

Vol.10 (2020) No. 1

ISSN: 2088-5334

An Analysis of Pre-service Teachers' Learning Process
in Programming Learning

Seong-Won Kim#, YoungJun Lee*
#Global Institute For Talented EDucation (GIFTED), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,

Yuseong-gu, Daejeon, 34141, Republic of Korea
E-mail: sos284809@gmail.com

*Dept. of Computer Education, Korea National University of Education,250 Taeseongtabyeon-ro, Grangnae-myeon, Heungdeok-gu,

Cheongju, 28173, Republic of Korea
E-mail: yjlee@knue.ac.kr

Abstract— As the importance of computing technology increases, computer science education is being actively implemented around
the world. Because computer science education is being introduced into the curriculum, research on how to effectively teach
programming (which is the core of automation) is actively underway. Although the importance of block-based programming
languages has increased, most studies have focused on text-based programming languages. As interest in programming increases,
block-based programming languages will be taught to a variety of audiences. Therefore, this study analyzed Code.org, which provides
a development environment for block-based programming; this study then investigated the programming learning process of pre-
service teachers, who used Code.org. Sixteen pre-service teachers participated in the study, and their learning processes were
uncovered by analyzing their programming results. This suggests that pre-service teachers can learn sequential and necessary
repetition without difficulty. However, the pre-service teachers failed to use the repetition block through abstraction. Besides, for
While and Until, pre-service teachers did not understand the concept of repeating according to the condition. For Counter, pre-
service teachers had difficulty repeating the use of variables. In the condition, pre-service teachers were not able to separate the
command, which should be executed when the condition is True and when it is False. For Event, pre-service teachers had no problem
utilizing the function, but they were not able to call the function with a parameter. Based on this, it was confirmed that a pre-service
teacher can understand the principle of programming development in advance by understanding the abstraction, condition, and
variable in the loop statement. In this study, there was a limit to practicing block-based programming language due to the platform’s
low scalability. Future research should solve these problems and diversify the research subjects.

Keywords— programming; learning process; pre-service teacher; difficulties of programming; code.org; computer science.

I. INTRODUCTION

Due to its development, computing technology is
increasingly being used in various areas of everyday life,
such as the industry and the economy. New disciplines and
areas of computing technology are emerging, and humans’
lives are rapidly changing as a result of computing
technology. It has been predicted that future life will change
into a form that has not been experienced. During the 2016
World Economic Forum, this change was called the Fourth
Industrial Revolution [1]. In the Fourth Industrial Revolution,
they said that lifeforms would change rapidly based on
different technologies, such as artificial intelligence, the
Internet of Things, and robots. Therefore, the importance of
computing technology has increased, and the need to
cultivate human resources in the computing field has also

increased [2]. As a result, there have been attempts to
promote computer science education around the world [3].

The United Kingdom has mandated “Computing” subjects
in K-12 courses, and they are pursuing computer science
education in cooperation with various companies, such as
the BBC, Microsoft, and Samsung [4]. The United States has
developed standards and frameworks for computer science
education and is making enormous investments into training
computer science talent [5]. In Korea, a 2015 revision
curriculum requires students to take an informatics course in
middle school; computer science education is referred to as
software education [6]. Besides, various countries (such as
Japan, France, and Finland) are trying to introduce computer
science education into their curriculums [7].

The most important core competency in computer science
education is computational thinking. Computational thinking
is the key to abstraction and automation. Computational

58

thinking is composed of abstraction and automation, and
programming is very important in automation [8]. Thus,
research on text-based programming languages (such as C,
Java, and Python) has been actively conducted [9]–[11].
Computer science education is necessary in K-12 education
[12], but elementary and middle schools use block-based
(rather than text-based) programming languages for
education—according to the students’ cognitive levels [13].
However, there is not much research on block-based
programming languages [14]–[16]. In addition, as the
importance of programming increases, research should be
conducted on pre-service teachers learning and teaching
block-based programming languages [17]–[20]. But there is
a lack of research on the process of learning of block-based
programming languages [18].

To fill this gap, this study examined pre-service teachers’
learning process of a block-based programming language.
For this research, learning courses and lessons (which were
taken by pre-service teachers) at Code.org were analyzed.
Code.org provides a learning environment for a block-based
programming language. Each task analyzed the pre-service
teachers’ results in order to determine the programming
learning process.

II. MATERIALS AND METHOD

A. Code.org

Although the importance of computer science is
increasing, the number of students majoring in computer
science has plummeted due to difficulties in programming.
To solve this problem, computer science-related institutions,
non-profit organizations, and governments have joined to
develop educational programs that will help students become
interested in computer science. As a result of these

movements, visual programming languages have been
developed (such as Scratch, Blockly, Alice, and Kodu);
these will help students become interested in programming
[19]. Scratch and Blockly are block-based programming
languages that have been developed in a block-based
programming language; this has been done to address
grammatical errors, which often cause difficulties for
students when learning programming [20]. As many
literatures have verified the effectiveness of the block-based
programming language, Code.org was developed by various
institutions (such as Google, Microsoft, Facebook, and
Twitter) in 2013. Code.org was developed to help students
become interested in computer science and learn the
principles of computer science. Code.org provides a course
titled ‘CS Fundamentals’, which is suitable for kindergarten
and middle school students. Code.org also has App Lab,
Game Lab, Web Lab, and Physical Computing (CS
Discoveries), which are for middle school students. ‘CS
Principles course’ is for high school students and
undergraduate students who are pursuing an education in
computer science. The site provides students with an
educational environment for learning computer science at a
high level. It also provides educational materials and student
management systems for teachers [21]. In short, it provides
the total package for a K-12 computer science education.

Code.org is a basic programming environment; like
Scratch and Blockly, Code.org provides a block-based
programming language environment. The CS Fundamentals
course is broken up as follows: Course 1 (age 4 ~ 6), Course
2 (age 6 and above), Course 3 (age 8 ~ 18), Course 4 (age 10
~ 13), and the Accelerated CS Course (ages 10 ~ 13) (e.g.
Fig. 1).

Fig. 1 Programming patterns of pro-service teachers’ in Lesson 5 at The Farmer 3

There is also an Hour of Code Course, which allows the

learner to experience computer science for an hour. The
Hour of Code Course includes a variety of activities based
on topics that students will be interested in, such as Angry

Birds, Star Wars, Minecraft, and Frozen. Code.org’s learning
process is structured so that teachers can provide a specific
course or so that students can learn the course on their own
(e.g., Fig. 2).

59

Fig. 2 Teacher pages for managing students at code.org

60

When a student selects the course, they want to study; the
student can see their overall progress within the course.
Besides, if a student clicks on the desired lesson, a video
about the course will be provided. The video will introduce
the lesson, and students will learn how to progress by
watching the video. After watching the video, the student
will proceed and start programming, and he or she will solve
the problem by using the toolbox and workspace based on
the instructions. After programming the solution to the
problem, the student can check their results in the Play area
and repeat the process of debugging. If the student has
trouble in solving a problem, a video or hint is provided (to
reduce the difficulty). Code.org is currently available in over
40 languages and is free of charge; thus, students from many
different countries can learn computer science.

B. Research Procedure

This study investigated the programming learning process
of pre-service teachers. Pre-service teachers were recruited
to participate in the research. Lectures were conducted so
that the teachers could learn a block-based programming
language. The pre-service teachers who participated in the
research performed programming tasks, and the researchers
compared the results of the tasks performed by the pre-
service teachers with the solutions. Based on the comparison,
the results and implications of the pre-service teachers’
programming learning process were derived.

C. Research Subjects

In this study, pre-service teachers at the Korea National
University of Education (which is in Korea) were studied.
To recruit research subjects, the researcher held liberal arts
lectures at Korea National University of Education.
Explanations of the lectures and research’s content were
announced in advance; a pre-service teacher gave the
lectures. A total of 24 pre-service teachers were enrolled in
the open lectures. Of these, 22 (who agreed to participate in
the research and sincerely participated in the research
process) were selected as the research subjects.

The Korea National University of Education, which is the
subject of this research, is a university that specializes in
training teachers. Therefore, all undergraduate students
attending the Korea National University of Education can be
considered pre-service teachers. As for the demographics of
the study subjects, there were 17 males and 5 females. The
majors of the pre-service teachers were as follows: one
Korean education, seven mathematics education, two
English education, two early childhood education, one
Chinese education, three physical education, two computer
education, three chemistry education, and one environment
education. The pre-service teachers included nine students in
their freshman year, 10 students in their sophomore year,
and three students in their junior year. There was no senior
among the pre-service teachers [22].

The programming experiences of the pre-service teachers
were investigated in order to understand their programming
learning process. Of the 22 pre-service teachers, six pre-
service teachers had experience with programming. Three
out of these six had experience with text-based programming
languages (like C and Java) and block-based programming
languages. This was since, among the participating pre-

service teachers, pre-service teachers were majoring in
computer education. The other three of the six had
experience using Scratch. Because three had used Scratch,
they were able to create simple programs through Scratch,
but they had no formal education in programming or
computer science.

D. Treatments

In this study, the treatment was conducted as a part of
liberal arts lectures in the fall and winter semesters at Korea
National University of Education. The lectures were held for
a total of 15 weeks (from August 31, 2017 to December 7,
2017). The programming learning process took four to seven
weeks of lectures. The treatment was carried out on
Code.org and consisted of the information from the
accelerated CS Course. The accelerated CS Course had been
developed for teaching K-8 students; the course consisted of
20 lessons that can be taken in 20 hours. Of the 20 lessons in
the accelerated CS Course, 11 were unplugged. An
unplugged activity is an ongoing activity that does not
require a computer and that helps the learner understand the
principles of computer science. So, in this study, artifacts of
the other nine lessons (excluding the unplugged activities)
were analyzed. This was done in order to focus on the
programming learning process of pre-service teachers. To
use Code.org, the researcher opened a class by using a
teachers’ account, and the 22 pre-service teachers completed
the accelerated CS Course together in class. In the first task,
Code.org was explained to the pre-service teachers; then,
pre-service teachers carried out the remaining task by
themselves [23]–[26].

E. Analysis

The purpose of this study was to analyze the
programming learning process of pre-service teachers. First,
in the accelerated CS Course, the programming elements
included in the task were analyzed for nine lessons (which
excluded the unplugged activities). After analyzing the
elements in the accelerated CS Course, the programming
results were investigated; a pre-service teacher prepared the
results for each task. Based on the results (except for those
marked “completed, perfect”), researchers analyzed the
artifacts of the pre-service teachers that were marked
“completed, too many blocks” and “in progress.” In the
literature, the learning process of programming has been
discussed in order to investigate programming difficulties
[15], [16]. In this study, the researchers compared the
solution to the questions with the artifacts of the students;
this was done in order to examine their programming
learning process.

III. RESULTS AND DISCUSSION

A. Analysis of Programming Elements in Code.org

In the Accelerated Course, nine lessons out of the 20 were
examined; these nine lessons did not include the 11
unplugged lessons (Introduction to Computer Science,
Computational Thinking, Paper Programming, Algorithms,
Functions, Conditionals, Song Writing, Abstraction, Relay
Programming, The Internet, and Wrap-up). Each of the nine
lessons included tasks. The nine lessons were composed of

61

themes (The Maze, The Farmer, and The Artist). This study
was analyzed by themes (e.g., Table 1 in Appendix).

1) The Maze

In the first lesson, The Maze, the blocks were assembled
to move an object in the task. Tasks that move to a specific
destination, including move and angular rotation were
composed. Task 6 used repetition to move and turn objects.
In Task 10, the Until statement was added. Task 14 added an
If statement to the Until statement. An If-else statement was
introduced in Task 18, and a Nested if it was used in Task 20.
When the statements were used together, the Maze would
experience coordinate movements, and Move and Turn
could be used to escape the maze. In addition, Repeat and
Until, If, If-else, and Nested if it could be used sequentially
for efficient coordinate movement. In this way, the maze
was composed of activities so that the student could learn
sequence, loop, and condition, which are the most essential
parts of programming.

2) The Artist

The Artist was like The Maze, but it consisted of activities
that required the learner to draw specific shapes. The Maze
simply moved up, down, left, or right. In contrast, The Artist
allowed the user to think and design the angle of the rotation
according to the shape. Therefore, The Artist consisted of
activities for drawing shapes, such as Move, Turn, Skill, and
Repeat. Artist 2 consisted of advanced activities for drawing
shapes. Building on drawing simple shapes, Tasks included
not only using multiple If statements but also developing
tasks that use Nested repeats to draw various shapes.

The Artist 3 added content related to the event. A function
was added as the content of the event, and a variable and
random number were added for the function. Besides, in
Task 6, a loop using a counter appeared. The Artist 3
consisted of Move and Turn commands in the function in
order to draw triangles or rectangles by merely using the
functions.

In Artist 4, a task arrived in the Goal states, including
iteration, in the function. Thus, it was confirmed that the use
of the advanced function has appeared. Also, based on Task
5, the nested function has appeared. Examples of functions
and variables were provided for efficient troubleshooting. In
Task 6, problem-solving activities using a function with a
parameter appeared. In this way, the activity of drawing the
existing figure did not call several functions, but it passed
the parameter in the function and made an efficient program
call through the Nested function. In the last task, Task 9,
figure drawing activities using the counter, function, Nested
function, and function with a parameter was shown.

The Artist 5 was not an activity that the learner created,
but rather an activity that confirmed the result of the
completed program. In this way, The Artist consisted of
activities in which the learner exercised the movement and
rotation of the object in the activity. This was done by
drawing a specific figure or drawing various shapes by using
the loop and event. One thing to note is that The Artist did
not include a condition because it contains tasks that draw
shapes.

3) The Farmer

The Farmer consisted of a task like a type developed in
The Maze. The Maze was about going to a specific location
while avoiding obstacles, and The Artist was about drawing
a shape out of a model. The Farmer, however, added a
command to Fill or Dig the ground while moving to a
specific location. The Farmer was also composed of the
Repeat, Nested repeat, Until, and If tasks.

In the Farmer 2, functions were added to the existing
activities, and commands that contained iterations were
included in the function (in addition to merely executing
sequential commands in the function). In this way, pre-
service teachers practiced how to organize programming
efficiently during the execution of the same command.
Finally, Tasks included problem-solving by using the
sequence, loop, condition, and event, including If-else.

The Farmer 3 consisted of debugging tasks, running the
blocks that were already present, and working on fixing the
code to solve problems. In addition to designing and
developing code for problem-solving, the students could
analyze, execute, and correct already completed code. The
Farmer 3 was sequentially presented with the sequence, loop,
condition, and event elements as the tasks progressed. In this
way, The Farmer taught the loop, condition, and event in a
necessary sequence, and activities were constructed so that
the students could experience debugging.

B. Analysis of Pre-Service Teacher's Programming
Learning Process

1) The maze

The pre-service teachers solved all the problems in The
Maze. The problems were solved in the problem-solving
process, and there were cases where many blocks were used.
Thus, pre-service teachers experienced no difficulty in
solving problems by assembling blocks in a block-based
programming environment. Besides, it was confirmed that
Repeat, Until, If, If-else and Nested could be utilized in the
process of reaching a specific position through Move, Turn,
and solving problems. The following are cases in which the
problem could not be resolved efficiently. In Lessons 8, 9,
and 10, the pre-service teachers showed a tendency to
present instructions in sequence even if the problems could
be solved by repetition. In examples that did not solve the
problem efficiently, there is a task shown in Fig. 3 (Lesson 9
in The Maze), which required two repetitions and three
rotations.

The pre-service teachers should have come up with the
solution of repeating two advances and three rotations by
abstraction. However, the patterns that did not solve the
problem seemed to be patterns that simply used repetition
twice to advance—or that could not repeat all the commands.
Only some of the commands were repeated, and the
remaining commands were solved sequentially (e.g. Fig. 3).

Based on this, it was determined that the pre-service
teachers understood repetition but failed to abstract and form
a block based on it to solve the problem. Therefore, the pre-
service teachers’ solutions showed that repetition was simply
used in the initial stage of programming (rather than for
implementing repetition).

62

The pre-service teachers also failed to solve problems
efficiently when learning the If statement. An example is
Lesson 14; the task was to avoid obstacles and move to
flowers. The learner needed to implement a move that
advances if there was no path to the left (or rotate to the left
if there was a path). The pre-service teachers were instructed
that, if they all had a path to the left, they would have to turn
to the left.

Fig. 3 Programming patterns of pro-service teachers in Lesson 9 at The
Maze

However, pre-service teacher p put the Until statement in

the If statement, and pre-service teachers g and p used an
unnecessary move block (e.g. Fig. 4). These errors persisted
in Lessons 15, 16, and 17. These results show that pre-
service teachers can learn the concepts of sequence, loop,
and condition in the block-based programming learning
process. However, some pre-service teachers tended to solve
problems inefficiently. While they understood the function
of the blocks, they were not able to properly use Repeat and
If to abstract in automation. “Reference [15]” suggested that
pre-service teachers need a lot of practice and time to use the
loop command [15] properly. “Reference [16]” pointed out
that, when using a block-based programming language, there
is a tendency to automate problem-solving without
abstracting the problem; this results in problems with the
sequential programming [16]. Therefore, as the pre-service
teachers solved the problem in block-based programming
learning, it was confirmed that the teaching was needed to
solve the problem based on the abstract process.

Fig. 4 Programming patterns of pro-service teachers in Lesson 14 at The
Maze

2) The Artist

All the pre-service teachers solved the problem in The
Artist 1. However, like The Maze, some pre-service teachers
solved the problem inefficiently. By analyzing the pre-
service teachers’ results, The Artist showed that the problem
had been resolved inefficiently; unnecessary angular rotation
blocks or various patterns were used to solve the problem (as
shown in Fig. 5).

Fig. 5 Programming patterns of pro-service teachers in Lesson 5 at The
Artist 1

Task

Pre-service teacher P Pre-service teacher G

Pre-service teacher D Solution

Task

Solution

 Pre-service teacher
D

 Pre-service
teacher G

Pre-service teacher O

Task

Pre-service teacher P
Pre-service teacher D

Pre-service teacher G Solution

63

The Artist 1’s problem had already been experienced by
the pre-teachers in The Maze, so it was confirmed that the
Repeat command was used. Artist 2 also showed the same
pattern. Nested repeat was present in The Artist 2, and all the
pre-service teachers were able to solve this problem. Besides,
The Artist 1 had 10 cases of an ineffective solution, while
The Artist 2 did not. Therefore, the pre-service teacher had
some difficulty in abstracting and automating the problem
through the coordinates, but the result showed that it was
easy to abstract and automate in the process of drawing a
figure.

In the Artist 3, the concepts of variables and functions
emerged. As a result, pre-service teachers were unable to
solve problems for the first time. Some pre-service teacher
did not command within the counter in Lesson 11 of The
Artist 3. Pre-service teacher p, who solved the problem,
utilized the function; however, when the first counter
appeared, he failed to solve the problem and did not
understand the concept of the counter at all. Thus, Repeat
and Nested repeat, until were understood by pre-service
teachers (based on their Code.org activities). However, it has
been shown that repetition using variables (such as the
counter) is hard to understand at first (e.g. Fig. 6).

Fig. 6 Programming patterns of pro-service teachers in Lesson 11 at The
Artist 3

In the Artist 4, many pre-service teachers had difficulty in

learning programming. Many pre-service teachers failed to
solve the problem with a function with a parameter (Lesson
6). All the pre-service teachers did not feel that it was
difficult to implement the function, but they found it difficult
to set the parameters. In Lesson 9, which required the
problem to be solved by using the function with a parameter
and counter, many pre-service teachers failed to solve the

problem. Lesson 9 was about passing different parameters
through a counter (when a function was called with a
parameter) to draw the same shape in different sizes.

The pre-service teachers showed that the call to the
counter failed. However, all of them used a certain number
of iterations to draw shapes. The contents of the variable
first appeared in Lesson 5 of The Artist 3. However, The
Artist 3 and 4 did not explain the concept of the variable;
instead, it replaced the existing calculation in the toolbox.
Therefore, the pre-service teachers did not understand
exactly what the variable was or how to use it in the counter
or function with a parameter [15]. Therefore, the pre-service
teacher did not use the function to pass the value in the
problem-solving process, utilize the stored value, and change
the stored value [16]. Finally, the Artist 5 was performed by
all the pre-service teachers; this was because it was a direct
execution process.

3) The Farmer

Like the Artist and The Maze, the pre-service teachers
solved all the problems in The Farmer’s first lesson.
However, some pre-service teachers solved the problems
inefficiently. An example is Lesson 7. Some pre-service
teachers had been practicing problem-solving using the
While statement in Lessons 5 and 6. While solving the
advanced problem, the pre-service teacher solved the
problem inefficiently. When implementing the While
statement, the pre-service teacher added repeat inside or
outside the While statement (e.g. Fig. 7).

Pre-service
teacher O

Pre-service
teacher D

Solution

Fig. 7 Programming patterns of pro-service teachers in Lesson 7 at The
Farmer 1

Based on this, the pre-service teacher had not yet learned
that the While statement is used to execute repetition. The
pre-service teacher simply used repeat to repeat. Therefore,
the While statement was recognized as a conditional

Pre-service teacher
K

Pre-service
teacher L

Solution

64

statement rather than an iteration. The pre-service teacher
demonstrated a similar pattern in The Maze for Until.
Therefore, it is easy to implement repetition (Repeat, Nested
repeat), but it can be confirmed that it is difficult to repeat
according to the condition (Until, While).

Some pre-service teachers did not solve the problem in
The Farmer 2. Although there were pre-service teachers who
failed to solve problems in various lessons, most pre-service
teachers failed Lesson 4. The pre-service teachers solved the
problem of using the repeat function in Lesson 2 and Lesson
3. In this case, the function was defined, and there was no
change in direction. In Lesson 4, the pre-service teachers
needed to look at existing functions but define functions
using iterations. Some pre-service teachers had, in this way,
been inefficient when defining iterations. Besides, some pre-
service teachers failed to construct a repeat block by using
the function, Move, and Turn blocks. This suggested that the
pre-service teachers had difficulty in constructing repeat
blocks [27].

Finally, in The Farmer 3, which involved experimenting
with debugging, eight pre-service teachers did not solve the
problem. Lesson 5 was the task of configuring the remove
instruction to be executed according to the conditions
specified by the instructions. The pre-service teacher
understood that the remove command should be executed
according to condition statements during debugging.
However, it was unclear what command should be put in the
loop (e.g., Fig. 8).

C. Discussion

“Reference [15]” stated that pre-service teachers should
have at least four weeks (four times) of practice in repetitive
blocks [15]. In this study, it was confirmed that pre-service
teachers had difficulty solving the problem with the
repetitive block—even after four weeks. This difficulty was
due to the pre-service teachers’ failure to abstract the
problem [13].

“Reference [16]” suggested a reason why pre-service
teachers have difficulty in learning programming. They said
that there are difficulties in creating patterns and structuring
overlaps in commands that should be written in the loop [16].
In this study, pre-service teachers failed to abstract
commands that should have been repeated. However, in
“Reference [16]”, cases of not understanding the commands
of the loop were not shown in the use of repeat and Nested
repeat. However, for Until and While, it was not possible to
execute the conditional command, and the counter could not
use the variable properly [16]. In this way, it was confirmed
that understanding the condition was limited to the use of the
variable [18].

The course composition of Code.org itself may have
caused this problem. Conditional statements were not
included in The Artist but were included sometimes in The
Maze and The Farmer. Only 12 out of 98 tasks used
conditional statements. Therefore, there was the description
and practice of conditional statements, but there was not
much problem-solving using conditional statements. Thus, it
may have been difficult to utilize Until or While due to a
lack of understanding of the condition [29]. The problem
with the variable was that the result is because the learner
did not understand the variables in the process of solving the

problem. The problem of the variable affected the counter
and the function with a parameter. These problems appeared
to be the most difficult in the problem-solving process [21].

Fig. 8 Programming patterns of pro-service teachers in Lesson 5 at The
Farmer 3

Solution

Pre-service teacher T

Pre-service teacher K

Pre-service teacher P

65

“Reference [14]” stated that novices and experts use the
same problem-solving methods when learning a block-based
programming language [14]. However, in this study, it was
shown that novices (specifically pre-service teachers)
implement automation when solving problems but do not
perform abstraction properly. Therefore, experts and pre-
service teachers have different ways of solving problems
[28],[30].[31].

IV. CONCLUSION

This study tried to analyze the programming learning
process of pre-service teachers by using Code.org, which is a
block-based programming development environment. To do
this, the accelerated CS Course at Code.org was used, and
the artifacts of pre-service teachers were compared with the
solutions.

The accelerated CS Course at Code.org was largely
composed of three activities. The Maze was configured to
learn sequence, loop, and condition while moving an object
to specific coordinates. The Artist consisted of five steps,
and the pre-service teachers learned sequence, loop, and
event while drawing a specific shape. The Farmer was
structured to teach sequence, loop, condition, and event; this
was done so that the pre-service teachers could perform a
specific skill. In this lesson, the contents of the loop were
included in many lessons, but conditions and events were in
relatively few lessons. There was a problem that involved
using a variable in an event, but a description of the variable
was not included.

The results showed that pre-service teachers generally
performed Code.org tasks. Though, for sequence and loop,
both Repeat and Nested repeat were programmed to reach
the target state of interest. Some pre-service teachers could
not solve them when using limited blocks. This result was
that since the pre-service teachers did not abstract the
problems suitably. The pre-service teachers failed in the
process of decomposing the problems and recognizing the
pattern and patterning; this was due to their tendency to
solve the problems in an improvised manner. The pre-
service teachers tried to solve the problems sequentially
rather than by using repetition. Besides, the results
confirmed that the Until, While and counter blocks were not
appropriately used for problem-solving because the pre-
service teachers lacked understanding about the blocks. Until
and While, the pre-service teachers tended to use the loop
repeatedly; this was because they did not understand it as a
loop (as they lacked understanding of the condition). The
pre-service teachers also had difficulty in using variables and
were not able to solve problems using the counter and
function with a parameter block.

 In this study, the pre-service teachers were able to
examine the learning process of block-based programming.
The research was conducted on a platform called Code.org.
Code.org is an effective tool for learning the principles of
computer science and programming, but it has limits (in
terms of programmers creating their programs). Therefore,
studies should be conducted to find out whether the
problems occur when learning highly extendable
programming languages (such as Scratch and Blockly). In
this study, the results of pre-service teachers’ problem-
solving were analyzed in order to understand pre-service

teachers’ programming learning process. Therefore, how the
abstraction should be carried out and what the automation
process should be in the actual problem-solving process
were not examined. There was no correlation between the
difficulty and the results in the programming learning
process. Future studies should continue to research these
areas. This study can be used as basic research to help
develop a programming learning process and support system
for pre-service teachers.

This study gathered its results by analyzing the
programming learning process of pre-service teachers.
Besides, this study provided implications for programming
curriculum development and programming language
platform development.

REFERENCES
[1] K. Schwab, The fourth industrial revolution, Crown Business, 2017.
[2] D. Mitch, The role of education and skill in the British industrial

revolution, In The British Industrial Revolution, pp. 241-279.
Routledge, 2018.

[3] S. Sentance and A. Csizmadia, “Computing in the curriculum:
Challenges and strategies from a teacher’s perspective,” Education
and Information Technologies, vol. 22, no. 2, pp. 469-495, 2017.

[4] A. Manches and L. Plowman, “Computing education in children's
early years: A call for debate,” British Journal of Educational
Technology, vol. 48, no. 1, pp. 191-201, 2017.

[5] G. Chapman, “Inspire, Innovate, Improve!: What does this mean for
CS for All?,” In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education , pp. 1-1, ACM, Mar,
2017.

[6] S. W. Kim and Y. Lee, “Development of a Software Education
Curriculum for Secondary Schools,” Journal of The Korean Society
of Computer and Information, Vol. 21, No. 8, pp. 127-141, 2016.

[7] P. J. Rich and C. B. Hodges (Eds.), Emerging research, practice, and
policy on computational thinking, Springer, 2017.

[8] J. M. Wing, “Computational thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33-35, 2006.

[9] I. Milne and G. Rowe, “Difficulties in learning and teaching
programming—views of students and tutors,” Education and
Information technologies, vol. 7, no. 1, pp. 55-66, 2002.

[10] B. Özmen and A. Altun, “Undergraduate Students' Experiences in
Programming: Difficulties and Obstacles,” Turkish Online Journal of
Qualitative Inquiry, vol. 5, no. 3, pp. 1-27, 2014.

[11] V. G. Renumol, S.Jayaprakash and D. Janakiram, “Classification of
cognitive difficulties of students to learn computer programming,”
Indian Institute of Technology, India, 2009.

[12] S. W. Kim and Y. Lee, “The Effect of Robot Programming
Education on Attitudes towards Robots,” Indian Journal of Science
and Technology, vol. 9, no. 24, pp. 1-11, 2016.

[13] S. W. Kim and Y. Lee, “Development and Application of Arduino-
Based Education Program for High School Students',” Journal of
Theoretical & Applied Information Technology, vol. 95, no. 18, 2017.

[14] S. Kim, S. Han and H. Kim, “Analysis of Programming Processes
Through Novices` Thinking Aloud in Computational Literacy
Education,” The Journal of Korean association of computer
education, vol. 14, no. 1, pp. 13-21, 2011

[15] J. Sung, S. Kim and H. Kim, “ Analysis of Art and Humanity Major
Learners` Features in Programming Class,” The Journal of Korean
association of computer education, vol. 18 no. 3, pp. 25-35, 2015.

[16] J. Choi and Y. Lee, “The analysis of learners' difficulties in
programming learning,” The Journal of Korean association of
computer education, vol. 17, no. 5, pp. 89-98, 2014.

[17] S. W. Kim and Y. Lee, “Development of TPACK-P Education
Program for Improving Technological Pedagogical Content
Knowledge of Pre-service Teachers,” Journal of the Korea Society of
Computer and Information, vol. 22, no. 7, pp. 141-152, 2017.

[18] S. W. Kim and Y. Lee, “The Effects of Programming Education
using App inventor on Problem-solving Ability and Self-efficacy,
Perception,” Journal of the Korea Society of Computer and
Information, vol. 22, no. 1, pp. 123-134, 2017

66

[19] S. W. Kim and Y. Lee, “A Study of Educational Method Using App
Inventor for Elementary Computing Education,” Journal of
Theoretical & Applied Information Technology, vol. 95, no. 18, 2017.

[20] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E.
Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B.
Silverman and Y. Kafai, “Scratch: programming for all,”
Communications of the ACM, vol. 52, no. 11, pp. 60-67, 2009.

[21] F. Kalelioğlu, “A new way of teaching programming skills to K-12
students: Code. Org,” Computers in Human Behavior, vol. 52, no.
200-210, 2015.

[22] S. A. Ariffin, “Mobile learning in the institution of higher learning
for Malaysia students: Culture perspectives,” International Journal
on Advanced Science, Engineering and Information Technology, vol.
1, no. 3, pp. 283-288, 2011.

[23] Hooshyar & Lim, H. (2018). Data-Driven Approaches to Game
Player Modeling: A Systematic Literature Review. ACM Computing
Surveys (CSUR), 50(6), 90.

[24] S. N. Razali, F. Shahbodin, M. H. Ahmad and H. A. M. Noor,
“Measuring validity and reliability of perception of online
collaborative learning questionnaire using rasch model,”
International Journal on Advanced Science, Engineering and
Information Technology, vol. 6, no. 6, pp. 966-974, 2016.

[25] Hooshyar & Lim, H. (2017). A systematic review of data-driven
approaches in player modeling of educational games. Artificial
Intelligence Review, 1-21.

[26] A. A. Patak, H. A. Naim, A. Ma'ruf and M. N. A. Ghafar, “Design
and Validation of Online Learning Environment Questionnaire,”
International Journal on Advanced Science, Engineering and
Information Technology, vol. 6, no. 3, pp. 334-338, 2016.

[27] Hooshyar & Lim, H. (2016). Applying an online game-based
formative assessment in a flowchart-based intelligent tutoring system
for improving problem-solving skills. Computers & Education, 94,
18-36.

[28] J. Bennedsen and M. E. Caspersen, Exposing the programming
process. In Reflections on the Teaching of Programming, pp. 6-16,
Springer, Berlin, Heidelberg, 2008.

[29] Hooshyar & Lim, H. (2017). A procedural content generation-based
framework for educational games: Toward a tailored data-driven
game for developing early English reading skills. Journal of
Educational Computing Research, 0735633117706909.

[30] M. M. Lehman, “Process models, process programs, programming
support,” In Proceedings of the 9th international conference on
Software Engineering, pp. 14-16. IEEE Computer Society Press, Mar,
1987.

[31] Hooshyar & Lim, H. (2017). Development and Evaluation of a
Game-Based Bayesian Intelligent Tutoring System for Teaching
Programming. Journal of Educational Computing Research,
0735633117731872.

67

APPENDIX A. THE RESULTS OF PROGRAMMING ELEMENT IN CODE.ORG

TABLE I
ANALYSIS OF PROGRAMMING ELEMENTS OF ACCELERATED COURSE IN CODE.ORG

 Task
Sequence Loop Condition Event

Move Turn Skill Repeat Nested
repeat

Until
&

While
Counter If If-

else
Nested

if
Function Nested

function

Function
with

parameter
Variable Random

number

The
Maze

1 O

2 O

3 O O

4 O O

5 O O

6 O

O

7 O O

O

8 O O

O

9 O O

O

10 O

O

11 O O

O

12 O O

O

13 O O

O

14 O O

O

O

15 O O

O

O

16 O O

O

O

17 O O

O

O

18 O O

O

O

19 O O

O

O

20 O O

O

O O

The
Artist

1 O O O

2 O O O

3 O O O O

4 O O O O

5 O O O O

6 O O O O

7 O O O O

8 O O O O

9 O O O O

10

The
Artist 2

1 O O O O

2 O O O O

3 O O O

O

4 O O O

O

5 O O O

O

6 O O O O

7 O O O

O

8 O O O

O

9 O O O

O

10 O O O

O

11

The
Farmer

1 O

O

2 O

O

3 O

O O O

4 O O O O O

5 O O O O O O

6 O

O

O

7 O O O

O

8 O

O O

9 O O O

O

10 O

O

O

O

11 O

O

O

O

The
Artist 3

1 O O O O

2 O O O

O

3 O O O O

O

4 O O O O

O

O
5 O O O

O

O

6 O O O

O

O

O

7 O O O

O

O

8 O O O

O

O

9 O O O O

O

10 O O O

O

O

11 O O O

O

O

68

The
Farmer

2

1
2 O

O O

O

3 O

O O

O

4 O O O O

O

5 O

O O

O

6 O

O O

O

7 O

O O

O

8 O

O O

O

9 O

O O

O

10 O

O O

O

O

The
Artist 4

1 O O O O

O

2 O O O O

O

3 O O O O

O

4 O O O O

O

5 O O O O

O O

6 O O O O

O O

7 O O O O

O O O O

8 O O O O

O O O O

9 O O O O

O

O O O O

10

The
Farmer

3

1 O O O

2 O O O

3 O O O O

4 O O O O

O

5 O O O O

O

6 O O O O

O

7 O O O

O

O

8 O O O O O

O

9 O O O O

O

O O

The
Artist 5

1 O O O

O

O

2 O O O

O

O

3 O O O

O

O

4 O O O O

O O

5 O O O O

O

O O

6 O O O O

O

O O

69

