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Abstract— Using the theory of dynamical systems, this study investigated the effects of the inclined magnetic field on chaotic 
behaviour in a fluid layer heated from below for moderate Prandtl number. A low-dimensional, Lorenz-like model was obtained 
using the Galerkin truncated approximation. The fourth-order Runge-Kutta method was employed to solve the nonlinear system. The 
solution shows that it is possible to delay the chaotic convection depending on the Hartmann number. 
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I. INTRODUCTION 

Chaotic behaviour has attracted interest due to its wide 
application. It can be observed in many natural systems, 
such as the time evolution of the magnetic field of celestial 
bodies, molecular vibrations, the dynamics of satellite in the 
solar system, the weather, in ecology and in neurons. 

The transition from steady convection to chaos in a 
porous medium for low Prandtl number, studied by Vadasz 
and Olek [1], is sudden and occurs by a subcritical Hopf 
bifurcation producing a solitary limit cycle which may be 
associated with a homoclinic explosion. This finding can be 
recovered from a truncated Galerkin expansion (Vadasz and 
Olek [2]) that yields a system identical to the familiar Lorenz 
equations (Lorenz [3], Sparrow [4]). For the corresponding 
convection problem in a pure fluid, a similar approach was 
used by Vadasz [5] to demonstrate similar results. Vadasz 
and Olek [6] showed that the route to chaos occurs by a 
period doubling sequence of bifurcations when the Prandtl 
number is moderate. Jawdat and Hashim [7] showed that the 
onset of chaotic convection in a porous medium for low 
prandtl number can be enhancing by a uniform internal heat 
generation.  

The study of magnetic field effects has important 
applications in physics and engineering. It includes the Hall 
effects, the mass spectrometer, microphone and the flow and 
heat transfer problems. 

 The effects of a magnetic field on chaotic convection in 
porous media for low Prandtle number were investigated by 
Idris and Hashim [8]. They observe that the magnetic field 
will delay the convective motion in a saturated porous 

medium fluid layer. Mahmud and Hashim [9] studied the 
chaotic convection in a fluid layer heated from below when a 
constant, vertical magnetic field was applied. They showed 
that the chaotic convection can be suppressed or enhanced.  

The aim of the present work is to study the influence of 
inclined magnetic field on chaotic convection in fluid layer 
heated from below for moderate Prandtl number extending 
the work of Vadasz [5]. The truncated Galerkin 
approximation was applied to the governing equations to 
deduce an autonomous system with three ordinary 
differential equations. This system was used to investigate 
the dynamic behaviour of thermal convection in the fluid 
layer and to elucidate the effects of inclined magnetic field 
on the transition to chaos. 

II. PROBLEM FORMULATION AND EQUATIONS 

Consider an infinite horizontal fluid layer subject to 
gravity and heated from below with influence of inclined 
magnetic field B  with angle  . A Cartesian co-ordinate 
system is used such that the vertical axis z is collinear with 
gravity, i.e. ˆ ˆe eg z . A linear relationship between density 

and temperature is assumed and can be presented as 
[1- ( - )]0 * *T Tc   where * represents the thermal 

expansion coefficient. Also, the Boussinesq approximation is 
applied indicating that density variations are effected only 
for the gravity term in the momentum equation.  

Subject to these conditions, the dimension governing 
equations can be written as 
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where *V is the velocity, T  is temperature, *p is pressure, 

*  is fluid viscosity, *  is thermal diffusivity, J  is electric 

current density, B  is applied magnetic field,   is electric 
potential,   is electric conductivity and 0 is a reference 

value of density. 
Garandet et al. [10] suggested that the electric potential in 

Eq.(4) was significantly reduced to 2
0   for a 2-D steady-

state situation. Since / 0n   , the unique solution is 0  . 
This means that the electric field vanishes everywhere. 

The following transformations will non-dimensionalize 
Eqs. (1)-(4): 
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where t  is the time,  *T Tc is the temperature variations 

and  T T Tc H c   is the characteristic temperature difference.                           

The fluid layer with stress-free horizontal boundaries is 
considered and the temperature boundary conditions are 1T  
at 0z , 0T at 1z . 

The governing equations can be represented in terms of a 
stream function defined by /u z  and /w x  , as for 
convective rolls having axes parallel to the shorter 
dimension (i.e. y ) when 0v  . Applying the curl (  ) 

operator on Eq.(2) yields the following system of partial 
differential equations from Eqs. (1)-(3): 
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where  , Pr , Ra and Ha  are the stream functions, the 
Prandtl number, the Rayleigh number and the Hartmann 
number, respectively. 

In order to obtain the solution to the nonlinear coupled 
system of partial differential equations in Eq. 6 and Eq. 7, 
we represent the stream function and temperature in the form 
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This representation is equivalent to a truncated Galerkin 
expansion of the solution in both the x - and z -directions. 
Following the Vadasz work in [5] to our case, rescaling the 

time and the amplitudes with respect to their convective 
fixed points, we have the following system of ordinary 
differential equations 
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()/d d . When 0Ha , system (10)-(12) reduces to the Vadasz 
system [5] (Eqs.(11)-(13)).  System (10)-(12) is equivalent to 
the Lorenz equations, although with different coefficients. 
By using the wavenumber corresponding to the convection 

threshold, i.e. cr , yields 8/3  and 427 /4Rac  . 

III. STABILITY ANALYSIS 

The nonlinear dynamics of a Lorenz-like system (10)-(12) 
has been analyzed and solved for Pr 50 , 8/3 and /4  . 
This rescaled system has three fixed points. The first fixed 
point is 01 1 1X Y Z   , corresponding to the motionless solution. 

The second and third fixed points corresponding to the 
convection solution are 1, 12,3 2,3 2,3X Y Z   . The 

stability of the first fixed point is controlled by the zeros of 
the following characteristic polynomial equation for the 
eigenvalues ( 1,2,3)ii  : 

 
 ( ) ( Pr )(1 ) Pr 0G R                                     (13) 

 
1 and 3  are negative and 2 provides the stability 

condition for the motionless solution in the  form 
02 R G    . Therefore the critical value of is obtained as

1R R Gc c r  , which corresponds to 4(27 /4)Ra Gcr  . 

This means that there is a direct proportionality between the 
Hartmann number Ha  and the Rayleigh number Ra  with 
fixed inclination angle  . Fig. 1 shows this direct 
proportionality between the Hartmann number Ha  and 
Rayleigh number Ra  for fixed inclination angle /4  .  

The following cubic equation for the eigenvalues, 
( 1,2,3)ii  , controlled the stability of the second and third 

fixed points of the rescaled system 
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Fig. 1. A graph of Ha versus Ra showing the direct proportionality 

between them for fixed inclination angle /4  . 

 
Eq.(14) yields three eigenvalues, and the smallest eigenvalue 

1  is always real and negative over the whole range of 

parameter values. The other two are real and negative at 
slightly supercritical values of R , such that the convection 
fixed points are stable, that is, simple nodes. These two roots 
move on the real axis towards the origin as the value of R  
increases. These roots become equal when they become a 
complex conjugate. In any case, they still have negative real 
parts, and so the convection fixed points are stable, that is, 
spiral nodes. Both the imaginary and real parts of these two 
complex conjugate eigenvalues increase and extend over the 
imaginary axis as the value of R  increases. The real part 
becomes nonnegative at a value of R  given by 
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Relation (15) is an extension of 0R in [5] to the inclined 

magnetic field case 0Ha  . At this point, the convection 

fixed points lose their stability and other (periodic or chaotic) 
solutions take over. The values of G  and the values of R
where the loss of stability and chaotic behaviour occurred 
for different values of Ha  are presented in Table 1. 
 

TABLE I 

Values of G  and Values of R  when the Loss of Stability Occurred for 

Different Values of Ha  

Ha  G  R (Loss of Stability) 
0 1 60.07194245 

0.25 1.000120722 60.08513510 
0.5 1.000482888 60.12472165 
0.75 1.001086498 60.19072845 

1 1.001931552 60.28319935 

 

IV. RESULTS AND DISCUSSION 

In this section, some numerical simulations of the system 
(10)-(12) are presented for 0 2 1 0t  . All calculations were 
done using MATLAB's built-in ODE45 based on the fourth-
order Runge-Kutta method on double precision with step 

size 0.001, fixing the values Pr 50 , 8/3 , /4  and taking 
the initial conditions (0) (0) 0.8X Y   and (0) 0.92195Z  . 

The complete solutions were computed for a wide range 
of R  values between 0 350R   with a resolution of 0.5R  . 
The computational results identified maxima and minima in 
the post-transient solution for each value of R , which were 
plotted as a function of R  producing the bifurcation 
diagrams presented in Fig. 2 in terms of maxima and minima 
in the post-transient values of Z versus R . 

The evolution of trajectories over time in the state space 
for two values of Hartmann number ( 0Ha  and 0.5Ha ) is 
presented in Fig. 3. 

We can notice from Table II and Fig. 2 that the critical 
value of the scaled Rayleigh number R  increases when Ha  
increases. Hence, the chaotic behaviour can be enhanced 
when Ha  is decreasing and delayed when Ha  is increasing. 

 

(a)   

(b)  
Fig. 2. Bifurcation diagrams of Z versus R , representing maxima and 
minima of the post-transient solution of ( )Z t for (a) 0Ha and (b) 0.5Ha . 

V. CONCLUSIONS 

In this paper, we have studied chaotic behaviour in a fluid 
layer subject to gravity and heated from below under the 
effect of an inclined magnetic field with /4   for 
moderate Prandtl number. We notice that there is a direct 
proportionality between the Hartmann number Ha  and the 
Rayleigh number Ra  with fixed inclination angle , and the 
chaotic behaviour can be delayed depending on the value of 
Hartmann number Ha . 
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(a)  

(b)  
Fig. 3. Computational results for the evolution of trajectories over time in 

the state space for two values of Hartmann number (a) 0Ha and (b)
0.5Ha . 
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