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Abstract— Post-genomic data can be efficiently analyzed using computational tools.  It has the advantage over the biochemical and 
biophysical methods in term of higher coverage.  In this research, we adopted a computational analysis on PTEN gene mutation.  
Mutation in PTEN is responsible for many human diseases.  The results of this research provide insights into the protein domains of 
PTEN and the distribution of mutation. 
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I. INTRODUCTION 

Computational tools are efficient approaches in the 
analysis of large volume of post-genomic data.  There exists 
a wide range of computational tools [1-6] for genomic 
analysis and protein analysis, all of which built upon 
powerful algorithms.  Without exception, there is an 
increasing trend of applying computational analysis for gene 
discovery and treatment.  In this research, we adopted a 
computational approach in the analysis of Phosphatase and 
Tensin homolog (PTEN) gene mutation. 

PTEN is a tumor suppressor gene which has been 
implicated in many diseases, including cancer.  It involves in 
a wide range of physiological processes by negatively 
regulating the PI3K-Akt signalling pathway [7,15].  
Activation of Akt results in the instability of PTEN and 
consequently induces drug resistance to cetuximab and 
gefitinib [11].  Recent study has shown that PI3K-PTEN 
signalling cascade is important in protecting cells against 
oxidative stress [8].  Besides, it was observed that PTEN 
might reverse chemoresistance to cisplatin and may be 
targeted for molecular treatment of ovarian cancer [9].  
Clinical studies have found that an increase in PTEN 
expression level is correlated to longer survival [12] in 
certain cancers, such as extrahepatic cholangiocarcinoma 
[10].  Although a diverse implication of PTEN has been 
discovered in cancer therapy, there are more researches 
needed to carry out to study the impact of PTEN in 
molecular treatment. 

Mutation in PTEN is implicated in many human diseases 
[13].  A review done by Tainsky demonstrates that germline 

mutation in PTEN causes more than 10 types of cancer in 
human [16].   The understanding of individual genetic 
mutation is important for a better prediction in disease 
treatment [14].  In this study, we attempted to analyze PTEN 
gene mutation using computational approach.  Analysis on 
RNA transcripts and protein domains are included.  The 
results of this study would provide in silico insights to the 
mutation in PTEN.    

II. METHODS 

We used COSMIC database [2] to mine the somatic 
mutation information of PTEN gene.  COSMIC is a public 
database which curates information on somatic mutations in 
cancer and links to external data sources such as Ensembl 
and The Cancer Genome Atlas Project (TCGA) [2].  We 
used the latest version of COSMIC, which is version 53 as at 
May 2011, with the last update in March 2011.  We 
identified the mutations in term of substitution, insertion and 
deletion.  Both cDNA and amino acid sequence type of 
mutation distribution are identified. 

PTEN signalling pathway was investigated.  In addition, 
we identified and analyzed protein domain for PTEN using 
Pfam [17] and InterPro [18].  We performed clustal 
alignment for the protein domains.  Lastly, we used Cn3D 
version 4.3 to model the protein tertiary structure.     

III. RESULTS AND DISCUSSION 

The COSMIC shows that there are 16169 unique samples 
of PTEN gene in human genome, of which only 2005 are 
mutated samples.  The histology of cancer implicated by 
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PTEN includes carcinoma, glioma, hyperplasia, neoplasm, 
sarcoma and melanoma.  Some of the PTEN-implicated 
cancer samples are provided in Table 1. 
 

TABLE 1 
A partial list of PTEN-implicated cancer samples 

COSMIC 
sample 
ID 

Amino 
acid 

Primary 
tissue 

Histology Mutation 
ID 

1009627 
 

p.R130* 
 

ovary 
 

Carcinoma 21342 
 

1009628 
 

p.R233* 
 

endometrium 
 

Carcinoma 21343 
 

1010524 
 

p.L57S 
 

CNS 
 

Glioma  5127 
 

1041979 
 

p.G230E 
 

endometrium 
 

hyperplasia 
 

23550 
 

1047275 
 

p.D116G 
 

thyroid 
 

Carcinoma  23662 
 

1229477 
 

p.I253N 
 

skin 
 

Melanoma 5230 
 

848117 
 

p.T401I 
 

soft tissue 
 

Leiomyo-
sarcoma 
 

5124 
 

 
The diverse histology and primary tissue involved in 

PTEN gene mutation implies that PTEN is expressed in 
multiple organs and being up-regulated/down-regulated in 
multiple signalling pathways.  The mutation overview chart 
of PTEN is shown in Fig. 1. 

 

 
 

Fig. 1 Mutation overview chart of PTEN 

 
Fig. 1 shows that gene substitution constitutes the main 

mutation of PTEN, where it weighs 49% of total mutation.  
Gene deletion consists of 27.1%.  The total percentage of 
indels is only 36.5%.  Fig. 2 shows the chart for gene 
substitution. 

 

 
 

Fig. 2 Substitution chart 

There are two types of substitution.  The most common 
type for point mutation is the transition, in which the 

substitution takes place between the same types of 
nitrogenous base; another type of substitution is the 
transversion in which the substitution takes place between 
different types of nitrogenous base.  Fig. 2 shows that 44.3% 
of substitution is CG pair to TA pair, which is a transition 
substitution that comprises the largest group.  TA pair to CG 
pair substitution, which constitutes 13.7% of overall 
substitution is also a transition.  Transversion substitution 
consists of 42.7% of overall substitution; whereas nonsense 
substitution consists of 5.6%.  The distribution of somatic 
mutation is given in Fig. 3.  The figure shows that 
substitution is highly concentrated at amino acid sequence 
120-130, 160-170, and 220-230; whereas indels occur 
mainly at the sequence <350.  

 

 
Fig. 3  The distribution of somatic mutation of PTEN 

 

Fig. 4 shows that PTEN is implicated in T-cell receptor 
(TCR) signalling pathway, one of the signalling pathways in 
human immune system.  The figure shows that PTEN is 
implicated in the phosphorylation of other substrates.  It 
implies that PTEN is important in the control of the activity 
of various enzymes [19, 21], which is one of the features of 
phosphorylation, in the immune system.  In addition, it was 
reported that Akt could be activated through the 
phosphorylation of erythropoietin receptor [20].  This 
finding sheds lights for geneticists to study in detail the 
connection between PTEN mutation and phosphorylation. 

 

 
 

Fig. 4  The implication of PTEN in TCR signalling pathway 
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We identified and analyzed protein domains for PTEN 
using Pfam [17] and InterPro [18].  Using Pfam, we obtained 
two domain families for PTEN (P60484), which are DSPc 
and PTEN_C2.  DSPc starts from position 47 and ends at 
position 175; whereas PTEN_C2 starts from position 188 
and ends at position 349.  The total length of PTEN protein 
is 403 amino acids.  InterPro was used to analyze PTEN_C2 
domain.  It showed that this domain matches 432 proteins in 
human proteome.  This domain functions in protein binding, 
as shown by the Gene Ontology annotation.  

The human PTEN domain was aligned with mouse model, 
as shown in Fig. 5.  The highlighted blocks in yellow 
represent the aligned domain of PTEN between these two 
organisms.  It shows that PTEN is largely conserved in both 
organisms. 

 

 
Fig. 5 PTEN domain alignment between human and mouse model 

 
We then performed an alignment between human and 

mouse PTEN for mutagenesis.  The result is shown in Fig. 6, 
which clearly demonstrates that PTEN gene mutates 
differently in human and mouse.  This implies that the 
diseases caused by PTEN mutation are unlikely to be the 
same in human and mouse.  The aligned point mutation is 
highlighted in blue. 

 

 
Fig. 6  Alignment for mutagenesis for human and mouse 

 
The tertiary structure of DSPc domain family of PTEN 

was modelled using ball and stick representation.  Fig. 7 
depicts an aligned model where the color represents the 
aligned pairs; Fig. 8 depicts the domain of DSPc; Fig. 9 
depicts the residues of DSPc.  A wide range of color implies 

that DSPc has more than 5 residues; Fig. 10 depicts the 
identity of sequence conservation; and lastly, Fig. 11 shows 
that the DSPc domain of PTEN consists of a structure of 6
 -helices and 4  -sheets.  It shows a conformation of 

helices-loops-sheets, where the loops may serve as a 
catalytic site in the cellular pathways. 

 

 
 

Fig. 7 An aligned model of DSPc 

 

 
 

Fig. 8  The domain model of DSPc 

 

 
 

Fig. 9  The residue model of DSPc 
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Fig. 10  The identical sequence conservation of DSPc 

 

 
 

Fig. 11.  DSPc domain family consists of 6 helices 4  sheets. 

IV. CONCLUSIONS 

Computational analysis of the PTEN gene mutation which 
is implicated in many human diseases shows that gene 
substitution constitutes the main mutation (49%) of PTEN. 
Based on the change in the nucleotide type, the substitution 
mutation may be classified into transition (CG> TA, TA> 
CG) and transversion mutations (CG> AT, CG> GC, TA> 
AT, TA> GC). PTEN regulates various enzymes in the 
immune system. The human PTEN domain aligned with 
mouse model is largely conserved but shows differences 
when alignment is performed for mutagenesis. Molecular 
model of DSPC domain family of PTEN was also modelled 
using ball and stick method. 
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