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Abstract— In this study, the correlation between oil palm fresh fruits bunch (FFB) appearance and its oil content (OC) was explored. 
The FFB samples were recorded from various distance (2, 7, 10, and 15 m) with different lighting spectrums (Ultraviolet: 280-380nm, 
visible: 400-700nm, and Infrared: 720-1100nm) and light intensities (600watt and 1000watt lamps). The FFB images were segmented 
and its color features were subsequently extracted to be used as input variables for modeling the OC of the sample. Twenty models 
were developed, one for every experiment-setup arrangement, using the MLP-ANN methods. Statistical engineering software was 
used to create the models. The number of FFB samples in this study was limited. Consequently, only five out of 20 developed models 
were selected and consider as valid to predict the FFB’s OC. The five models were namely UV-15m, UV-10m, UV-2m, Vis1-7m, and 
IR1-10m. The coefficient of correlation for each model when validated was 0.962, 0.897, 0.993, 0.993, and 0.401 respectively. For bias 
and error, these selected models have root-mean-square error (RMSE) of 2.385, 3.707, 2.868, 3.795, and 6.374. The best of five 
selected models was developed for predicting FFB’s OC in Vis1-7m arrangement, i.e. recording FFB images under visible light with 
600watt lamps from 7 m of distance. 
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I. INTRODUCTION 

Oil palm crops (Elaeis Guineensis Jacq.) is among the 
principal commodities for Indonesian industry that support 
the country economy [1]. Its absorb millions of labors in all 
of its processes chains [2], from primary products to all the 
derivatives. This sector drives the economic growth of this 
nation and contributes as one of foreign currency generator 
for the country [3]. Furthermore, Indonesia exports of oil 
palm products and its derivatives, make up 77.13 % of the 
country agricultural sub-sector values in 2013 [1]. However, 
compared to the closest competitor, i.e. Malaysia and 
Nigeria [4], the productivity of oil palm in Indonesia is still 
by far left behind, due to mishandling the crops. 

Currently, Indonesia only able to produce 1000 kg of 
crude palm oil (CPO) per hectare, compared to 1400kg by 
the Malaysian [5]. The CPO obtained by processing the oil 
palm fresh fruits bunches (FFBs) in mills. The yield and 
quality of the CPO will depend on the FFBs ripeness being 
processed. For example, processing raw or unripe FFBs will 

result in low CPO yield [6], while milling the over-ripe 
FFBs will produce low quality CPO [7]. Therefore, the FFBs 
should be processed when they reached the optimum 
ripeness [8]. 

Unlike the climacteric fruits [9], where the ripening 
process still continue after the fruits harvested [10], the 
physiological development [11] of oil palm FFB ceased 
when it was harvested, and the oil accumulation in the fruits 
mesocarp and kernel will subsequently stopped [12]. 
Harvesting will also trigger degradation process of the oil in 
fruits due to the transformation of oil into free fatty acids 
(FFA) [13]. Therefore, the FFBs should be transported into 
processing mills directly after harvest. 

Based on this basis, increasing the productivity of oil 
palm in Indonesia can be achieved, among other, by 
harvesting the FFBs at the correct ripeness stages, where oil 
in fruits reached its maximum amount [14]. Moreover, 
harvesting the FFBs in optimum ripeness will ensure the 
CPO produced by mills has the prime quality, which 
correspondingly to the selling price of this product [15].  

314



In order to get FFB at ideal ripeness upon harvest, the 
labors that performed the harvest should correctly identify 
the FFB on trees. This proved to be arduous and intricate 
tasks [16]. First, most oil palm plantations in Indonesia 
employed unskilled laborers with little or no education in 
order to pay wages at minimum amount [2]. Secondly, the 
incentive will be added to the labors wages using 
commissions system, based on the number, or the total 
weight of FFBs, harvested every month by the worker [3]. 
Therefore, in current practice, labors will try to harvest as 
many FFBs as possible with no regard to the ripeness stages 
of the FFBs harvested. This premature harvesting practice 
results in low yield of CPO per hectare since the oil in fruits 
has not yet reached the optimum level [17]. Consequently, 
there is an urgent need to find method for correctly estimated 
the ripeness of FFB prior to harvest. Moreover, this method 
should have the ability to perform assessment from a long-
range in non- destructive manner. 

Development in detection technology has enabled the 
assessment of intact fruits on trees as well as differentiations 
between ripe and non-ripe fruits [6-8]. The appearance of 
FFB, mainly the fruits color can be used to determine its 
ripeness, based on chromaticity analysis [17]. There are 
some correlations between the fruits hue and its oil content, 
as reported by Ismail et al. [18]. Using a quadratic poly-fit 
model, correlation between fruits color (hue) and its oil 
content can be established with coefficient of correlation of 
95.41% [18]. Similar method was carried out by Razali et al. 
[15], using a statistical F-test and Annova.  The FFBs 
sample’s oil content were correlated with its color, measured 
in RGB color channel and HSI values from recorded image 
[19]. The results indicated that the value of hue of FFB 
image has a significant correlation level with its oil content. 
Using a quadratic poly-fit modeling, the correlation of hue 
from image and FFB oil content can be established with a 
R2 of 0.884. Compared with the report from Ismail et al. 
[18], this result was less accurate, indicating that the 
selection of statistical analysis to develop the model plays a 
significant influence to the accuracy of the model. The third 
study, reported by Ismail and Hudzari [20], used the hue 
color of FFB images to predict the timing of the harvest. A 
triangulation method was used to predict the harvest time of 
the FFB under consideration, by comparing its hue data with 
the calibration database. The developed method can predict 
the FFB harvest time with a success rate of 92.9%. The same 
method was validated by Razali et al., [15], with correlation 
of 92.39%. Nonetheless, all these previous studies have 
many drawbacks, such as limited assessment distance [21], 
and the lack of incoming light spectrum segmentation by 
means of photo-selective-transitive filters to highlight the 
optical properties of FFB studied [22]. 

Based on these, this study will established a non-
destructive assessment technique for determining the oil 
content of intact FFB on trees, based on camera vision and 
optical auxiliary devices. Photo-selective-transitive filters 
will be used in this study to select the best optical properties 
of FFB (i.e. fruits color) for modeling its oil content. The 
technique will substitute the observation made by the 
harvester labor, with higher accuracy and consistency. In 
addition, using the optical auxiliary devices, this technique 

has the capability to observe the FFB under consideration 
from a longer distance (15m), compared to previous studies. 

II. MATERIALS AND METHODS 

This study was carried out on May 2013, in PT. Nirwana 
Alam Lestari, a subsidiary oil palm plantation of PT. Astra 
Agro Lestari, Tbk. The study was done in the Nanga Bulik, 
Pangkalan Bun, Central Kalimantan, Indonesia (2 ° 05 ' N 
and 111 ° 15 'E). Geographically, the location was 20-50 
meter above sea level, a hilly area with gradient of less than 
25%. The local rainfall was between 2000-2500 mm / year, 
with daily air temperature of 23-32° C, and humidity of 81 - 
92%. The FFBs samples were from cv. Marihat of 8 years 
old trees.  

To select a FFB, first, the bunch was assessed by a panel 
of three observers. The FFB considered as ripe based on the 
observation of its color and detached fruitlets. If the panel 
agrees that the FFB under consideration has reached 
optimum ripeness, then the bunch selected as a sample. The 
camera was then positioned on the observer’s spots, and its 
lens was directed toward the selected FFB sample on tree to 
record its image. The distance between the sample and 
camera lens was measured using a digital laser ranging 
(DLR130K, Bosch, Germany) with accuracy of 1 mm. the 
sunlight intensity was measured using a digital light intensity 
meter. Based on the light intensity, the camera was set 
accordingly, including the shutter speed, diaphragm opening, 
ISO number, and white balance. The lens used on camera 
has 30 times optical magnification capability, and when 
recording the FFB sample, its focal length was set so the 
camera field of view cover anterior section of the FFB with 
an area of 125 x 125 mm. The camera (EOS 60D, Canon, 
Japan) sensor then records the FFB image using 16 million 
pixels resolution. The FFB images were recorded in three 
replications. Subsequently, the FFB was harvested and 
brought to the laboratory to perform indoor photogrammetry, 
and chemical analysis as described in Cherie et al. [23]. 

The means of RGB and HSI data from FFB images were 
extracted using image processing software developed using 
the native Win64 advanced programming interface (API). 
The color data were then plotted into a graph and correlated 
with the sample’s oil contents, as measured in laboratory. 
The value of color variable which strongly correlated with 
the changes of sample’s oil content was selected for harvest 
determination of the FFB. The corresponding color variable 
will be used as the threshold value to decide if the FFB 
should be harvested [24].  

For modeling the oil content of FFB’s sample, the 
extracted color data from FFB’s images were analyzed using 
statistical engineering software (SPSS 20.0, IBM, USA), by 
employing multi-linear-perceptron artificial-neural-networks 
analysis (MLP-ANN) [21]. The MLP-ANN method was 
selected based on its capability to predict correlations 
between complex and variety data where its variables have 
abstracts covariate. In addition, the ANN analysis has an 
excellent capability and flexibility for data processing, and 
user friendly features [25]. The ANN analysis using the 
MLP was selected in this study because it offer options for 
generating model that can predict oil content of FFB based 
on different types of input variables and multi-layer of 
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coefficients [26]. The oil content model was then validated 
by comparing its results with laboratory analysis.  

The selected input variables for the MLP-ANN modeling 
in this study were the color features extracted from the 
FFB’s Images. The inputs were comprised of 15 variables, 
namely means of R, G, B, and H, S, I; the index values of R, 
G, and B; and the color ratio of R to G, R to B, G to B, G to 
R, B to R and B to G. The FFB’s oil contents measured in 
laboratory analyses were used as dependent variables, or 
target output. The samples data were divided into two groups; 
the first group consists of 70% of data were used for training 
and model calibration, and the rest 30% of remaining data 
were used to validate the model. The MLP was set to 
produce 10 hidden-layers which produced best correlation 
model. The  hyperbolic-tangent activation function was set 
during model calibration, in order let the software to 
automatically calculate the bias and weighted the input 
variables in the algorithm, in order to produced oil content 
prediction (OCP) model with the best coefficient of 
correlation (R2 close to 1). The hidden layers produced by 
the software contain unobservable network nodes (units). 
Each hidden unit is a function of the weighted sum of the 
inputs. The function is the activation function, and the values 
of the weights are determined by the estimation algorithm. 
The Hyperbolic-tangent function has the form of [25]: 

   (1) 

Where c is the hidden unit and  is the weighted sums 
of units in a layer. 

The resulting model, developed by activating the identity 
function, was fed-back to the output target (oil contents) 
with an adjusted normalized correction value of 0.02. The 
identity function has the form of [25]: 

     (2) 
The input variables in this analysis were adjusted and 

normalized. They were subtracted by the minimum value 
and divided by their range using the equation of [25]: 

   (3) 

Where  is the adjusted normalized value of the 

input variable, x is the value of input variable, is the 

minimum variable value, and is the maximum variable 
value.  

The input variables used for calibrating the model were 
transformed to the range of (–1, 1) using Eq. 3, to fit the 
Hyperbolic-tangent algorithm.  

After adjusted normalized, the input variable values fall 
between -1 and 1. This is the required rescaling method for 
scale-dependent variables if the output layer uses the 
hyperbolic tangent activation function [25]. The correction 
option specifies a small number of ε that is applied as a 
correction to the rescaling formula; this correction ensures 
that all rescaled dependent variable values will be within the 
range of the activation function. In particular, the values -1 
and 1, the which occur in the uncorrected formula when x 
takes its minimum and maximum value, define the limits of 
the range of the hyperbolic tangent function but are not 
within that range [25]. The corrected formula is [25]: 

  (4) 

Where the corrected is adjusted normalized value of 
the input variable; and ɛ is the correction value of 0.02.  

It takes real-valued arguments and returns them 
unchanged. When automatic architecture selection is used, 
this is the activation function for units in the output layer if 
there are any scale-dependent variables.  

When calibrating the oil content model, the MLP-ANN 
algorithm used batch training type, where it used 
information from all records in the training dataset. Batch 
training is often preferred because it directly minimizes the 
total error; however, batch training may need to update the 
weights many times until one of the stopping rules is met 
and hence may need many data passes. It is most useful for 
"smaller" datasets. Updating the synaptic weights can be 
performed only after passing all training data records. 

Optimization algorithm is the method used to estimate the 
synaptic weights in this study by applying the scaled 
conjugate gradient, which can be performed only in batch 
training types. The optimization algorithm allowed the 
software to fine-tune the estimation model.  

The scaled conjugate gradient algorithm can be used by 
specify the initial value of the lambda parameter to 
0.0000005, and the sigma parameter to 0.00005. To avoid 
the local minimum loop, simulated annealing is used to 
weight vectors which randomly generated by the software. 
With the finding of the global minimum, during application 
of the optimization algorithm, the weight initialization and 
automatic architecture selection can be performed by 
specifying the number for the interval center and the interval 
offset greater than 0. 

The synaptic weights results display the coefficient 
estimates that show the relationship between the units in a 
given layer to the units in the following layer. The synaptic 
weights are based on the training sample even though the 
active dataset is partitioned into training and validation data. 

The model summary displays a summary of the neural 
network results by partition and overall, including the error, 
percentage of incorrect predictions, the stopping rule used to 
stop training, and the training time. The independent variable 
importance analysis performs a sensitivity analysis, which 
computes the importance of each predictor in determining 
the neural network  

Stopping rules determine when to stop training the neural 
network if there is no decrease in error after the specified 
number of steps fulfilled. 

III.  RESULTS AND DISCUSSION  

From the experiment, the results of measurements of 
FFBs samples in laboratory, it was found that the amount of 
oil contained in the fruit mesocarp compared to bunch 
overall weight, ranged from 13 to 26%. The amount of oil in 
the fruits mesocarp can be explained by its color [26], which 
correlated to the progress in the physiological developments 
of the fruit.  In this study, the FFB with lower color intensity 
generally have less oil content (Fig. 1) and vice versa [27]. 
Differences of colors intensity in the recorded image of FFB 
were influenced by the light spectrum passes the camera lens 
filters. When FFB image recorded using photo-selective 
filter for Ultraviolet (UV) light, and passes lights with 
wavelength range between 280 and 360nm into the camera 

316



sensor, the RGB colors in the FFB images have almost 
uniform value for sample with oil content 13-18%. This 
trend was observed for FFB images recorded from 2, 7, 10, 
and 15 m. Similarly, when the images were recorded using 
photo-selective filter for visible (400-700nm) and IR (720-
1100nm) lights, with illumination intensity of 6000 lux 
(Vis1 and IR1), the RGB colors of FFB with oil content 
between 13-18% were relatively equal. However, when 
images recording performed in higher light intensity 
(10000lux), the results showed nonlinear correlation 
between images color and sample oil contents, both for 
visible and infrared (Vis2 and IR2) filters. Nonetheless, the 
correlation cannot be explained by a linear regression, since 
the colors change irregularly. Based on its physiological 
development, the FFB samples in this group were still in the 
maturing phase (Fig. 1), were accumulation of oil and 
pigments in mesocarp progressed slowly. 

However, significant changes in colors were observed 
when the sample oil content reached 21.6%. The changes of 
colors can be seen in FFB images features, recorded in all 
treatments except Vis2 and IR2 (Fig. 1). The changed 
strongly suggest that the physiological development of the 
FFB has entered the second stages [28], the ripening phase. 
In this phase, the oil and pigments accumulation in the fruits 
mesocarp occurred progressively, and the rate of colors 
change as recorded in the image were preponderant 
compared to FFB in the earlier stage The progressive 
accumulation of oil and pigments in the fruits mesocarp 
produced a more saturated color on the FFB appearance, and 
when its images was recorded, the RGB colors in images 
were lower, due to higher lights absorption by the fruits skin. 
At this point, the value of R, G, and B of the FFB images 
reach the minimum values in most treatments, except in Vis2 
and IR 2, as well as the FFB images recorded in Vis1 
treatment from 7m. This unique feature of FFB when its oil 
content reached 21.6% can be used as a reference that the 
FFB may be harvest immediately. The similar results had 
been reported by Cherie et al. [23]. 

As the oil in the fruits mesocarps progressed and reach 
maximum level, the FFB entered the third stages of its 
development, and the senescence of fruits commence. In this 
stage (Fig. 1), the oil in the mesocarp started to decay and 
disintegrate into the free fatty acid (FFA). FFB in this 
condition is considered as overripe, and undesirable for 
processing, since excessive FFA in its oil may deteriorate the 
whole quality of CPO in the processing line. The degrading 
process of the FFB will continue until most of the outer 
fruits in the bunch detached, and the FFB start producing 
rotten odor. In this study, this phase observed when the oil 
content in the FFB samples accumulated to 23.9%, indicated 
by the shift of RGB color trend in FFB images towards it oil 
content. Compared to the previous physiological stage, the 
trend of color change in FFB images oriented to the opposite 
direction. 

Although the second stages of FFB development (ripening) 
can be observed through its color alteration, estimating the 
oil content correctly of FFB cannot be performed solely 
based on this information. The correlation between the color 
features in FFB images and its oil content were so poor their 
relationship cannot be explained through simple regression 
analysis. Furthermore, the color features of images from 

different FFB samples may have identical values, although 
their oil contents and development stages were different. 
Therefore the abstract relationships between the FFB oil 
contents and its color features were modeled through a 
neural network modeling analysis, namely the multi-linear-
perceptron artificial-neural-network. The models developed 
based on the FFB images recorded by camera-vision with 
different lighting setups and recording distances. The color 
features of the images were extracted and transform to 
generate 15 input variables for training the models.  

 
(a) 

 
(b) 

 
(c) 

Fig. 1  The graphs explained the relationships between RGB values from 
FFB images and their mesocarp oil contents. The images of the FFB were 
recorded from 2, 7, 10, and 15 m (different line styles in the graphs) using a 
camera-vision with three different photo-selective filters, namely (a) 
UV:280-380nm, (b) Vis1:400-700nm and (c) IR1:720-1100nm under 
6000lux lights.  

 
To develop the model, 70% of data from the samples were 

used in model calibrations, where 15 colors features from the 
images were extracted and used as input variables. The 
developed models can predict the oil content of intact FFBs 
on trees with high classification accuracy. The MLP-ANN 
methods used for developing the models can explained the 
complex and abstracts relationships between the input 
variables (image’s color features) and the oil content of the 
FFB samples. The output model analysis by the statistical 
engineering software provides several information of the 
model. The network structure displays the summary 
information about the ANN analysis. The information 
described including the dependent variables, number of input 
and output units, number of hidden layers and units, and 
activation functions. A diagram produced by the software 
displays the complete network diagram. However, since the 
number of covariates and factor levels used were substantial, 
the diagram becomes more difficult to interpret and was not 
display in the manuscript. The Synaptic weights of the 
model explained the coefficient estimates, indicating the 
relationship between the units in a given layer to the units in 
the following layer. The Network Performance of the model 
indicated an acceptable accuracy, both in model calibration 
and validation. In summary, the FFB’s OCP model 
developed by means of MLP-ANN produced decent error or 
incorrect predictions, and the average overall relative error 
(relative to the mean model) is acceptable. The bias between 
the actual and prediction value of oil content explained in the 
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residual prediction chart, where the residual-by-predicted-
value chart for each scale-dependent variable was described. 

The performance of OCP model upon calibration and 
validation explained in Table I and II respectively. For every 
experiment setup, one model was developed, and in total 
there were 20 models developed for predicting the FFB oil 
content, based on its recorded image. Upon the calibration, 
OCP models for all experiment setup performed 
comprehensively, and all coefficients of correlation (R2) 
were above 0.99. The best model obtained when the FFB 
images were recorded under UV and Vis2 lights, at 15 and 
10 meter respectively. Both models have RMSE of 0.05 and 
0.047 respectively. Others models performed similarly, 
where RMSE were significantly below 0.5.  

TABLE I  
THE CALIBRATION RESULTS FOR FFB OCP MODELS DEVELOPED WITH MLP-

ANN USING 15 COLOR FEATURES FROM RECORDED FFB IMAGES. THE 

RESULTS INDICATED COEFFICIENT OF CORRELATION AND RMSE OF MODELS 

FROM ALL EXPERIMENT SETUPS. 

Lighting  
Setup 

Recording 
distance 

Coefficient of 
Correlation (R2) 

Model 
RMSE 

UV 

15 1 0.051 
10 0.999 0.192 
7 0.999 0.075 
2 0.999 0.165 

Vis1 
600W 

15 0.999 0.074 
10 0.999 0.192 
7 0.999 0.068 
2 0.999 0.142 

Vis2 
1000W 

15 0.999 0.179 
10 1 0.047 
7 0.999 0.062 
2 0.999 0.070 

IR1 
600W 

15 0.999 0.069 
10 1 0.071 
7 0.999 0.067 
2 0.999 0.077 

IR2 
1000W 

15 1 0.133 
10 0.999 0.066 
7 0.999 0.149 
2 0.999 0.446 

 
In order to test the model consistency, the rest 30% of the 

samples were validated using the developed models. The 
validation results will show which model is best-fit for in-
field operations. The results showed that of 20 models 
developed using the MLP-ANN method; several models 
obtain high coefficient of correlation (R2), above 0.95. 
However, this parameter cannot be solely used as the main 
indicator to select the model. Other parameter, such as the 
RMSE, and residual should be considered to avoid selection 
of over-fit model which may produce false-positive or true-
negative results. Considering RMSE and residual prediction 
value may lead to better choice of models that best-predict 
the FFB oil content. 

Based on Table II, there are five models which produce 
low RMSE and high R2. The first model is for FFB’s OCP 
with UV lighting and 15 m image recording distance. This 
model developed based on the extracted color features of the 
recorded FFB, and included all the 15 color features as input 
variables. To develop the model, the engineering statistical 
software employed 10 hidden layers to explain abstract 

correlations and variance among these variables, as well as 
their influence to the model results. The coefficients of input 
variables in every hidden layer, as explained in Table II, 
indicated how strong the corresponding variables influenced 
oil contents prediction model in this experiment setup. The 
model also incorporate biases as additional input variable, in 
order to enable accuracy and consistency enhancement. The 
biases improved coefficient of correlation of the model, and 
at the same time, minimize the RMSE from the validation 
results.  

TABLE II 
THE VALIDATION RESULTS FOR FFB OCP MODELS BASED ON 30% 

SAMPLING DATA EXCLUDED IN MODEL CALIBRATIONS. THE RESULTS 

INDICATED COEFFICIENT OF CORRELATION AND RMSE OF MODELS FROM 

EACH EXPERIMENT SETUP 

Lighting 
Setup 

Recording 
distance 

Coefficient of 
Correlation (R2) 

Model 
RMSE 

UV 

15 0.962 2.385 
10 0.897 3.707 
7 0.582 2.603 
2 0.993 2.868 

Vis1 
600W 

15 0.722 8.301 
10 0.931 15.510 
7 0.993 3.795 
2 0.270 9.760 

Vis2 
1000W 

15 0.201 2.302 
10 0.401 9.289 
7 0.944 4.135 
2 0.871 7.211 

IR1 
600W 

15 0.546 13.840 
10 0.940 6.374 
7 0.995 4.046 
2 0.799 18.252 

IR2 
1000W 

15 0.688 2.391 
10 0.392 6.262 
7 0.891 6.632 
2 0.501 26.107 

TABLE III 
PARAMETERS ESTIMATED TO MODEL FFB OIL CONTENTS USING MLP-ANN 

METHOD BASED ON THE FFB RESPOND WHEN ITS IMAGES WERE RECORDED 

FROM 15 M UNDER UV LIGHT SPECTRUM 

Predictor 

Predicted 

Hidden Layers 
Output  
Layer 

H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) OC 
Input 
Layer 
Coefficient 
Factors 

(Bias) .402 -.417 -.467 .076 -.486 .349 .147 .253 -.456 .724   
R .446 -.084 -.194 -.213 .559 .168 -.030 .096 .398 .364   
G .407 -.181 .408 .134 -.097 -.351 -.150 .359 -.347 .573   
B -.087 .165 -.472 .346 -.392 .058 .369 .493 -.175 -.115   
H .056 -.220 -.480 .368 .443 -.014 .387 .530 .365 -.172   
S .217 .543 .043 -.389 .646 .285 .428 -.487 -.097 .276   
I .102 .562 .175 -.158 .778 -.237 -.060 -.423 -.256 -.055   
RI -.505 .418 -.188 -.101 .418 -.236 .233 .415 .240 .537   
GI .263 -.409 .641 -.163 -.082 .299 .546 -.422 -.066 .425   
BI -.448 .369 -.238 -.016 -.068 -.021 .344 .170 -.287 -.042   
RG -.158 .364 -.237 .115 -.154 .004 -.279 -.053 -.242 .541   
RB .102 .124 .510 -.155 -.056 .196 -.225 .401 -.275 .572   
GB -.422 -.121 .370 .176 -.260 -.279 -.079 -.392 -.318 -.304   
GR .361 .076 -.428 -.245 -.007 .014 .142 -.142 .451 -.198   
BR .440 .102 -.150 -.313 -.176 .070 -.208 -.297 .455 .040   
BG .247 -.014 -.262 -.334 .147 .020 -.174 -.352 -.235 -.549   

Hidden 
Layer 
Coefficient 
Factors 

(Bias)                     .132 
H(1)                     -.186 
H(2)                     -.686 
H(3)                     .572 
H(4)                     .205 
H(5)                     -.769 
H(6)                     .131 
H(7)                     .112 
H(8)                     .333 
H(9)                     .366 
H(10)                     -.850 
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The model performance upon calibration and validation 
explained in Fig. 2a and 2b respectively. Upon validation, 
the model predicted the FFB oil content of the sample above 
its actual value, as measured by laboratory analysis. This 
result indicated a false-positive offset of the model and 
showed that calibration of the model produce an over-fit 
model. This difference of model performance between the 
calibration and validation commonly occurred when using 
different type of samples data.  This phenomenon possibly 
caused when this prediction model was built with limited 
number of samples. However, since the differences of 
RMSE and coefficient of correlation upon model calibration 
and validation was narrow (P<0.05), the models deviation is 
still within the tolerance limit, and therefore, this developed 
model can be accepted since it considered producing high 
accuracy and consistency. 

 
(a)   (b) 

Fig. 2 The FFB sample’s OCP based on model calibration (a) and prediction 
(b) displayed in scatterplot graphs. The graphs represent model performance 
for predicting FFB oil content based on its images when recorded from 15m 
under UV light spectrum. 

TABLE II 
PARAMETERS ESTIMATED TO MODEL FFB OIL CONTENTS USING MLP-ANN 

METHOD BASED ON THE FFB RESPOND WHEN ITS IMAGES WERE RECORDED 

FROM 10 M UNDER UV LIGHT SPECTRUM  

Predictor 

Predicted 

Hidden Layer 
Output  
Layer 

H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) OC 
Input 
Layer 
Coefficient 
Factors 

(Bias) -.382 -.516 .076 -.376 .051 -.102 -.315 -.102 .263 .481   
R -.218 .321 .238 -.089 .556 -.513 -.275 .292 .532 .186   
G .104 -.291 -.301 -.377 .357 .210 -.463 .244 .151 -.477   
B .518 -.455 -.392 -.339 .146 -.062 -.182 -.243 -.309 -.648   
H -.420 .336 .193 -.437 .479 .396 -.404 .028 -.189 -.251   
S -.163 .250 -.289 -.055 -.667 -.311 -.114 .214 -.072 .231   
I -.433 .202 .431 .046 .700 -.168 .380 .145 -.496 .034   
RI .075 .021 -.502 .356 .459 -.100 -.071 .105 .424 .369   
GI .392 .283 .124 .565 -.156 -.418 -.344 .272 .282 -.575   
BI .258 -.293 -.197 .186 .156 .147 -.029 -.162 .232 .145   
RG .386 .422 .447 .291 -.306 -.302 -.277 -.007 -.250 -.123   
RB -.083 .260 -.078 .297 -.168 -.279 -.364 -.144 .247 -.317   
GB -.338 -.422 -.516 .438 .409 -.303 .330 -.349 -.202 .086   
GR -.430 .080 .483 -.311 -.274 -.339 -.327 -.342 -.064 -.596   
BR .285 .206 -.003 .169 -.500 .447 .335 .076 -.159 .308   
BG -.506 -.174 -.059 -.288 .349 .115 .011 .366 .056 .428   

Hidden 
Layer 
Coefficient 
Factors 

(Bias)                     .473 
H(1)                     -.280 
H(2)                     -.225 
H(3)                     .137 
H(4)                     -.526 
H(5)                     -.718 
H(6)                     .240 
H(7)                     .427 
H(8)                     .090 
H(9)                     -.192 
H(10)                     -.663 

 
The second selected model is for FFB’s OCP with UV 

lighting and 10 m image recording distance. This model 
employed all extracted color features from FFB images, and 
included these features as predictor input. The model 

developed by the engineering statistical software has 10 
hidden layers to explain correlations, variance, and influence 
of variables to the established model. Variables coefficients 
in hidden layers were explained in table 4. Model 
incorporated biases, and its accuracy and consistency 
enhanced. Low RMSE was observed in model when it was 
validated using second set of data, excluded when 
developing the model. 

The model performance upon calibration and validation 
explained in Fig. 3a and 3b respectively. Upon validation, 
this model also predicted the FFB oil content of the sample 
above its actual value, thus an over-fit was indicated in this 
model, and as the results, false-positive and offset was 
observed in the validation results. Nonetheless, model 
RMSE and coefficient of correlation were still fall within the 
tolerance limit (P<0.05), thus this is considered as valid 
model. Model validations produce R2 of 0.897 with RMSE 
of 3.707 

 
(a)   (b) 

Fig. 3. The FFB sample’s OCP based on model calibration (a) and 
prediction (b) displayed in scatterplot graphs. The graphs represent model 
performance for predicting FFB oil content based on its images when 
recorded from 10m under UV light spectrum. 

TABLE V 
PARAMETERS ESTIMATED TO MODEL FFB OIL CONTENTS USING MLP-ANN 

METHOD BASED ON THE FFB RESPOND WHEN ITS IMAGES WERE RECORDED 

FROM 10 M UNDER LOW POWER (600WATT) IR LIGHT  

Predictor 

Predicted 

Hidden Layer 
Output
Layer 

H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) OC 
Input 
Layer 
Coefficient 
Factors 

(Bias) .263-.060 .498 .070 .052-.353-.012.083 .592 -.386  
R -.499 .571-.398 .118-.152-.540-.106-.122-.942 -.880  
G -.250 .411-.125-.630 .480-.229 .483-.133-.604 .005  
B .062 .544-.482-.108-.079-.676-.130-.439-.244 -.656  
H -.103 .741-.814 .174 .085 .208-.219-.221-.164 -.510  
S .145.687-.654 .411-.193-.003 .217-.110-.632 -.260  
I .103 .520 .021-.245-.191 .139 .071.232-.205 -.650  
RI .184-.033 .109 .618 .020 .392 .448.311 .375 -.562  
GI .148-.646 .512-.366-.579 .574 .431-.338 .597 .662  
BI -.398 .005 .030-.491-.177-.056 .330.231-.420 -.481  
RG -.134-.004-.539-.297 .586 .100 .267.205-.383 -.458  
RB -.104 .339-.320 .037 .813-.562-.152.194 .134 -.462  
GB .305 .035 .213-.231-.073 .135 .423 .004 .445 -.044  
GR -.304-.266-.083 .133 .069 .577 .043-.290 .100 -.050  
BR -.289 .145-.135-.481 .036 .128 .487-.055-.517 -.061  
BG .228 .388-.553 .438 .320 .105-.410-.213 .067 -.235  

Hidden 
Layer 
Coefficient 
Factors 

(Bias)                    .302
H(1)                     -.201
H(2)                     1.010
H(3)                     -1.443
H(4)                     .143
H(5)                     -.113
H(6)                     -.539
H(7)                     -.030
H(8)                     .079
H(9)                     -1.529
H(10)                     -1.243

 
The third selected model successfully developed to 

predict FFB’s OC using lower intensity IR lighting (600 watt) 
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with 10 m recording distance. The model used 10 hidden 
layers and 15 color features from its image as input variables. 
These variables extracted from the image using image 
processing software, and the model itself was developed 
using MLP-ANN methods, as built-in part of the engineering 
statistical software. Parameters in the model, i.e. coefficients 
of hidden layers, were explained in table 5. 

The model performance upon calibration and validation 
explained in Fig. 4a and 4b respectively. In the validation, 
model predicted the FFB oil content below its actual value. 
This model show an over-fit behavior and true-negative 
prediction, as well as offset was observed in the validation 
results. Although model’s coefficient of correlation (R2) 
only produce low relationship (0.401) between actual oil 
content of the FFB and its prediction results, the RMSE of 
the model (6.374) was still fall within acceptance limit 
(P<0.05), thus this model considered as valid.  

 
(a)   (b) 

Fig. 4. The FFB sample’s OCP based on model calibration (a) and 
prediction (b) displayed in scatterplot graphs. The graphs represent model 
performance for predicting FFB oil content based on its images when 
recorded from 10m under 600watt IR light. 
 

The Fourth selected model successfully developed to 
predict FFB’s OC using lower intensity of visible light (600 
watt) with 7 m recording distance. Similar to the previous 
model, this model also used 10 hidden layers and 15 color 
features from its image as input variables. The model 
developed using MLP-ANN methods based on the color 
features extracted from its image by image processing 
software. Model’s parameters including coefficients of 
hidden layers, were explained in table 6. 

The developed model produced high coefficient of 
correlation upon calibration and validation. The model’s R2 
was 0.999 and 0.993 for calibration and validation, 
respectively. The relationship between prediction and actual 
values of FFB oil content were described in Fig. 5a and 5b. 
Validation results of the model produced lower prediction 
results of FFB oil content, compared to its actual value. The 
model indicated an over-fit behavior with true-negative and 
offset in the results. Nevertheless, this model RMSE was 
considered as minimal (3.795), while its prediction 
correlation was almost linear (R2=0.993). Both values were 
well within the tolerance limit (P<0.05), thus this model 
considered as valid. 

 
 
 
 
 
 
 
 

TABLE VI 
PARAMETERS ESTIMATED TO MODEL FFB OIL CONTENTS USING MLP-ANN 

METHOD BASED ON THE FFB RESPOND WHEN ITS IMAGES WERE RECORDED 

FROM 7 M UNDER LOW POWER (600WATT) VISIBLE LIGHT  

Predictor 

Predicted 

Hidden Layer 
Output  
Layer 

H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) OC 
Input 
Layer 
Coefficient 
Factors 

(Bias) -.470 -.489 .027 .244 .383 .076 -.040 .333 .147 -.271   
R .303 -.162 .434 .468 .471 -.057 -.037 .087 -.424 .190   
G -.152 -.153 -.117 .512 .422 .536 -.466 .419 -.188 .353   
B -.192 -.210 -.072 -.328 .353 -.365 -.433 -.302 .176 -.240   
H -.413 .012 .073 -.468 -.066 .680 -.173 .634 .003 -.007   
S -.061 -.102 .186 .230 .452 .171 -.576 -.378 .126 -.228   
I .273 -.387 -.110 .276 -.331 .433 -.205 .307 -.228 -.316   
RI .195 .377 .252 -.435 -.158 .393 -.025 .611 .263 .045   
GI .306 .307 .369 .378 .415 .454 -.266 -.287 .448 -.477   
BI -.443 -.803 .136 .428 .432 .354 .128 .142 .282 .111   
RG -.276 -.034 .270 .306 .465 .154 -.128 -.024 .323 .173   
RB -.170 .484 -.426 -.495 .166 .239 -.066 .187 -.020 -.095   
GB -.505 .417 -.047 -.079 -.346 .380 .035 -.147 .277 -.487   
GR -.309 .002 .043 .038 -.352 .287 .355 .237 -.320 -.067   
BR -.060 -.085 -.427 .507 -.493 -.491 -.453 -.500 .019 .108   
BG .417 .225 .056 -.247 .007 .219 -.483 .211 .058 .406   

Hidden 
Layer 
Coefficient 
Factors 

(Bias)                     .513 
H(1)                     -.411 
H(2)                     .710 
H(3)                     -.159 
H(4)                     -.546 
H(5)                     -.007 
H(6)                     -.652 
H(7)                     .353 
H(8)                     -.727 
H(9)                     .041 
H(10)                     -.086 

 

 
(a)   (b) 

Fig. 5. The FFB sample’s OCP based on model calibration (a) and 
prediction (b) displayed in scatterplot graphs. The graphs represent model 
performance for predicting FFB oil content based on its images when 
recorded from 7m under 600watt visible light. 

 
The fifth selected model which predicts FFB’s OC based 

on its image recorded under UV light from 2 m was 
successfully developed. Similar to other models, this model 
used MLP-ANN methods with 10 hidden layers based on its 
15 color features extracted from its image. The color features 
were used as input variables upon model development and 
training, and parameters of the model were explained in 
table 7. 

The coefficient of correlation (R2) of this model during 
calibration and validation were 1.0 and 0.993, respectively. 
The results were displayed in Fig. 6a and 6b. This model 
predicts FFB’s oil content below its actual values. Therefore, 
this model suggests an over-fit trend, with true-negative and 
offset in the results. However, when compared with other 
developed models, the results showed that the R2 of the 
model was among the best from five selected models. Model 
R2 was 0.993 and its RMSE was 2.868.  
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TABLE VII 
PARAMETERS ESTIMATED TO MODEL FFB OIL CONTENTS USING MLP-ANN 

METHOD BASED ON THE FFB RESPOND WHEN ITS IMAGES WERE RECORDED 

FROM 2 M USING UV LIGHT SPECTRUM  

Predictor 

Predicted 

Hidden Layer 
Output  
Layer 

H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) OC 
Input 
Layer 
Coefficient 
Factors 

(Bias) .312 -.111 -.345 -.014 .150 .207 -.620 .752 -.325 .489   
R -.430 .305 .259 .050 -.300 .222 -.122 -.441 .289 -.394   
G -.326 -.271 .287 .398 .135 .376 -.117 -.090 .553 .402   
B .070 -.446 .015 -.111 .521 -.002 -.155 .244 .053 -.302   
H -.302 -.285 .198 .340 -.194 -.346 -.441 .307 .235 .502   
S .352 .324 .033 -.203 .401 -.497 -.027 .324 .442 .462   
I .259 -.458 .373 -.410 -.607 -.307 -.302 -.490 -.430 -.100   
RI .151 .076 .171 -.184 .434 -.309 -.189 -.516 .300 -.532   
GI -.208 .203 -.326 .382 .644 .201 .401 .229 .404 .102   
BI .352 -.408 -.430 .322 -.479 -.308 .235 .369 -.540 .423   
RG .474 .336 -.196 .182 -.526 .515 -.145 -.275 -.275 -.295   
RB .160 -.366 .458 .326 .057 .353 -.388 -.499 .005 -.169   
GB -.109 .166 -.314 -.255 -.112 .376 .120 -.318 .196 .200   
GR -.279 -.329 .111 -.549 -.167 -.304 -.031 .435 -.007 .065   
BR -.025 .337 .073 -.505 -.023 -.081 .349 -.276 -.044 .271   
BG -.092 .180 -.298 .132 -.073 -.535 -.249 -.213 .212 -.181   

Hidden 
Layer 
Coefficient 
Factors 

(Bias)                     .134 
H(1)                     -.019 
H(2)                     -.207 
H(3)                     .117 
H(4)                     .645 
H(5)                     .278 
H(6)                     -.548 
H(7)                     -.772 
H(8)                     .522 
H(9)                     .436 
H(10)                     .237 

 

 
(a)   (b) 

Fig. 6. The FFB sample’s OCP based on model calibration (a) and 
prediction (b) displayed in scatterplot graphs. The graphs represent model 
performance for predicting FFB oil content based on its images when 
recorded from 2m under UV light. 

IV.  CONCLUSIONS 

From 20 experiments setup to develop OCP models for oil 
palm FFB, only five models were considered as valid, based 
on its coefficients of correlations, RMSE and validation 
results. The experiment setup was set to determine which 
image recording condition produce best model accuracy to 
predict intact FFB on trees, using nondestructive evaluation 
by means of machine-vision assessment. The models were 
developed from color features of FFB’s recorded images, 
where it was used as input variables prediction. Statistical 
engineering software was used to develop the models by 
employing MLP-ANN algorithm, with 10 hidden layers. 
Five best models were obtained from FFB imaging under 
UV (recorded from 15, 10, and 2m), Visible (recorded at 
7m), and IR lights (recorded at 10 m). Biases were observed 
in the models, due to limited samples used in this experiment. 
However, in the general, the five selected models 
performance were accepted, since their RMSE and 
coefficient of correlation during calibration and validation 
was still within the tolerance limit (P<0.05). 
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