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Abstract— Security models have been developed over time to examine the security of two-party authenticated key exchange protocols. 
In 2007, a reasonably strong security model for key exchange protocols has been proposed, namely extended Canetti-Krawczyk model 
(eCK model), addressing wide range of real-world attack scenarios. They constructed a protocol called NAXOS, that is proven secure 
in the eCK model. In order to satisfy the eCK security, NAXOS protocol uses a hash function to combine the ephemeral key with the 
long-term secret key, which is often called as “NAXOS trick”. However, for the NAXOS trick based protocols, the way of leakage 
modelled in the eCK model leads to an unnatural assumption of leak-free computation of the hash function. In 2015, Alawatugoda, 
Stebila and Boyd presented a secure and NAXOS trick key exchange protocol, namely protocol P1. In this work, we implement the 
protocol P1 to be used with the widely-used OpenSSL cryptographic library. OpenSSL implementations are widely used with the 
real-world security protocol suites, particularly Security Socket Layer and Transport Layer Security. According to our knowledge, 
this is the first implementation of an eCK-secure protocol for the OpenSSL library. Thus, we open up the direction to use the recent 
advancements of cryptography for real-world Internet communication. 
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I. INTRODUCTION 

In symmetric key cryptography (SKC), a single key is 
used for encryption and decryption, which is often called as 
the secret key. Therefore, prior to message communication, 
both the sender and the receiver need to share the secret key, 
in such a way that no eavesdropper can learn the secret key. 
Hence, a trusted channel is needed to share the secret key. 
Historically, this trusted channel was accomplished by 
means of trusted couriers, diplomatic bags etc.  This 
mechanism is undesirable, because of the necessity of a third 
party, and the entire confidentiality relies on the 
trustworthiness of this third party. With the ground breaking 
work of Diffie and Hellman [1] on public-key cryptography 
(PKC) and key distribution, cryptographers realized a more 
sophisticated solution for securely exchanging the secret key. 
Thus, the idea of public-key cryptography eliminates the 
need of a trusted third party to create a secure channel.  

A. Diffie-Hellman Protocol 

A key exchange protocol defines a method of securely 
exchanging secret session keys over a public channel. Diffie 

and Hellman, researchers at Stanford University, presented 
about public-key cryptography and key distribution in their 
ground breaking paper, “New Directions in Cryptography” 
[1]. The key exchange primitive presented in their paper is 
widely known as the Diffie-Hellman (DH) key exchange 
primitive and is considered to be the earliest practical 
authenticated key exchange protocol. 

We simply explain the Diffie-Hellman protocol as 
follows: Users A and B negotiate on a group G of prime 
order q and a generator g. The values G, g, q are released as 
public values. In the protocol execution, A chooses a random 
element a ∈ G, computes A ← ga and sends it to B. Upon 

receiving A, B chooses a random element b ∈ G, computes B 
← gb and sends it to A. Finally, A computes K ← Ba = (gb)a, 
and B computes K ← Ab = (ga)b. Thus, both A and B 

compute the same value K ∈ G.  
An eavesdropping attacker observes the communication 

above may see A and B values. Given A = ga, B = gb 
computing K = gab is “computational Diffie-Hellman 
problem (CDH)”. There is no known efficient algorithm, 
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which is capable of computing K = gab given that A = ga, B 
= gb. 

Several key exchange protocols are designed on top of the 
Diffie-Hellman protocol [2]–[7]. The Diffie-Hellman 
protocol is applied to many security protocol suits including 
Security Sockets Layer (SSL), Transport Layer Security 
(TLS), Secure Shell (SSH), and IP Sec. 

B. NAXOS Trick and eCK-secure Key Exchange 

Generally, a security model is a scheme that is designed to 
enforce security policies. Extended Canetti-Krawczyk (eCK) 
security model [8] is considered as a widely used security 
model for key exchange protocols, as it addresses wide 
range of real-world attack scenarios. We discuss about the 
security models in detail in Section II.  

The motivation of constructing the eCK model was to 
make the adversary obtain both the ephemeral and long-term 
secret keys of a party to compute the session key of that 
particular communication. In the NAXOS protocol [8], the 
session key is computed using the so-called NAXOS trick. 
In this trick, the “psuedo” ephemeral key psk is calculated as 
a hash value of the ephemeral key esk and the long-term 
secret key lsk, such that psk = H(esk, lsk). This psuedo 
ephemeral key is not stored. Hence, the adversary have to 
get both the lsk and esk to calculate the psuedo ephemeral 
key psk. Following the NAXOS protocol, few NAXOS trick 
based authenticated key exchange protocols are presented 
[4]. However, in NAXOS trick based protocols, the leakage 
of ephemeral key modelled in the eCK model seems not 
natural, as the eCK model leaks esk, while psk remains safe. 
In a work of Alawatugoda et al. [9], a NAXOS trick free 
eCK-secure AKE protocol is presented, namely the protocol 
P1. 

C. OpenSSL Cryptographic Library 

OpenSSL is an open source project which provides a 
commercial grade toolkit for the TLS and SSL protocol 
suits. It is a general purpose cryptographic library. This 
cryptographic library is implemented in C programing 
language, but it has wrappers in Java and some other 
languages as well. There are three variants of Diffie-
Hellman primitive used in the OpenSSL cryptographic 
library. 

• Anonymous DH: Diffie-Hellman primitive is used 
without authentication.  

• Fixed DH: Embeds the server's public parameter in the 
certificate. 

• Ephemeral DH: Uses one-time public keys. The 
authenticity is verified using signatures. Since the 
public keys are one-time values, compromising the 
long-term signing keys does not reveal the old session 
keys. Therefore, this protocol provides perfect forward 
secrecy. 

According to statistics from various cryptography related 
sources, a considerable large number of websites (more than 
4,545,900) rely on the security measures of the OpenSSL 
cryptographic library. Apparently, OpenSSL cryptographic 
library has a steady usage as well. One important factor to 
highlight here is that the highest number of websites among 
them, fall under the vertical of business related websites. 

Therefore, it is obvious that the OpenSSL cryptographic 
library has a significant place in today's Internet. 

D. Our Contribution 

In this work we implement the eCK-secure protocol P1 of 
Alawatugoda et al. [9] to be used with the widely using 
cryptographic library, the OpenSSL library. The OpenSSL 
implementations are widely used for the real-world security 
protocol suites, particularly Security Socket Layer protocol 
and Transport Layer Security protocol. As per our 
knowledge, this is the first implementation of an eCK-
securet key exchange protocol to be used for real-world 
communications. Thus, we open up the direction to use the 
recent advancements of cryptography for real-world Internet 
communications.  

II. MATERIAL AND METHOD 

In this section, key exchange security models and 
extended canetti-krawczyk models are presented. 

A. Key Exchange Security Models 

Researchers keep on constructing authenticated key 
exchange protocols, strengthening them against various 
attacks and vulnerabilities. The continuous growth of key 
exchange protocols created a necessity of a formal 
methodology to analyze their security. Therefore, in order to 
fulfill this necessity, computer scientists have introduced key 
exchange security models. 

Security models are designed in a way that they reflect 
present real-world attacks, and of course potential attacks 
that can exist in future.  
Components of a security model: 

• Definition:  abstraction of the algorithm. 
• Powers of the Adversary: Queries which the 

adversary is capable of performing to reveal 
information of protocol instances.  

• Security game (challenge): Order that the adversary 
uses the queries. 

• Security definition: Condition to the adversary to 
win the challenge. 

There is a set of queries which an adversary is allowed to 
use (powers of the adversary). The queries leak various 
secret values to the adversary. A protocol to be secure within 
the security model, the adversary's advantage of identifying 
the real session key of the target session from a random 
value (from the same distribution) has to be negligible. 

Researchers aim to construct security models which are 
capable of modeling maximum of possible known attacks 
mentioned below: 

• Implicit Key Authentication: assures that nobody 
other than the protocol participants calculates the 
session key. Such protocols are known as 
authenticated key exchange protocols. 

• Key Confirmation: assures that all the other protocol 
participants compute the session key. 

• Unknown Key Share (UKS) Security: no party P 
shares a session key with a party Q, believing that it 
is shared with some other party R.  

• Key Compromise Impersonation (KCI) Security: 
having the long-term secret key of a party P does not 

2206



 

 

make the adversary capable of impersonating other 
parties to P. 

• Forward Secrecy: an adversary who knows the long-
term secret keys of two parties cannot compute the 
past session keys between those two parties.  

Bellare-Rogaway (BR) [10], [11], Canetti-Krawczyk 
(CK) [12] and extended Canetti-Krawczyk (eCK) [8] are few 
of the widely used key exchange security models. Table I 
shows a comparison between the above three security 
models with respect to security features addressed by the 
security models. 

TABLE I [9] 
SECURITY FEATURES SUPPORTED BY BR, CK AND ECK SECURITY MODELS 

Security Features BR CK eCK 
Implicit key authentication yes Yes yes 
Key confirmation yes Yes yes 
UKS yes Yes yes 
KCI no No yes 
Forward secrecy (FS) no Yes Weak-FS 

B. eCK Model 

We now look at the eCK model of LaMacchia et al. [8]. 
Wcall principal to a party which involves in the protocol 
run. Each party has a pair of long-term public/secret keys, 
which are generated before the protocol run. Each instance 
of the protocol between any two principals is defined as a 
session.  

We model a session belongs to the principal as an oracle. 
∏

s
U,V is an oracle which represents the sth protocol instance 

between owner principal U and a partner principal V. When 
∏

s
U,V computes a session key it come to the accepted state. 

Any time a session can terminate without computing a 
session key. The information of whether acceptance or not 
publicly available. 

 1) Partnering: Legitimate protocol execution between 
principals V and U makes two partner sessions owned by V 
and U respectively. In order to define the partnership, we 
have used the notation of a session identifier (SID). The SID 
is the concatenation of messages exchanged between two 
intended principals with their identities. The SID of ∏

s
U,V is 

denoted by SIDsU,V = (comm1 || … || commn). Two oracles 
∏

s
U,V and ∏s’

V,U are partners if: 

• ∏s
U,V and ∏s’

V,U compute session keys (both oracles 
come to accepted state) SIDs

U,V = SIDs’
V,U (here s = s’). 

• ∏s
U,V and ∏s’

V,U  agree on the initiator of the protocol. 

2) Powers of the Adversary: The adversary A is an 
efficient algorithm that adaptively asks below queries. 

• Send (U,V,s,m): This query sends a message m to 
the oracle ∏s

U,V as sending from the oracle ∏s
V,U. 

∏
s
U,V will send to A the next message according to 

the protocol conversation. This query is also used to 
initiate a new protocol instance.  

• Session-Key reveal (U,V,s): If an oracle ∏s
U,V hold 

a session key, A gets to know it.  
• Ephemeral-Key reveal (U,V,s): Reveals the 

ephemeral keys of the oracle ∏
s
U,V to A. 

• Corrupt (U): A get all the long-term secrets of U. 
This query captures the UKS attacks, KCI attacks 
and forward secrecy. 

• Test (U,s): When A asks this query, the oracle ∏s
U,V  

chooses a random bit b ∈ {0,1} and if b = 1, the real 

session key is revealed to A, otherwise returns a 
random string. 

 3) Freshness: An oracle is fresh iff: 

• The particular oracle or its partner (if exists), it has 
not been asked to reveal the session key. 

• If partner exists, none of the following have been 
asked: 
a. Ephemeral-Key reveal (U,V,s) and Corrupt (U). 
b. Ephemeral-Key reveal (V,U,s’) and Corrupt (V). 

• If partner does not exist, none of the following have 
been asked: 
a. Corrupt (V). 
b. Ephemeral-Key reveal (U,V,s) and Corrupt (U). 

 4)  Challenge 

• Stage 1: A is capable of asking any of Session-Key 
reveal, Send, Corrupt and Ephemeral-Key reveal 
queries at will. 

• Stage 2: A asks a Test query to any oracle.  
• Stage 3: A continues asking queries again without 

violating the test session’s freshness. 
• Stage 4: A outputs its guess on the value b (lets name 

it as b`). A wins if the value b` = b. 

 5) Security Statement 

SuccA be the instance that the A wins the eCK challenge. 
A protocol (let’s say π) is secure in eCK model if there is no 
efficient A which is capable of winning the eCK challenge 
with non-negligible advantage.  

C. eCK-secure and NAXOS Trick Free AKE Protocol 

The protocol P1 of Alawatugoda et al. [9] is proven-
secure in the eCK model.  

Let G be a group of prime order q and generator g. After 
exchanging the public values both principals compute shared 
secrets (Z1, Z2, Z3 and Z4). Then the session key is computed 
as a random oracle combination of Z1, Z2, Z3 and Z4, which 
can be replaced by a hash function in the implementation. 
Table II shows the protocol diagram of protocol P1. 

In the protocol execution, for each party, the PI protocol 
needs 5 exponentiations and one random oracle 
computation, whereas the NAXOS protocol needs 4 
exponentiations and 3 random oracle computations. 

TABLE II 
PROTOCOL P1 [9] 

Alice                                                                                    Bob 

�
$

← ℤ�
∗ , 
 ← ��                                                             


$
← ℤ�

∗ , � ← �� 

                                                 Protocol Execution    

�
$

← ℤ�
∗ , � ← ��                             

�����,�
�⎯⎯⎯�                          �

$
← ℤ�

∗ , � ← �� 

                                                        
�� ,!
"⎯⎯# 
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( ← �� 
$) ← ��, $* ← �'                                                                 $)

( ← 
�, $*
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+ ← ,- $%, $&, $), $*, 
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, �3        +
← ,- $%

( , $&
( , $)

( , $*
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./01, �, �2
, �3 

K is the session key 

1) Technical Preliminaries for security Proof:  

Definition 1 (Decision Diffie-Hellman (DDH) Problem) 

Given (ga, gb, gc) for a, b 
$

← ℤ�, the DDH problem is to 
distinguish whether c = ab or not. 
Definition 2 (Gap Diffie-Hellman (GDH) Problem) 

Given (ga, gb) for a, b 
$

← ℤ�, the GDH problem is to find 
gab accessing an oracle  that solves the DDH problem.  

2) Security of the Protocol P1: 

If H is a random oracle function and the gap Diffie--
Hellman problem is hard in the group G, then protocol P1 is 
secure in the eCK model. 

III. RESULT AND DISCUSSION 

A. Implementation of Protocol P1 

The implementation of the Diffie-Hellman protocol is 
found under the directory crypto in the OpenSSL 
cryptographic library. While implementing the protocol P1, 
we have kept the original Diffie-Hellman key exchange 
protocol implementation intact. Our new implementation has 
been done as a separate key exchange protocol for the 
OpenSSL cryptographic library. We have provided our 
implementations in check.c, gen.c, key.c, and p1.h files. 

Fig. 1  P1.h: Structure used in the execution of protocol P1. 
 

The file p1.h defines the structure which is used to store 
all the inputs and outputs of computation during the protocol 
execution (Fig. 1) 

 
Fig. 2 check.c. 

 
check.c (Fig. 2) contains two functions that check all the 

parameters calculated during the protocol execution 
including p, q and confirm that they are likely enough to be 
valid. If any of the parameters are invalid, a flag is set 
indicating the reason for being invalid. The error code values 
are updated if any problem is found.  

 

 
Fig. 3 gen.c.  

 
gen.c (Fig. 3) contains a function that generates 

parameters p and q. The function 
DH_generate_parameters_ex generates Diffie-Hellman 
parameters, and stores them in the structure defined in p1.h. 
The pseudo-random number generator must be seeded prior 
to calling the function DH_generate_parameters_ex. 

 

 
Fig. 4 key.c. 

 
key.c (Fig. 4) computes the shared secret keys (Z1, Z2, Z3, 

Z4), from the long-term or ephemeral private key (a/b or x/y 
respectively) in *dh and the other party's long-term or 
ephemeral public value (A/B or X/Y respectively) in 
*pub_key, then stores it in *key. Finally, SHA-256 is used 
to calculate the session key using the above-computed Z1, Z2, 
Z3, Z4 values.  

 
B. Deploying the Protocol P1 in a client/ server 

environment 
We establish an OpenSSL client connection with the 

server running on localhost port 44330, using the ECK 
cipher suite, which is created by us. The ECK cipher suite 
uses the protocol P1 implementation for key exchange. Fig. 
5 shows the server certificate (the cipher suite ECK is 
highlighted). 
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Fig. 5 Server certificate (the cipher suite ECK is highlighted) 

 
Following command is used to run the client: 
$openssl s_client -connect localhost:44330 -cipher ECK 

 
 

 
Fig. 6 Client/ Server connection 

 
Then the following command is used to run the server: 
$openssl s_server -key key.pem -cert certificate.pem -accept 44330 -www 

2209



 

 

 
 
 

 
Fig. 7 shows generation of RSA private key certificate for connecting with the local server. 

 

IV.  CONCLUSIONS 

In this work we implement the protocol P1 (eCK-secure 
and NAXOS trick free authenticated key exchange protocol) 
to be used with the widely-used OpenSSL cryptographic 
library. OpenSSL implementations are widely used with the 
real-world security protocol suites, such as Security Socket 
Layer and Transport Layer Security. According to our 
understanding, this is the first OpenSSL implementation of 
an eCK-secure key exchange protocol. Thus, our work opens 
up the direction to use the recent advancements of 
cryptography for betterment of the real-world Internet 
communication. 

As a future work, we aim to implement a leakage-resilient 
AKE protocols [9], [13]-[15] for OpenSSL, which is 
resilient to wide range of side-channel attacks, in addition to 
eCK security. 
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