

Vol.8 (2018) No. 4

ISSN: 2088-5334

Designing Digital Circuits in Multi-Valued Logic
Alessandro Simonetta#, Maria Cristina Paoletti

Department of Enterprise Engineering, University of Rome “Tor Vergata”, Via del Politecnico, 1, Rome, 00133, Italy
 E-mail: alessandro.simonetta@gmail.com

Abstract— In the last few decades we have witnessed an increase in CPU performance, which has been made possible thanks to the
increase in the clock frequency and the increase in the number of transistors in the unit of space. In the last few years, however, we
reached the limit for the clock and for the miniaturization of the transistor grid. Beyond this growth new problems arose such as the
disposal of the produced heat and the minimum distance to be respected between elements for the electrical signals transfer. So the
chip makers, to further increase the processing power of the processors, started to insert more cores on the same chip. The presence
of several cores undoubtedly improves performance and improves consumption, but the ability to transfer data between cores and
components remains limited by the number of pins of the cores themselves. Furthermore, it is necessary to manage the
synchronization between cores during the access to common resources and all those multi-core architectures typical problems. This
article provides a different approach to improve the computing capacity of the CPUs that is based on the extension of the binary
system in a multi-value coding system or, commonly, called MVL. Although this direction has already been explored, the idea behind
the study is in the representation of the generic function in the MVL domain. This representation has a link to the binary system and
a surprisingly greater simplicity of the corresponding digital circuits (combinatorial and sequential). A different mathematical
approach is thus provided for the realization of the multivalue logic gates. This could enable the use of different data encoding
systems no longer linked to the voltage value of a signal but to other physical quantities as it happens at present, for example, in the
world of telecommunications.

Keywords— multi-valued logic; circuit design; computer architecture; fuzzy system.

I. INTRODUCTION

The chip makers have always looked to improve
performance by trying to make increasingly powerful and
faster CPUs by focusing on increasing the clock frequency
and inserting a greater number of transistors in the unit of
space. In recent decades, the number of CPU transistors
followed the famous Moore law. Unfortunately, due to the
level of miniaturization achieved, it was no longer possible
to increase neighter the density of the transistors, nor the
clock frequency (another factor that influences the
computing power), because new problems arose, in addition
to the ability to operate at inertial distances, linked to the
signal transfer speed between components and also to the
heat produced by the components overheating (see [1]).

As the increase in the density of transistors on the surface
had reached the limit, some have hypothesized to increase
the number through the thickening of the die. However,
having a greater thickness of the die can lead to a significant
increase in costs, for this reason some studies have shown
that the number of transistors can be increased by using a
double layer of the die to form a crystal grid in whose nodes

[transistors are located. This approach, duplicates the
number of transistors and makes the die thicker [2].

However, the strategy adopted by the chipmakers has
been to improve the computing power by constructing CPUs
with multiple cores within the same chip, enabling
processing parallelism. This approach undoubtedly improves
performance but introduces new problems because that
processing is distributed on the cores. These cores must be
synchronized to access common resources or collaborate to a
common goal. Moreover, the management of interrupts is
more complex than a single-core. Finally, the limit of the
transfer capacity of the cores cannot be exceeded, because it
depends on the number of connections and the clock
frequency. Power management also becomes a crucial factor
when building high-performance architectures, as the articles
[3], [4] and [5] demonstrates.

In this article we will discuss a different approach based
on the possibility of building a high performance computer
architecture by making digital components that work
intrinsically in multivalue logic (MVL). The need to build
efficient machines that worked in MVL, with low
consumption was considered in [6].

1166

A ternary computer hypothesis has been historically
treated in [7] where the author observed that if the circuit
complexity depended roughly on the product of the base size
used (R) multiplied by the number of digits of the maximum
representable number (N), the economically best basis was
e=2,718. The article pointed out that if it were possible to
build components that when increasing the representation
base (R) size complexity and cost don’t grow, the best
choice would be to adopt the largest possible base.

The idea of designing circuits that work in MVL has
recently been treated from the canonical point of view, using
post-order algebras of degree greater than or equal to two,
also in [8]. Some studies showed that the methods used in
the Boolean algebra, such as the Quine Mc-Cluskey method
shown in [9], are applicable. However, the idea that inspired
this work is the scalability of the solution with respect to the
chosen base, the simple realization of the circuits and the
maintenance of a close relationship with the binary system.
The ability to build any circuit in MVL will allow to build
processors, memories and I/O devices able to operate, with
the same number of connections, at a greater throughput
compared to the binary case. The ternary logic was the first
studied extension of the binary algebra ([10] and [11]), but
also inspired the realization of processors working on the
base 3 [12]. Also the quaternary logic, being power of two,
inspired many research works ([13] and [14]). In the
literature we also find valuable contributions on MVL as [15]
and [16], also from the point of view of the verification of
hardware circuits [17].

However, with the present work we will demonstrate how
it is possible to define a reduced set of mathematical
operators that are able to perform any function in the chosen
domain independently from the base, similar to what
happens for universal operators (NAND and NOR) in the
case of Boolean algebra. The proposed idea is based on the
use of one-digit arithmetic operations (multiplication and
sum) together with the functions reported in the binary
domain (the selectors). Multivalue operators will be
described in Session II from the external point of view, as if
they were black boxes, without considering the internal
functionality or the modes of transferring the signals.

Research and technological innovation will provide, in the
near future, the best answers for the realization of these
components. Session III is organized in two parts: the first
concerns the process of creating an example of
combinational circuit (half-adder); the second one is the
construction of a memory element for MVL information.
Section IV gives the conclusion and oulines the future
research.

II. MATERIAL AND METHOD

Without losing generality we can consider the algebra in
base 3 and then we can extend the operators to any domain
with n-values. Although we have extended the discrete
domain by a single value, for example a word of only 10
digits passes from 1024 combinations in the binary number
system to about 59k in the ternary one.

A. Ternary algebra

Consider a T domain consisting of the three values
{0,1,2}. On this domain we can define unary functions F(I0):

T→T, with I0∈T; binary functions F (I1, I0): T×T→T, with
I0∈T, I1∈T; and, generically, functions with p operands
F(Ip-1, Ip-2,...,I1, I0): T×...×T→T, with I0∈T,..., Ip-1∈T.

So we can imagine a function like a black box that
receives input values I0, I1,..., Ip-2, Ip-1 and returns an output U
that represents the value assumed by the function at the
inputs (combinatorial circuit).

Fig. 1 Example of function as a black box

With p inputs we have x=3p combinations of the inputs

that originate 3x different functions. In a generic algebra with
n values we will have x=np e nx different functions.

1) Unary functions: in the context of the nn possible unary
functions (27 in the ternary case) we consider n functions,
which reduce the n-ario domain into the binary one. In
particular we will call them selection functions, or selectors,
and we will indicate them with the letter S.

In an algebra with n values there are n selectors each one
for any symbol of the domain. If c ∈ T the selection
function Sc(I) answers the value 1 when in input (I) the value
c is present and zero in the other cases.

In the ternary case the functions S0, S1 and S2 are:

TABLE I
SELECTOR FUNCTIONS (N=3)

I S1(I) S1(I) S2(I)
0 1 0 0
1 0 1 0
2 0 0 1

2) Binary functions: the functions with two values in the

ternary domain are 39 (19.683) and can be described by a
quintuple of functions: the three selectors plus two functions
(op1 e op2). Entering in the value table the input selectors (S0 ,
S1 and S2) and the main arithmetic functions: product, sum,
minimum and maximum:

TABLE II
SOME BINARY FUNCTIONS (N=3)

i I 1 I0 S 0
(I

1)

S 1
(I

1)

S 2
(I

1)

S 0
(I

0)

S 1
(I

0)

S 2
(I

0)

I 1
 I

0

I 1
+

I 0

m
in

 (
I 1

,I
0)

m
ax

 (
I 1

, I
0)

0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 1 0 1
2 0 2 1 0 0 0 0 1 0 2 0 2
3 1 0 0 1 0 1 0 0 0 1 1 1
4 1 1 0 1 0 0 1 0 1 2 1 1
5 1 2 0 1 0 0 0 1 2 0 1 2
6 2 0 0 0 1 1 0 0 0 2 0 2
7 2 1 0 0 1 0 1 0 2 0 1 2
8 2 2 0 0 1 0 0 1 1 1 2 2

I
0

I
1

F U = F (I
0
, I

1
,…,I

p-1
)

I
p-1

1167

Any function F with two values in the ternary domain can
be written as a linear combination of the selectors of the
input variables in the following way:
F = [k0 op1 S0(I1) op1 S0(I0)]
 op2
 [k1 op1 S0(I1) op1 S1(I0)]
 op2 ...op2

 [km op1 S2(I1) op1 S2(I0)]

(1)

We want to create a normal form that, similarly to the

case of the min-term or max-term of Boolean algebra,
considers groups of selectors of the input variables,
modulated by the constant corresponding to the row, joined
by an aggregation fuction .

The properties required for the two operators op1 e op2 are:
X op1 0 = 0 (2)
X op1 1 = X (3)
X op2 0 = X (4)

Although there are various functions that satisfy the
properties (2) and (3), restricting the field of interest to the
four arithmetic operations above, a possible candidate for
op1 that satisfies the properties (2) and (3) is the
multiplication operation.

TABLE III
CANDIDATE FUNCTIONS FOR OP1

I1 I0 max(I1,I0) I1+I0 min(I 1,I0) I1 I0 op1
0 0 0 0 0 0 0
0 1 1 1 0 0 0
0 2 2 2 0 0 0
1 0 1 1 1 0 0
1 1 1 2 1 1 1
1 2 2 0 1 2 2
2 0 2 2 0 0 0
2 1 2 0 1 2 2
2 2 2 1 2 1 X

With regard to the second op2 operator, similarly to what
was done for op1, various functions with the propriety (4)
can be used; in our subset of interest: the arithmetic sum and
the maximum.

TABLE IV
CANDIDATE FUNCTIONS FOR OP2

I1 I0 max(I1,I0) I1+I0 min(I 1,I0) I1 I0 op2
0 0 0 0 0 0 0
0 1 1 1 0 0 1
0 2 2 2 0 0 2
1 0 1 1 1 0 1
1 1 1 2 1 1 X
1 2 2 0 1 2 X
2 0 2 2 0 0 2
2 1 2 0 1 2 X
2 2 2 1 2 1 X

Summarizing, in the ternary number system we can

represent any two-input function (F) using its description of
the truth table. The method is similar to the binary case: we
have to consider all possible combination of the input
variables and for each of them consider the corrisponding
value of the function.

TABLE V
TRUTH TABLE OF A GENERIC FUNCTION F

i I1 I0 F
0 0 0 k0
1 0 1 k1
2 0 2 k2
3 1 0 k3
4 1 1 k4
5 1 2 k5
6 2 0 k6
7 2 1 k7
8 2 2 k8

we can write that F is calculated as the union of the nine
exclusive and not overlaped cases:

F = k0S0(I1)S0(I0)+ k1S0(I1)S1(I0) + ...
 + k8S2(I1)S2(I0)

(5)

that is:

(6)

where:
• ki is the value assumed in the row corresponding to

the number i, with ki∈{0,1,2};

• cj(i) is the j-th digit of the number i, represented in
base n = 3, with j∈{0,1}:

(7)

TABLE VI
VALUES OF COEFFICENTS C0 AND C1

i c0(i) c1(i)
0 0 0
1 0 1
2 0 2
3 1 0
4 1 1
5 1 2
6 2 0
7 2 1
8 2 2

• is the selector of the cj(i) value applied to

the operand with j∈{0,1}.

The proof of the validity of the formula is simple: only
one group of selectors can obtain the value 1 at a time, as
only one configuration of the inputs is possible, being
discrete. The other groups will get value 0.

The group of selectors corresponding to the input
configuration will be multiplied by the related value ki
(property (1)) which, added to the others with null value
groups (property (2)), will be returned as output (property
(3)).

B. N-ary algebra

The interesting thing is that we can go further by
generalizing the representation base (n) and describing with

1168

the same method any function (F) with a predefined number
of operands (p) within the set of nx possibile functions, with
x=np. Also in this case we can write the table of values:

TABLE VII
TRUTH TABLE OF A GENERIC FUNCTION F IN GENERAL DOMINION

in Ip-1 Ip-2 ... I1 I0 F
0 0 0 0 0 0 k0
1 0 0 0 0 1 k1
2 0 0 0 0 2 k2
.
.

n-1 0 0 0 0 n-1 kn-1
n 0 0 0 1 0 kn

n+1 0 0 0 1 1 kn+1
.
.

np-1 n-1 n-1 n-1 n-1 n-1 kn
p
-1

In a similar way to what has already been seen in the case
n = 3, it is possible to represent F according to the inputs I0,
I1, ...,Ip-1:

(8)

where:
• ki is the value assumed in the line corresponding to

the number i, with ki∈{0,1,...,n-1};
• cj(i) is the j-th digit of the number i, represented in

the base n with j∈ {0,1, ..., p-1};
• is the value selector applied to the

operand with j∈{0,1,...,p-1}.

III. RESULT AND DISCUSSION

A. The realization process of a combinational circuit in
MVL

In this section we will show the algorithm to design the
multivalue circuit corresponding to a generic function in the
multi-value domain. The proposed algorithm is based on
four sequential steps:

1) building the truth table that describes exhaustively the
function to be implemented through all the possible
combinations of the inputs (np, logic with n values and
function with p operands),

2) for each non-zero element of the column that describes
the function in the truth table, multiply the value for the row
selector group,

3) the function is given by the sum of the groups of terms
identified in point 2).

To simplifity the use of the algorithm, and in analogy with
[8] in order to grasp the differences between different
representation systems, we will implement the two-digit
half-hadder circuit (I1 and I2) in base 4.

Initially we can consider the circuit as a black box in
which we have 2 inputs and 2 outputs:

Fig. 2 Half-adder analyzed as a black box

The behavior of the circuit is described exhaustively by the
truth table, in this case with p = 2 inputs we will have 42 =
16 combinations (ie the numbers from 0 to 15, column i):

TABLE VIII
HALF-ADDER TRUTH TABLE

i I1 I0 f1 f0
0 0 0 0 0
1 0 1 0 1
2 0 2 0 2
3 0 3 0 3
4 1 0 0 1
5 1 1 0 2
6 1 2 0 3
7 1 3 1 0
8 2 0 0 2
9 2 1 0 3
10 2 2 1 0
11 2 3 1 1
12 3 0 0 3
13 3 1 1 0
14 3 2 1 1
15 3 3 1 2

According to the illustrated methodology, the output
functions are:

f1 = 1S1(I1)S3(I0)+ 1S2(I1)S2(I0) + 1S2(I1)S3(I0) +
 1S3(I1)S1(I0) + 1S3(I1)S2(I0) + 1S3(I1)S3(I0) =
 = S1(I1)S3(I0)+ S2(I1)S2(I0) + S2(I1)S3(I0) +
 S3(I1)S1(I0) + S3(I1)S2(I0) + S3(I1)S3(I0)

(9)

f0 = 1S0(I1)S1(I0)+ 2S0(I1)S2(I0) + 3S0(I1)S3(I0) +
 1S1(I1)S0(I0) +2S1(I1)S1(I0) +3S1(I1)S2(I0) +
 2S2(I1)S0(I0) +3S2(I1)S1(I0) +1S2(I1)S3(I0) +
 3S3(I1)S0(I0) +1S3(I1)S2(I0) +2S3(I1)S3(I0)

(10)

Transforming these expressions into the corrisponding

digital circuits is a simple process, as happens in the binary
case.

Fig. 3 MVL circuit that implements the function f1

I
0

I
1

HALF
ADDER

f
0

f
1

I
0
 I

1

+ f
1

2 1 1 3 3

S
1
(I

1
)S

3
(I

0
)

S
2
(I

1
)S

2
(I

0
)

S
2
(I

1
)S

3
(I

0
)

S

3
(I

1
)S

2
(I

0
)

S
3
(I

1
)S

3
(I

0
)

2

1169

Fig. 4 MVL circuit that implements the function f0

The corresponding to f0 circuit will be implemented using
the set of base functions explained but in this specific case,
remembering the semantic of our operators, we can also
calculate f0 as:

B. Basic element for an MVL memory

In this section, we present our design of a D flip-flop
which is based on an extension of binary D flip-flop. In a D
flip-flop the next state Q(t+1) is characterized by a function
of both the current state Q(t) and the D data input. The next
state Q(t+1) could be defined by:

 (12)
or

 (13)
these two equations can be transformed in a fuzzy domain by
replacing the binary operators by fuzzy operators as shown
in [20][6]. Using min-max type operation and fuzzy negation
we can write the following transformation:

 (14)

 (15)

The symbol represents min operation and represents
max operation. Because these equations do not transform D
flip-flop to the fuzzy domain, the authors proposed a
different equation. The proposed circuit, however, is not
simple to realize, therefore starting from the assumption that
normally to construct memory elements, a clock is used that
allows to restrict the sampling interval of the input D. In this
case the transfer function can be written through the
operators we have defined in Session II:

 (16)

It can be understood easily that working with the flip-flop
shown in Fig. 3, the value of the input D is posted to the
output Q(t) when the CLK values is 1, otherwise (CLK=0)
the circuit store the previous value: Q(t+1)=Q(t).

The corresponding digital circuit will then be:

Fig. 5 D-Type Flip-Flop with clock signal (CLK)

Excitation table for this circuit is shown in Table IX.

TABLE IX
SIMULATION OF THE HALF-ADDER CIRCUIT

t CLK D Q(t) Q(t+1)

0 0 0 0 0

1 1 0 0 0

2 0 0 0 0

3 1 0 0 0

0 0 0 1 1

1 1 0 1 0

2 0 0 0 0

3 1 0 0 0

0 0 0 2 2

1 1 0 2 0

2 0 0 0 0

3 1 0 0 0

0 0 0 3 3

1 1 0 3 0

2 0 0 0 0

3 1 0 0 0

0 0 1 0 0

1 1 1 0 1

2 0 1 1 1

3 1 1 1 1

0 0 1 1 1

1 1 1 1 1

2 0 1 1 1

3 1 1 1 1

0 0 1 2 2

1 1 1 2 1

2 0 1 1 1

3 1 1 1 1

0 0 1 3 3

1 1 1 3 1

2 0 1 1 1

3 1 1 1 1

0 0 2 0 0

1 1 2 0 2

f0 = I1+I0 (11)

I
1
 I

0
 2 3

2S
0
(I

1
)S

2
(I

0
)

3S
0
(I

1
)S

3
(I

0
)

S
1
(I

1
)S

0
(I

0
)

S
0
(I

1
)S

1
(I

0
)

3 1 0 2 1 0 3

2S
1
(I

1
)S

1
(I

0
)

3S
1
(I

1
)S

2
(I

0
)

2S
2
(I

1
)S

0
(I

0
)

3S
2
(I

1
)S

1
(I

0
)

S
2
(I

1
)S

3
(I

0
)

3S
3
(I

1
)S

0
(I

0
)

S
3
(I

1
)S

2
(I

0
)

2S
3
(I

1
)S

3
(I

0
)

2

f
0

+

+ Q(t)

D

CLK

1

0

1170

2 0 2 2 2

3 1 2 2 2

0 0 2 1 1

1 1 2 1 2

2 0 2 2 2

3 1 2 2 2

0 0 2 2 2

1 1 2 2 2

2 0 2 2 2

3 1 2 2 2

0 0 2 3 3

1 1 2 3 2

2 0 2 2 2

3 1 2 2 2

0 0 3 0 0

1 1 3 0 3

2 0 3 3 3

3 1 3 3 3

0 0 3 1 1

1 1 3 1 3

2 0 3 3 3

3 1 3 3 3

0 0 3 2 2

1 1 3 2 3

2 0 3 3 3

3 1 3 3 3

0 0 3 3 3

1 1 3 3 3

2 0 3 3 3

3 1 3 3 3

To simulate the behavior of this flip-flop, we investigate
our design using a simple java program. The table 1 has been
calculated importing the CSV output file generated by the
class JMAT into a spreadsheet application like MS Excel or
OO Calc.

TABLE X
JAVA EXAMPLE CODE FOR SIMULATE D-TYPE FLIP-FLOP CLOCKED

package jmat;
import java.io.IOException;
import java.io.PrintWriter;
public class JMAT {
 final static int N = 4; // The domain dimension
 public static void main(String[] args) throws IOException {
 int saveQt; // used to save the state Q(t)
 int CLK=0; // the square wave of the clock
 PrintWriter writer = new PrintWriter("logging.csv", "UTF-8");
 //heading of CSV file
 writer.println("t,CLK,D ,Q(t),Q(t+1)");
 for (int D = 0; D < N; D++) {
 for (int Qt = 0; Qt < N; Qt++) {
 // save actual state Q(t)
 saveQt = Qt;

 for (int t = 0; t < N; t++) {// t stands for time
 CLK= t % 2; //the clock
 // writing the row inside the CSV file
 writer.println("" + t + "," + CLK + "," +D + "," +
 Qt + "," + FlipFlopD (CLK, D, Qt));
 Qt = FlipFlopD (CLK , D, Qt); //the next state for Q(t)
 }
 // resume original Q(t)
 Qt = saveQt;
 }
 }
 // Close writer
 writer.close();
 }
 public static int FlipFlopD (int CLK, int D, int Qt) {
 // this function realize the flip-flop’s behaviour
 int x1 = MULTgate(SELgate(1, CLK), D);
 int x2 = MULTgate(SELgate(0, CLK), Qt);
 Qt = SUMgate(x1, x2);
 return Qt;
 }
 public static int SELgate(int S, int x) {
 return (x == S ? 1 : 0);
 }
 public static int MULTgate(int x, int y) {
 return (x * y) % N;
 }
 public static int SUMgate(int x, int y) {
 return (x + y) % N;
 }
}

As you can see, we have realized a simple method

(SELgate()) that implements the 3 selectors and other 2
methods (SUMgate() and MULTgate()) that implement the
binary functions SUM and MULT.

To simulate the operation of the sequential circuit we use
grafted loops that allow you to vary D, Qt and the clock
(CLK) in the set of possible values. We are interested in
seeing the operation of the circuit both in the ability to keep
the information stored when CLK=0, and to transfer D in the
internal memory (Qt) if CLK=1.

IV. CONCLUSION

This article provides a different evolutionary line to
improve the computing capacity of the CPUs that is based on
the extension of the binary system in a multi-value coding
system or, commonly, called MVL.

Although this direction has already been explored, the
idea behind the study is in the representation of the generic
function in the MVL domain. This representation has a link
to the binary system and a surprisingly greater simplicity of
the corresponding digital circuits (combinatorial and
sequential). A different mathematical approach is thus
provided for the realization of the multivalue logic gates.
This could enable the use of different data encoding systems
no longer linked to the voltage value of a signal (as seen in
[18]) but to other physical quantities as it happens at present,
for example, in the world of telecommunications.

The other important aspect is the scalability of the
solution: this study illustrates a methodology that is
independent of the basis of the adopted domain and could
even be extended to fuzzy logic [8].

1171

The proposed solution is not opposed to multi-core
architectures, since it describes how the internal operating
logic of a future CPU could be and therefore nothing
prevents the creation of multi-core architectures with MVL.

REFERENCES
[1] D. Etiemble, 45-year CPU Evolution: one law and two equations,

Second Workshop on Pioneering Processor Paradigms, Vienna,
February 2018,

[2] Haissam El-Aawar, Increasing the transistor count by constructiong
a two-layer crystal square on a single chip, International Journal of
Computer Science & Information Technology (IJCSIT) Vol 7, No 3,
June 2015

[3] X. Chen, Y. Wardi, S. Yalamanchili, Power regulation in high
performance multicore processors, Decision and Control (CDC)
2017 IEEE 56th Annual Conference on, pp. 2674-2679, 2017.

[4] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Silvestri, F.,
Spanò, S. Energy consumption saving in embedded microprocessors
using hardware accelerators, Telecommunication Computing
Electronics and Control (Telkomnika), 16 (3), pp. 1019-1026, 2018.

[5] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Lee, R.B.
Integration of butterfly and inverse butterfly nets in embedded
processors: Effects on power saving, Conference Record - Asilomar
Conference on Signals, Systems and Computers, art. no. 6489268, pp.
1457-1459, 2012

[6] Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh.
Design of Low Power MAX Operator for Multi-Valued Logic System,
Procedia Computer Science, pages 428 – 433, 2015.

[7] W. Alexander, The ternary computer, Electronics and Power, pages
36-39. February 1964.

[8] Ben Choi and Kankana Shukla, Multi-Valued Logic Circuit Design
and Implementation, International Journal of Electronics and
Electrical Engineering Vol. 3, No. 4, August 2015.

[9] Prashant S. Wankhade, Gajanan Sarate. Minimization of Multiple
Value function using Quine Mc-Cluskey Technique. International
Journal of Computer Applications (0975 – 8887) Volume 143 – No.7,
June 2016.

[10] Israel Halpern and Michael Yoeli. Ternary arithmetic unit,
Proceedings of the Institution of Electrical Engineers, Volume 115,
Issue 10, October 1968

[11] Dhande A.P., Ingole V.T. and Ghiye V.R., Thernary Digital System:
Concepts and Applications, SM Online Publishers LLC, ISBN: 978-
0-9962745-0-0, October 2014.

[12] Satish Narkhede, Design and Implementation of an Efficient
Instruction Set for Ternary Processor, International Journal of
Computer Applications (0975 – 8887) Volume 83 – No.16,
December 2013.

[13] Nayan Kumar, Naware Deepti, S. Khurge and S.U.Bhandari, Review
of Quaternary Algebra & its Logic Circuits, International Conference
on Computing Communication Control and Automation, pages 969-
973, 2015.

[14] Ifat Jahangir, Dihan Md. Nuruddin Hasan, Shajid Islam, Nahian
Alam Siddique, Md. Mehedi Hasan. Development of a Novel
Quaternary Algebra with the Design of Some Useful Logic Blocks,
Proceedings of 2009 12th International Conference on Computer and
Information Technology (ICCIT 2009), Dhaka, Bangladesh, , pages
197 – 202, December 2009.

[15] Miller D.M. and Thornton M.A., Multiple Valued Logic: Concepts
and Representations, Digital Circuits and Systems, Vol. 2, No. 1 ,
Pages 1-127, 2007.

[16] L. P. Nascimento, “An Automated Tool for Analysis and Design of
MVL Digital Circuits”, in 14th Symposium on Integrated Circuits
and Systems Design, Pirenópolis-GO-Brazil, 2001.

[17] Amnon Rosenmann, A Multiple-Valued Logic Approach to the
Design and Verication of Hardware Circuits, Journal of Applied
Logic, Volume 15 Issue C, pages 69-93, May 2016

[18] B. Srinivasa Raghavan and V.S Kanchana Bhaaskaran, Design of
Novel Multiple Valued Logic (MVL) Circuits, International
Conference on Nextgen Electronic Technologies: Silicon to Software
(ICNETS2 2017) Chennai, India 23-25 March 2017.

1172

