, if an algorithm fails to converge, it is considered that it 
fails to train the FNN, but its epochs, CPU time and 
generalization accuracy are not included in the statistical 
analysis of the algorithms.  

A. Thyroid Problems 

This dataset was one of the famous datasets and was 
created based on the ‘artificial neural network’ version of the 
‘thyroid disease’ problem dataset from the UCI repository of 
machine learning databases. The main objective of the 
dataset is trying to diagnose thyroid hyper or hypo-function 
based on patient query data and patient examination data in 
order to decide whether the patient’s thyroid has over-
function, normal function or under-function. For a standard 
experiment, the selected architecture of the FNN is 21-5-3. 
The target error for this datasets is set to 0.05 with the 
maximum epochs is 1000. 
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Fig. 5  The comparison of the number of epochs and CPU time needed to 
convergence for BP and BP/AG for thyroid problem 

 
As can be seen in Fig. 5, the proposed method with 

adaptive gain had reduced three times number of CPU time 
and epochs as compared to the standard BP. In Fig. 6, the 
proposed method CGFR/AG easily outperformed others 
algorithms in term of a number of epochs and CPU time. 
Even though the standard CGFR performed well as 
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compared to traincgf, yet with the introduction of gain in the 
proposed method, the number of CPU time and the number 
of epochs had been reduced significantly. Same results can 
be seen in Fig. 7 where the proposed BFGS/AG 
outperformed both algorithms with up to 33% faster. 
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Fig. 6  The comparison of the number of epochs and CPU time needed to 
convergence for traincgf, CGFR and the proposed CGFR/AG for thyroid 
problem 
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Fig. 7  The comparison of the number of epochs and CPU time needed to 
convergence for trainbfg, BFGS and the proposed BFGS/AG for thyroid 
problem 

B. Wisconsin Breast Cancer Classifications Problems 

This dataset was created based on the ‘breast cancer 
Wisconsin’ problem and was taken from UCI repository of 
machine learning databases.  It was created by Dr. William 
H. Wolberg [31], where Dr. William tried to diagnose breast 
cancer by trying to classify a tumor as either benign or 
malignant based on cell descriptions gathered by 
microscopic examination. For this problem, the selected 
architecture of the FNN is 9-5-2 and the target error was set 
as to 0.02 with the maximum epochs is 1000. 

It can be seen from Fig. 8 that the effect of the proposed 
adaptive gain into back propagation had reduced the CPU 
time and number of epochs up to 38%. In addition in Fig. 9, 
the standard CGFR performed slightly better as compared to 
traincgf, however, the proposed CGFR/AG had reduced 
further the number epochs until 60%. Overall, Fig. 10 
demonstrated that the proposed method BFGS/AG 
outperformed others algorithms in term of CPU time and 
number of epochs. 
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Fig. 8  The comparison of the number of epochs and CPU time needed to 
convergence for BP and the proposed BP/AG for cancer classification 
problem  
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Fig. 9  The comparison of the number of epochs and CPU time needed to 
convergence for traincgf, CGFR and the proposed CGFR/AG for cancer 
classification problem  
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Fig. 10  The comparison of the number of epochs and CPU time needed to 
convergence for trainbfg, BFGS and the proposed BFGS/AG for cancer 
classification problem 

C. Diabetes Classifications Problems 

This dataset was taken from the UCI repository of 
machine learning database and was created based on the 
‘Pima Indians diabetes’ problem dataset. The datasets, 
doctors try to diagnose diabetes of Pima Indians based on 
personal data (age, the number of times pregnant) and the 
results of medical examinations (e.g. blood pressure, body 
mass index, the result of glucose tolerance test, etc.) before 
deciding whether a Pima Indian individual is diabetes 
positive or not. Again, the selected architecture of the FNN 
is for this datasets is 8-5-2 where the target error is set to 
0.01, and the maximum epochs are 1000. 

The implementation of the proposed adaptive gain into 
BP/AG had successfully reduced the number of epochs and 
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CPU time as compared to the standard BP as shown in Fig. 
11. Same results can be seen in Fig. 12 and 13 where the 
proposed method CGFR/AG and BFGS/AG had 
outperformed other algorithms in term of CPU time and a 
number of epochs. 
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Fig. 11 The comparison of the number of epochs and CPU time needed to 
convergence for BP and the proposed BP/AG for diabetes classification 
problem 
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Fig. 12  The comparison of the number of epochs and CPU time needed to 
convergence for traincgf, CGFR and the proposed CGFR/AG for diabetes 
classification problem  
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Fig. 13  The comparison of the number of epochs and CPU time needed to 
convergence for trainbfg, BFGS and the proposed BFGS/AG for diabetes 
classification problem 

D. IRIS Classifications Problems 

This is perhaps the best-known database to be found in the 
pattern recognition literature a classical classification dataset 
and was made famous by Fisher [32]. The datasets try to 
illustrate principles of discriminant analysis. Fisher's paper is 
considered as a classic paper in the field and is frequently 

referenced to this day. The best-selected architecture of the 
FNN for this problem is 4-5-3 where target error was set as 
0.05, and the maximum epochs was set to 1000. 

Fig. 14 shows that the proposed implementation on 
BP/AG had significantly improved the convergence time as 
compared to the standard BP in term of CPU time and 
number of epochs. It is clear that the proposed method 
CGFR/AG and BFGS/AG had outperformed other 
algorithms in term of CPU time and a number of epochs as 
can be seen in Fig. 15 and Fig. 16. 
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Fig. 14  The comparison of the number of epochs and CPU time needed to 
convergence for BP and the proposed BP/AG for IRIS classification 
problem 
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Fig. 15  The comparison of the number of epochs and CPU time needed to 
convergence for traincgf, CGFR and the proposed CGFR/AG for IRIS 
classification problem  
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Fig. 16  The comparison of the number of epochs and CPU time needed to 
convergence for trainbfg, BFGS and the proposed BFGS/AG for IRIS 
classification problem  
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E. 7 BIT Parity  

The parity problem is also one of the classical and 
considers the most popular initial testing tasks that are very 
demanding for classification particularly for the neural 
network to solve. This is because the target-output always 
changes whenever a single bit in the input vector changes 
and this makes generalization difficult, and as a result, the 
learning does not always converge easily [33]. For this 
problem, the selected architecture of the FNN is 7-5-1, 
where the target error has been set to 0.05 with the 
maximum epochs is set to 3000. 

In achieving the target error, the performance of the 
proposed method BP/AG had significantly reduced the 
number of epoch up to 50% as shown in Fig. 17. Whereas, in 
Fig. 18 and 19 the proposed CGFR/AG and BFGS/AG still 
maintain the ability to reach the target error with a slight 
improvement in term of CPU time and the number of epochs. 
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Fig 17  The comparison of the number of epochs and CPU time needed to 
convergence for BP and the proposed BP/AG for 7-Bit parity problem 
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Fig. 18  The comparison of the number of epochs and CPU time needed to 
convergence for traincgf, CGFR the proposed CGFR/AG for 7-Bit parity 
problem  
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Fig. 19  The comparison of the number of epochs and CPU time needed to 
convergence for trainbfg, BFGS the proposed BFGS/AG for 7-Bit parity 
problem  

F. Glass Classification Problem  

This dataset was also taken from the UCI repository of 
machine learning database. The dataset was created based on 
the ‘glass’ problem where it was based on the study to 
classify types of glass and was motivated by the 
criminological investigation.  From the study, the results of a 
chemical analysis of glass splinters (percent content of 8 
different elements) plus the refractive index are used to 
classify the sample to be either float processed or non-float 
processed building windows, vehicle windows, containers, 
tableware, or head lamps. The problem contains 9 inputs, 6 
outputs, 214 examples and the selected architecture of the 
FNN is 9-5-6, where the target error has been set to 0.05 
with the maximum epochs is set to 3000. 
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Fig. 20  The comparison of the number of epochs and CPU time needed to 
convergence for BP and the proposed BP/AG for glass classification 
problem 
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Fig. 21  The comparison of the number of epochs and CPU time needed to 
convergence for traincgf, CGFRS the proposed CGFR/AG for glass 
classification problem 
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Fig. 22  The comparison of the number of epochs and CPU time needed to 
convergence for trainbfg, BFGS the proposed BFGS/AG for glass 
classification problem  
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Fig. 20 demonstrated that the proposed BP/AG had 
improved the performance of reaching the target error by 
reducing the number of epochs up to 30%. Again, the 
proposed CGFR/Ag and BFGS/AG outperformed other 
algorithms in reaching the target error as can seen in Fig. 21 
and 22. 

IV.  CONCLUSION 

In this paper, a new and improved training method is 
introduced for fast supervised learning method in the neural 
network. The performance of the proposed first order and 
second order methods with adaptive gain (BP-AG, CGFR-
AG, BFGS-AG) with standard second order methods 
without gain (BP, CGFR, BFGS) in terms of speed of 
convergence evaluated in the number of epochs and CPU 
time. Based on some simulation results, it’s showed that the 
proposed algorithm had shown improvements in the 
convergence rate with 40% faster than other standard 
algorithms without losing their accuracy.  It has been shown 
that the proposed algorithm is also robust as the results have 
been compared with the ‘Matlab neural network toolbox 
‘implementation. Based on simulation results on selected 
benchmark datasets, the results clearly show that the 
proposed method outperforms the standard training 
algorithms in neural network toolbox. Furthermore, it runs 
much faster, performs less CPU time, has improved average 
number of epochs, and better convergence rates without 
losing their accuracy performance. 
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