International Journal on Vol.8 (2018) No. 5
H ISSN: 2088-5334

Advanced Science >5N: 2088-533

Engineering

Information Technology

Implementing a Secure Key Exchange Protocol for OpenSSL

Janaka Alawatugodj Seralathan VivekaanathamNishen Peiri§ Chamitha Wickramasinghe
Chuah Chai Wen

Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Sri Lanka
E-mail: 'alawatugoda@eng.pdn.ac.lk

“Information Security Interest Group, Faculty Computer Science and Information Technology

University Tun Hussein Onn Malaysia, Malaysia
E-mail: cwchuah@uthm.edu.my

Abstract— Security models have been developed over time to examine the security of two-party authenticated key exchange protocols.
In 2007, a reasonably strong security model for key exchange protocols has been proposed, namely extended Canetti-Krawczyk model
(eCK model), addressing wide range of real-world attack scenarios. They constructed a protocol called NAXQOS, that is proven secure
in the eCK model. In order to satisfy the eCK security, NAXOS protocol uses a hash function to combine the ephemeral key with the
long-term secret key, which is often called as “NAXOS trick”. However, for the NAXOS trick based protocols, the way of leakage
modelled in the eCK model leads to an unnatural assumption of leak-free computation of the hash function. In 2015, Alawatugoda,
Stebila and Boyd presented a secure and NAXOS trick key exchange protocol, namely protocol P1. In this work, we implement the
protocol P1 to be used with the widely-used OpenSSL cryptographic library. OpenSSL implementations are widely used with the
real-world security protocol suites, particularly Security Socket Layer and Transport Layer Security. According to our knowledge,
this is the first implementation of an eCK-secure protocol for the OpenSSL library. Thus, we open up the direction to use the recent
advancements of cryptography for real-world Internet communication.

Keywords— authenticated key exchange; eCK modd)penSSL; secure key; security models.

and Hellman, researchers at Stanford University, presented
I. INTRODUCTION about public-key cryptography and key distribution in their

In symmetric key cryptography (SKC), a single key is ground breaking paper, “New Directions in Cryptography”

; ; P 1]. The key exchange primitive presented in their paper is
used for encryption and decryption, which is often called as[- e
the secret key. Therefore, prior to message communication)’v'.de.ly known as the pﬁ“ﬁe-HeIIman (DH) ke_y exchange
rimitive and is considered to be the earliest practical

both the sender and the receiver need to share the secret key, -
uthenticated key exchange protocol.

in such a way that no eavesdropper can learn the secret key. W ol lain_ the Diffie-Hell |
Hence, a trusted channel is needed to share the secret ke¥. e simply explain the Diffie-Hellman protocol as
ollows: UsersA and B negotiate on a grou@ of prime

Historically, this trusted channel was accomplished b
y P y orderqg and a generatay. The valuesG, g, q are released as

means of trusted couriers, diplomatic bags etc. This bli | in th | o ch d
mechanism is undesirable, because of the necessity of a thir@uplic values. In the protocol executighc 00ses a random
elementa € G, computesA « ¢* and sends it t@. Upon

party, and the entire confidentiality relies on the
trustworthiness of this third party. With the ground breaking receivingA, B chooses a random elemér¢ G, computes3
work of Diffie and Hellman [1] on public-key cryptography — ¢ and sends it t&. Finally, A computeK «— B? = (g")?,
(PKC) and key distribution, cryptographers realized a more and B computesK «— A° = (g¥)°. Thus, bothA and B
sophisticated solution for securely exchanging the secret key

; . o compute the same vallles G.
Thus, the idea of public-key cryptography eliminates the i L
need of a trusted third party to create a secure channel. An eavesdropping attacker observes the communication
above may seé\ and B values. GivenA = ¢*, B = ¢

A. Diffie-Hellman Protocol computing K = ¢® is “computational Diffie-Hellman
exchanging secret session keys over a public channel. Diffie

2205

which is capable of computinig = g®° given thatA = ¢, B Therefore, it is obvious that th@penSSL cryptographic
=g". library has a significant place in today's Internet.

Several key exchange protocols are designed on top of the o
Diffie-Hellman protocol [2]-[7]. The Diffie-Hellman D Our Contribution
protocol is applied to many security protocol suits including In this work we implement the eCK-secure protocol P1 of
Security Sockets Layer (SSL), Transport Layer Security Alawatugoda et al. [9] to be used with the widely using
(TLS), Secure Shell (SSH), and IP Sec. cryptographic library, th®penSSL library. TheOpenSSL
. implementations are widely used for the real-world security
B. NAXOS Trick and eCK-secure Key Exchange protocol suites, particularly Security Socket Layer protocol

Generally, a security model is a scheme that is designed tand Transport Layer Security protocol. As per our
enforce security policies. Extended Canetti-Krawczyk (eCK) knowledge, this is the first implementation of an eCK-
security model [8] is considered as a widely used securitysecuret key exchange protocol to be used for real-world
model for key exchange protocols, as it addresses widecommunications. Thus, we open up the direction to use the
range of real-world attack scenarios. We discuss about theecent advancements of cryptography for real-world Internet
security models in detail in Section Il. communications.

The motivation of constructing the eCK model was to
make the adversary obtain both the ephemeral and long-term II. MATERIAL AND METHOD
secret keys of a party to compute the session key of that
particular communication. In the NAXOS protocol [8], the
session key is computed using the so-called NAXOS trick.
In this trick, the “psuedo” ephemeral kpgkis calculated as A. Key Exchange Security Models

a hash value of the ephemeral keskandthe long-term Researchers keep on constructing authenticated key

secret keylsk such thatpsk = H(esk, Isk This psuedo goychange protocols, strengthening them against various

ephemeral key is not stored. Hence, the adversary have tQuacks and vulnerabilities. The continuous growth of key
get both thdsk andeskto calculate the psuedo ephemeral exchange protocols created a necessity of a formal

key psk Following the NAXOS protocol, few NAXOS trick ethodology to analyze their security. Therefore, in order to

based authenticated key exchange protocols are presentegl s this necessity, computer scientists have introduced key
[4]. However, in NAXOS trick based protocols, the leakage exchange security models.

of ephemeral key modelled in the eCK model seems not gecyyrity models are designed in a way that they reflect

natural, all(s t?e IeCK modgzl Ieadxslk while pskremains ska;e. present real-world attacks, and of course potential attacks
In a work of Alawatugoda et al. [9], a NAXOS trick free o+ can exist in future.

eCK-secure AKE protocol is presented, namely the protocol Components of a security model:
P1. '

In this section, key exchange security models and
extended canetti-krawczyk models are presented.

» Definition: abstraction of the algorithm.
C. OpenSSL Cryptographic Library » Powers of the Adversary: Queries which the
OpenSSL is an open source project which provides a adversary is capable of performing to reveal

commercial grade toolkit for the TLS and SSL protocol information of protocol instances.
suits. It is a general purpose cryptographic library. This * Security game (challenge)Order that the adversary

cryptographic library is implemented in C programing uses the queries. .
language, but it has wrappers in Java and some other * Security definition: Condition to the adversary to

languages as well. There are three variants of Diffie- win the challenge. _ ,
Hellman primitive used in theDpenSSL cryptographic There is a set of queries which an adversgry is aIIoweq to
library. use (powers of the adversary). The queries leak various
. "Anonymous DH: Diffie-Hellman primitive is used secret vaI.ues to the adversary. A protocol to be secure ywt.hm
without authentication. the security model, the adversary's advantage of identifying

the real session key of the target session from a random
value (from the same distribution) has to be negligible.
Researchers aim to construct security models which are
capable of modeling maximum of possible known attacks
mentioned below:
Implicit Key Authentication: assures that nobody
other than the protocol participants calculates the
session key. Such protocols are known as

According to statistics from various cryptography related authentlcgted key exchangetocols.
sources, a considerable large number of websites (more than Key. C;onﬂrmatmn: assures that all the other protocol
4,545,900) rely on the security measures of @GhpenSSL participants compute the session .key_]
cryptographic library. ApparentlyfQpenSSL cryptographic * Unknown Key Share (UKS) Security: no. pary
library has a steady usage as well. One important factor to §hares a session key with a pagybelieving that it
highlight here is that the highest number of websites among is shared with some other paRy

them, fall under the vertical of business related websites. * Key Compromise Impersonation (KCI) Security:
having the long-term secret key of a paPtgoes not

» Fixed DH: Embeds the server's public parameter in the
certificate.

» Ephemeral DH: Uses one-time public keys. The
authenticity is verified using signatures. Since the
public keys are one-time values, compromising the
long-term signing keys does not reveal the old session
keys. Therefore, this protocol provides perfect forward
secrecy.

2206

make the adversary capable of impersonating other « Corrupt (U): A get all the long-term secrets bf
parties toP. This query captures the UKS attacks, KCI attacks
e Forward Secrecy: an adversary who knows the long- and forward secrecy.

term secret keys of two parties cannot compute the . Test U,9: WhenA asks this query, the oradi§y v
past session keys between those two parties. '

Bellare-Rogaway (BR) [10], [11], Canetti-Krawczyk chooses a random Hlite {0,1} and if b = 1, the real
(CK) [12] and extended Canetti-Krawczyk (eCK) [8] are few session key is revealed #, otherwise returns a
of the widely used key exchange security models. Table | random string.

shows a comparison between the above three security) e,
models with respect to security features addressed by the 3) FreshnessAn oracle is fresh iff:

security models. e The particular oracle or its partner (if exists), it has
TaBLE | [9] not been asked to reveal the session key.
SECURITY FEATURESSUPPORTED BY BR CK AND ECK SECURITY MODELS » If partner exists, none of the following have been
. asked:

ﬁgﬁé:iykgjaatjtf:ntication yeBsR ?(Iés sc(a:sK a. Ephemeral-Key reveal(V.,9 and Corruptl).
Key confirmation yes Yes yes b. Ephemeral-Key reveaV(U,s) and CorruptV).
UKS yes Yes yes » If partner does not exist, none of the following have
KCI no No yes been asked:
Forward secrecy (FS) no Yes Weak-F§$ a. Corrupt V).

B. eCK Model b. Ephemeral-Key reveal),V,9 and Corruptl()).

We now look at the eCK model of LaMacchia et al. [8]. 4) Challenge
Wecall principal to a party which involves in the protocol
run. Each party has a pair of long-term public/secret keys,
which are generated before the protocol run. Each instance

« Stage 1:A is capable of asking any of Session-Key
reveal, Send, Corrupt and Ephemeral-Key reveal

of the protocol between any two principals is defined as a queries at will.
session + Stage 2A asks a Test query to any oracle.

We model a session belongs to the principal as an oracle. * Stage 3:A continues asking queries again without
[T°uv is an oracle which represents #feprotocol instance violating the test session’s freshness.
between owner principal and a partner principdl. When « Stage 4A outputs its guess on the valoélets name
[T°u,v computes a session key it come to the accepted state. it as b").A wins if the valueb® = b.

Any time a session can terminate without computing a
session key. The information of whether acceptance or not 5) Security Statement

publicly available. Sucq, be the instance that ti# wins the eCK challenge.

1) Partnering:Legitimate protocol execution between A protocol (let's sayr) is secure in eCK model if there is no
principals V and U makes two partner sessions owned by v efficient A which is capable of winning the eCK challenge
and U respectively. In order to define the partnership, we Wwith non-negligible advantage.

have used the notation of a session identifier (SID). The SID .
is the concatenation of messages exchanged between two C. eCK-secure and NAXOS Trick Free AKE Protocol

intended principals with their identities. The SID[§%, is The protocol P1 of Alawatugoda et al. [9] is proven-
denoted by SIfy = (comm|| ... || comn). Two oracles secure in the eCK model.
[T°uv and[J°vu are partners if: Let G be a group of prime orderand generatog. After

exchanging the public values both principals compute shared
secrets 4y, Z,, Zz andZ,). Then the session key is computed
as a random oracle combination&f Z,, Z; andZ,, which
can be replaced by a hash function in the implementation.
Table 1l shows the protocol diagram of protocol P1.

In the protocol execution, for each party, the Pl protocol
) needs 5 exponentiations and one random oracle
« Send U,V,s,n: This query sends a messageto computation, whereas the NAXOS protocol needs 4

* [Tuv and [T°vy compute session keys (both oracles
come to accepted state) SIR= SID*y, (heres = s)).
* [T°uv and[T°v,u agree on the initiator of the protocol.

2) Powers of the AdversaryThe adversaryA is an
efficient algorithm that adaptively asks below queries.

the oracle[T’yv as sending from the oracld’u. exponentiations and 3 random oracle computations.
[T°u.v will send toA the next message according to TABLE Il
the protocol conversation. This query is also used to PROTOCOLP1[9)]
initiate a new protocol instance. Alice

+ Session-Key reveal)V,9: If an oracle[[%y v hold ad T4 < g [Z; B g
a session keyA gets to know it. Protocol Execution

» Ephemeral-Key reveal U\V,9: Reveals the x& Z,X « g° painiie ye Y < g’
ephemeral keys of the oragigy v to A. or

2207

Z, < B*Z, « B*

Zy <Y Z, < Y™

K « H(Zy,Z,,Z5,Z,,Alice,X,Bob,Y) K
< H(Z,Z5,75,Z;,Alice, X, Bob,Y)

7y« A%, Z) « XP
Zy« AV, Z, « XV

K is the session key

1) Technical Preliminaries for security Proof:
Definition 1 (Decision Diffie-Hellman (DDH) Problem)

$
Given @ o,) for a, b «Z,, the DDH problem is to

distinguish whethec = ab or not.
Definition 2 (Gap Diffie-Hellman (GDH) Problem)

$
Given @, ¢ for a, b« Z4, the GDH problem is to find

o™ accessing an oracle that solves the DDH problem.

2) Security of the Protocol P1:

If H is a random oracle function and the gap Diffie-- parameters calculated during

Hellman problem is hard in the gro@ then protocol P1 is

secure in the eCK model.

I1l. RESULT AND DISCUSSION

A. Implementation of Protocol P1

The implementation of the Diffie-Hellman protocol is

found under the directorycrypto

in the OpenSSL

cryptographic library. While implementing the protocol P1,
we have kept the original Diffie-Hellman key exchange
protocol implementation intact. Our new implementation has
been done as a separate key exchange protocol for the
OpenSSL cryptographic library. We have provided our

implementations irheck.c, gen.c, key.c, andp1.h files.

struct pl_st {
/* This first argument used to pick up
errors when a DH is passed instead
of a EVP_PKEY

(74

int pad;

int version;

BIGNUM *p;

BIGNUM *g;

long length; /* optional #+/
BIGNUM #*pub_key; /* A/B parameter*/
BIGNUM *priv_key; /* a/b parameter*/
BIGNUM #*pub_keyl; /* X/Y parameter ¢/
BIGNUM =*priv_keyl; /* z/y parameter */
BIGNUM *z1; /* z1 parameter */
BIGNUM *z2; /* 22 parameter */
BIGNUM *z3; /¥ 23 parameter +*/
BIGNUM #*z4; /* zj parameter +/
int flags;

BN_MONT_CTX #*method_mont_p;

/* Place holders if we want to do X9.42
DH

*/

BIGNUM =*q;

BIGNUM xj;

unsigned char *seed;

int seedlen;

BIGNUM =*counter;

int references;

CRYPTO_EX_DATA ex_data;

const DH_METHOD =*meth;

ENGINE =#*engine;

Fig. 1 P1.h: Structure used in the execution of protocol P1.

2208

The file pl.h defines the structure which is used to store
all the inputs and outputs of computation during the protocol
execution (Fig. 1)

int P_check(const P #*p, int *ret)
{
/*code here#*/
}
int P_check_pub_key(const P *p, const BIGNUM
*pub_key, int #*ret)
{
/*code herex/

}

Fig. 2 check.c.

check.c (Fig. 2) contains two functions that check all the
the protocol execution
including p, q and confirm that they are likely enough to be
valid. If any of the parameters are invalid, a flag is set
indicating the reason for being invalid. The error code values
are updated if any problem is found.

int DH_generate_parameters_ex (DH *ret, int
prime_len, int generator, BN_GENCB *cb)
{
/*code here#*/

T

Fig. 3 gen.c.

gen.c (Fig. 3) contains a function that generates
parameters p and (o} The function
DH_generate_parameters_ex generates Diffie-Hellman
parameters, and stores them in the structure defined.n
The pseudo-random number generator must be seeded prior
to calling the functio®DH_generate parameters_ex

static int compute_key(unsigned char x*key,
const BIGNUM *pub_key, const BIGNUM *
pub_keyl, DH *dh)

/*code here*/

Fig. 4 key.c.

key.c (Fig. 4) computes the shared secret k&ysz,, Zs,
Z4), from the long-term or ephemeral private kefb(or x/y
respectively) in*dh and the other party's long-term or
ephemeral public value AB or X/Y respectively) in
*pub_key, then stores it irfkey. Finally, SHA-256 is used
to calculate the session key using the above-comsted,
Zs, Z4 values.
B. Deploying the Protocol P1 in a client/ server

environment

We establish arOpenSSL client connection with the
server running orlocalhost port 44330, using the ECK
cipher suite, which is created by us. The ECK cipher suite
uses the protocol P1 implementation for key exchange. Fig.
5 shows the server certificate (the cipher suite ECK is
highlighted).

Last logim: Fri Jun 30 B2:@8B8:22 on ttysB@l

Serans—-MBA:~ seralahthan% openssl s_client —connect localhost:44338 —cipher ECK
COMMECTED (@@ARRAAS5)

depth=8 C = 5L, 5T = Western, L = Colombo, 0 = UOP, OU = Faculty of Engineering,
verify error:num=18:s5elf signed certificate

verify return:l

depth=8 C = 5L, 5T = Western, L = Colombe, 0 = UOP, OU
verify return:l

Faculty of Engineering,

Certificate chain
B s:/C=5L/5T=Western/L=Colombo/0=U0P/0U=Faculty of Engineerimg/CHN=5eran
i:/C=5L/5T=Western/L=Colombo/0=U0P/0U=Faculty of Engineering/CN=5Seran

Server certificate

————— BEGIN CERTIFICATE-————
MITEOTCCAYGoAWIBAQIJADOCxEKGK] 2 rMARGCSqGSIb3D0EBCWLAMHAXCZAIBgNY
BAYTALINMMRAWDgYDVOQIEwdXZXNBZXIuMRAWDGYDYQOHEWdDb 2 x vbWIvMOwwC gD
VOOKEWNVT1AxHzAdBoNVBASTFKZhY3VsdHkgb2YgRWSnaWs 1ZX)pbmexDj AMBgNV
BAMTBVN1cmFuMB4XDTEZMDYyOTIWNTE1IMFoXDTEAMDY yOTIWNTEIMFowcDELMAKG
A1UEBhMCURwxEDADBoGNVBAQTELd1c3R1lemdxEDAOBGMNVEBACTEBN vbGRtYmBxDDAK
BgNVBACTALVPUDE fMERGALUECxMWRMF j dWx@eSBvZiBFomdpbmV LomluZz EOMAWG
ALUEAXMFUZVYYW4wgogEiMABGCSqGSIb3DQEBAQUAA4IBEDwAWgQEKACIBAQDI0GZ0
XtODtMc/mGKAFMLgBNA4HGucCyFogganV4uOMmHFCEmvBiTA ctBtFoxTnguFIT7IDK
MHeEBURtZ5FBhn/XAKyj LxwsBh0Yx5atVhIGhRZTIHMMVoyDiZabKSAqvEzLpwk
®¥OujVUMZFgzphlwGKYucoOySwAYYADGBZ24r /81 /6UaBnnxTdH4KZFIIXudsZYS3LT
ClwGN FfmAbGZZuSMuprILpELSBmpIgBikKVZ0j0kMS4 LbdKEBVB+TXw2e rLmTMFLT
C7olwlUjBHUBD1X feCBAEGRKLi3END4 Zu+/7CLZTRELIGEYmy 61T LEQ4LHKPdBRUAA R
NFsial2cU4DFmPRLAQMBAAG] gdUwgd IwHQYDVRBOEBYEFPycbSdfuhlgcgsFaWvl
EGUANDQVMIGiBgNVHSMEgZowgZeAFPycbS5dfuhlgogsFawWvlEGUANDOVoXSke j Bw
MOswCQYDVOQGEWITTDEQMA4GALUECBMHV2VZ2dGVyb j EQMA4GALIUEBXxMH]29sb211
bzEMMAOGALUEChMDVUSOMREWHOYDVOQLEXxZGYWN1EOHRSIGAMIEVUZ2 LuZWV yaWsn
MO4wDAYDVOQDEWVTZXIhboIJADOcxEKGK] 2 rMAWGALUdEW)FMAMBATBWDOY JKoZI
hvecNAQELBOADGQEBAFyd4Myel3j650IzEnHYSNvZPcRPOpu2aEbE1b6RxnLItgbCE
+Ppl/DmIjcileyBbssodIHjxVGj4aP0yjBladWwil4EAejVjoPckRvEQCURDAT 1K
ydMkZUZHING27by Kt TwhbbMGmt DdWoECBRpESIqITEL rxFOMy lnYZck3a+UU3V0cPg
TxltrtFFs3CMOu2yU9DgT7EZcFLOF+NETrd21MO2ZLAGAM4BDY nFMAEDN/BALYBIZG
ZbtiNmWYedxBEDMeMrnyPENTQIdcIB+QKiIWEPR6CE+RVS0IBR4tcpYEgAgTzk 0B
BfVNxx]SRAxknBsT3t4]jD6/w]gRYMREDTSK 4=
————— EMD CERTIFICATE————
subject=/C=5L/S5T=Western/L=Colombo/0=U0P/0U=Faculty of Engineering/CN=5Seran
issuer=/C=5L/5T=Western/L=Colombo/0=U0P/0U=Faculty of Engineering/CMN=S5eran

CN

CN

Seran

Seran

Fig. 5 Server certificate (the cipher suite ECK is highlighted)

Following command is used to run the client:
$openssl s_client -connect |ocal host: 44330 -ci pher ECK

No client certificate CA names sent
Peer signing digest: SHAZ256

Peer signature type: RSA-PSS

Server Temp Key: ECK, 204B bits|

S5L handshake has read 2449 bytes and written 472 bytes
Verification error: self signed certificate

Mew, TLSv1l.2, Cipher is ECK-RSA-AES256-GCM-SHA3EB4

Server public key is 284B bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

55L-5ession:
Protocol : TLSv1.2
Cipher : ECK-RSA-AESZ56-GCM-SHAZR4
Session-ID: BAEGE3FABIFCFT7DBECCRFD413711EARTRE3BEGCTALIGF2ZFBD11540CRBADIE3DERY
Session-ID-ctx:

PSK identity: Mone

PSK identity hint: None

SRP username: None

TLS session ticket lifetime hint: 7288 (seconds)

TLS session ticket:

eeed - 28 cc 22 Bf ac 95 16 b3-9f la 9d 97 d6 d4 fd a3 (M eesnnnrnannnns
8018 - b5 Be a9 44 33 c9 31 a4-bb 3c @1 ad @a db @F 19 veeDBaliiginanns

@828 - 56 47 3a a5 63 9B 49 ed-fe 1b 6d B3 6c da 25 5
@832 - 96 31 be a2 bf 4a 49 B1-18 B9 18 21 32 e3 Bf 01
8848 - bf 4d f4 5d Sc 42 d5 68-79 5f 3c T8 fc el B6 73
8858 - b5 1f b2 e7 6d @c ac 76-13 7b 63 b4 BB 39 ab Bb
Q060 - 4d 1d 90 47 48 1b 3b d6-2e db 2T ef @7 4e db6 cl
B@7@ - 6c 96 2b 7d c2 b® cb 5e-51 76 15 Zc f@ B1 @c bl

B@B@ - 13 66 e5 Ba b6 cc BE @1-e3 36 @d 1T 3d a4 51 ed
8098 - 11 6f aa b8 2d 91 ce 1d-18 ae 38 B2 ad 39 bf 57

Start Time: 1498769798

Timeout i 7200 (sec)

Verify return code: 18 (self signed certificate)
Extended master secret: yes

Master-Key: BF57502B27AFCF5674BBDSEFDREZTIES22CTFELTRADREI0BAFRSBE3A13417D7BFE45334E61C331BAT06B419FD270067D

Fig. 6 Client/ Server connection

Then the following command is used to run the server:
$openssl s_server -key key.pem -cert certificate. pem-accept 44330 -www

2209

Serans-MBA:~ seralahthan$ which openssl
Jusr/local/bin/openssl

Generating a 2048 bit RSA private key

You are about to be asked to enter information that will be incorporated
into your certificate request.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:SL

State or Province Name (full name) [Some-State]:Western

Locality Name (eg, city) []:Colombo

Organization Name (eg, company) [Internet Widgits Pty Ltd]:UOP
Organizational Unit Name (eg, section) []:Faculty of Engineering
Common Name (e.g. server FQDN or YOUR name) []:Seran

Email Address (]:.

Using default temp DH parameters
ACCEPT

ACCEPT
ACCEPT
ACCEPT
ACCEPT

Serans-MBA:~ seralahthan$ openssl req -newkey rsa:2048 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem

What you are about to enter is what is called a Distinguished Name or a DN.

Serans-MBA:~ seralahthan$ openssl s_server -key key.pem -cert certificate.pem -accept 44330 -www

140735723783104:error:14094418:SSL routines:ss13_read_bytes:tlsvl alert unknown ca:ssl/record/rec_layer_s3.c:1470:SSL alert number 48

Fig. 7 shows generation of RSA private key certificate for connecting with the local server.

[2]
IV. CONCLUSIONS

In this work we implement the protocol P1 (eCK-secure [3]
and NAXOS trick free authenticated key exchange protocol)
to be used with the widely-usddpenSSL cryptographic [4]
library. OpenSSL implementations are widely used with the
real-world security protocol suites, such as Security Socket
Layer and Transport Layer Security. According to our [5]
understanding, this is the fir6ipenSSL implementation of
an eCK-secure key exchange protocol. Thus, our work opengs]
up the direction to use the recent advancements of
cryptography for betterment of the real-world Internet
communication.

As a future work, we aim to implement a leakage-resilient [8]
AKE protocols [9], [13]-[15] for OpenSSL, which is
resilient to wide range of side-channel attacks, in addition to [9]
eCK security.

ACKNOWLEDGMENT [10]

This research is supported by Faculty Computer Science11]
UTHM, Malaysia and Information Technology (FSKTM),
Research Management Centre (RMC), H082 Tier 1/2018[12
and Gates IT Solution Sdn. Bhd. under its publication

scheme. [13]
REFERENCES [14]

[1] W. Diffie and M. HellmanNew Directions in CryptographyEEE
Transactions on Information Theory 20(6), pp 644-654, 1976. [15]

2210

V. Boyko, P. MacKenzie, and S. PatBrovably Secure Password-
authenticated Key Exchange using Diffie-Hellnd&UROCRYPT
2000, pp 156 — 171, Springer, 2000.

W. Diffie, P. C. Van Oorschot, and M. J. Wien&uthentication and
Authenticated Key Exchang&es. Codes Cryptography 2(2), pp107
— 125, 1992.

A. Fujioka, K. Suzuki, and B. UstaogluJtilizing Postponed
Ephemeral and Pseudo-Static Keys in Tripartite and Identity-based
Key Agreement ProtocqlslACR Cryptology ePrint Archive,
2009:423, 2009.

D. P. JablonStrong Password-only Authenticated Key Exchange
SIGCOMM Computer Communication Revise 25(5), pp 5 — 26, 1996.
H. Krawczyk, HMQV: A High-performance Secure Diffie-Hellman
Protocol CRYPTO 2005, pp 546 — 566, Springer, 2005.

L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstanefficient
Protocol for Authenticated Key Agreemenbes. Codes and
Cryptography 28(2), pp 119—134, Springer, 1998.

B. A. LaMacchia, K. E. Lauter, and A. MityagiBtronger Security
of Authenticated Key Exchanderovsec 2007pp 1 — 16, Springer,
2007.

J. Alawatugoda, D. Stebila, and C. Bohntinuous After-the-fact
Leakage-resilient eCK-secure Key ExcharlygA Cryptography and
Coding 2015pp. 277 — 294, Springer, 2015.

M. Bellare and P. RogawayEntity Authentication and Key
Distribution, CRYPTO 1993, pp 232 — 249, Springer, 1993.

M. Bellare and P. RogawayProvably Secure Session Key
Distribution — The Three Party Cas8TOC 1995, pp 57 — 66, 1995.
R. Canetti and H. Krawczykinalysis of Key-exchange Protocols
and Their Use for Building Secure Channdl&JROCRYPT 2001,
pp 453 — 474, Springer, 2001.

J. Alawatugoda, Generic construction of an eCK-secure key
exchange protocol in the standard mqdeiternational Journal of
Information Security 16(5), pp 541 — 557, Springer, 2017

J. AlawatugodaO©n the leakage-resilient key exchandeurnal of
Mathematical Cryptology 11(4), pp 541 — 557, Springer, 2017

S. Chakraborty, J. Alawatugoda and C. Pandu Rangeakage-
resilient non-interactive key exchange in the continuous-memory
leakage settingProvsec 2017, pp167—187, Springer, 2017

