
 

 

 

Vol.8 (2018) No. 4 

ISSN: 2088-5334 

Designing Digital Circuits in Multi-Valued Logic  
Alessandro Simonetta#, Maria Cristina Paoletti 

#  Department of Enterprise Engineering, University of Rome “Tor Vergata”, Via del Politecnico, 1, Rome, 00133, Italy  
 E-mail: alessandro.simonetta@gmail.com 

 
 
Abstract— In the last few decades we have witnessed an increase in CPU performance, which has been made possible thanks to the 
increase in the clock frequency and the increase in the number of transistors in the unit of space. In the last few years, however, we 
reached the limit for the clock and for the miniaturization of the transistor grid. Beyond this growth new problems arose such as the 
disposal of the produced heat and the minimum distance to be respected between elements for the electrical signals transfer. So the 
chip makers, to further increase the processing power of the processors, started to insert more cores on the same chip. The presence 
of several cores undoubtedly improves performance and improves consumption, but the ability to transfer data between cores and 
components remains limited by the number of pins of the cores themselves. Furthermore, it is necessary to manage the 
synchronization between cores during the access to common resources and all those multi-core architectures typical problems. This 
article provides a different approach to improve the computing capacity of the CPUs that is based on the extension of the binary 
system in a multi-value coding system or, commonly, called MVL. Although this direction has already been explored, the idea behind 
the study is in the representation of the generic function in the MVL domain. This representation has a link to the binary system and 
a surprisingly greater simplicity of the corresponding digital circuits (combinatorial and sequential). A different mathematical 
approach is thus provided for the realization of the multivalue logic gates. This could enable the use of different data encoding 
systems no longer linked to the voltage value of a signal but to other physical quantities as it happens at present, for example, in the 
world of telecommunications. 
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I. INTRODUCTION 

The chip makers have always looked to improve 
performance by trying to make increasingly powerful and 
faster CPUs by focusing on increasing the clock frequency 
and inserting a greater number of transistors in the unit of 
space. In recent decades, the number of CPU transistors 
followed the famous Moore law. Unfortunately, due to the 
level of miniaturization achieved, it was no longer possible 
to increase neighter the density of the transistors, nor the 
clock frequency (another factor that influences the 
computing power), because new problems arose, in addition 
to the ability to operate at inertial distances, linked to the 
signal transfer speed between components and also to the 
heat produced by the components overheating (see [1]). 

As the increase in the density of transistors on the surface 
had reached the limit, some have hypothesized to increase 
the number through the thickening of the die. However, 
having a greater thickness of the die can lead to a significant 
increase in costs, for this reason some studies have shown 
that the number of transistors can be increased by using a 
double layer of the die to form a crystal grid in whose nodes 

[transistors are located. This approach, duplicates the 
number of transistors and makes the die thicker [2]. 

However, the strategy adopted by the chipmakers has 
been to improve the computing power by constructing CPUs 
with multiple cores within the same chip, enabling 
processing parallelism. This approach undoubtedly improves 
performance but introduces new problems because that 
processing is distributed on the cores. These cores must be 
synchronized to access common resources or collaborate to a 
common goal. Moreover, the management of interrupts is 
more complex than a single-core. Finally, the limit of the 
transfer capacity of the cores cannot be exceeded, because it 
depends on the number of connections and the clock 
frequency. Power management also becomes a crucial factor 
when building high-performance architectures, as the articles 
[3], [4] and [5] demonstrates. 

In this article we will discuss a different approach based 
on the possibility of building a high performance computer 
architecture by making digital components that work 
intrinsically in multivalue logic (MVL). The need to build 
efficient machines that worked in MVL, with low 
consumption was considered in [6]. 
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A ternary computer hypothesis has been historically 
treated in [7] where the author observed that if the circuit 
complexity depended roughly on the product of the base size 
used (R) multiplied by the number of digits of the maximum 
representable number (N), the economically best basis was 
e=2,718. The article pointed out that if it were possible to 
build components that when increasing the representation 
base (R) size complexity and cost don’t grow, the best 
choice would be to adopt the largest possible base. 

The idea of designing circuits that work in MVL has 
recently been treated from the canonical point of view, using 
post-order algebras of degree greater than or equal to two, 
also in [8]. Some studies showed that the methods used in 
the Boolean algebra, such as the Quine Mc-Cluskey method 
shown in [9], are applicable. However, the idea that inspired 
this work is the scalability of the solution with respect to the 
chosen base, the simple realization of the circuits and the 
maintenance of a close relationship with the binary system. 
The ability to build any circuit in MVL will allow to build 
processors, memories and I/O devices able to operate, with 
the same number of connections, at a greater throughput 
compared to the binary case. The ternary logic was the first 
studied extension of the binary algebra ([10] and [11]), but 
also inspired the realization of processors working on the 
base 3 [12]. Also the quaternary logic, being power of two, 
inspired many research works ([13] and [14]). In the 
literature we also find valuable contributions on MVL as [15] 
and [16], also from the point of view of the verification of 
hardware circuits [17]. 

However, with the present work we will demonstrate how 
it is possible to define a reduced set of mathematical 
operators that are able to perform any function in the chosen 
domain independently from the base, similar to what 
happens for universal operators (NAND and NOR) in the 
case of Boolean algebra. The proposed idea is based on the 
use of one-digit arithmetic operations (multiplication and 
sum) together with the functions reported in the binary 
domain (the selectors). Multivalue operators will be 
described in Session II from the external point of view, as if 
they were black boxes, without considering the internal 
functionality or the modes of transferring the signals.  

Research and technological innovation will provide, in the 
near future, the best answers for the realization of these 
components. Session III is organized in two parts: the first 
concerns the process of creating an example of 
combinational circuit (half-adder); the second one is the 
construction of a memory element for MVL information. 
Section IV gives the conclusion and oulines the future 
research. 

II. MATERIAL AND METHOD 

Without losing generality we can consider the algebra in 
base 3 and then we can extend the operators to any domain 
with n-values. Although we have extended the discrete 
domain by a single value, for example a word of only 10 
digits passes from 1024 combinations in the binary number 
system to about 59k in the ternary one. 

A. Ternary algebra 

Consider a T domain consisting of the three values 
{0,1,2}. On this domain we can define unary functions F(I0): 

T→T, with I0∈T; binary functions F (I1, I0): T×T→T, with 
I0∈T, I1∈T; and, generically, functions with p operands 
F(Ip-1, Ip-2,...,I1, I0): T×...×T→T, with I0∈T,..., Ip-1∈T. 

So we can imagine a function like a black box that 
receives input values I0, I1,..., Ip-2, Ip-1 and returns an output U 
that represents the value assumed by the function at the 
inputs (combinatorial circuit). 

 
 
 
 
 
 
 

Fig. 1  Example of function as a black box 
 
With p inputs we have x=3p combinations of the inputs 

that originate 3x different functions. In a generic algebra with 
n values we will have x=np e nx different functions. 

1) Unary functions: in the context of the nn possible unary 
functions (27 in the ternary case) we consider n functions, 
which reduce the n-ario domain into the binary one. In 
particular we will call them selection functions, or selectors, 
and we will indicate them with the letter S. 

In an algebra with n values there are n selectors each one 
for any symbol of the domain. If c ∈  T the selection 
function Sc(I) answers the value 1 when in input (I) the value 
c is present and zero in the other cases. 

In the ternary case the functions S0, S1 and S2 are: 

TABLE I 
SELECTOR FUNCTIONS (N=3) 

I S1(I) S1(I) S2(I) 
0 1 0 0 
1 0 1 0 
2 0 0 1 

 
2) Binary functions: the functions with two values in the 

ternary domain are 39 (19.683) and can be described by a 
quintuple of functions: the three selectors plus two functions 
(op1 e op2). Entering in the value table the input selectors (S0 , 
S1 and S2) and the main arithmetic functions: product, sum, 
minimum and maximum: 
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8 2 2 0 0 1 0 0 1 1 1 2 2 
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Any function F with two values in the ternary domain can 
be written as a linear combination of the selectors of the 
input variables in the following way: 
F = [ k0  op1 S0(I1) op1 S0(I0) ]   
 op2  
  [ k1 op1 S0(I1) op1 S1(I0) ] 
  op2 ...op2  

  [ km op1 S2(I1) op1 S2(I0) ]  

(1) 

 
We want to create a normal form that, similarly to the 

case of the min-term or max-term of Boolean algebra, 
considers groups of selectors of the input variables, 
modulated by the constant corresponding to the row, joined 
by an aggregation fuction . 

The properties required for the two operators op1 e op2 are: 
X op1 0 = 0  (2) 
X op1 1 = X  (3) 
X op2 0 = X  (4) 

Although there are various functions that satisfy the 
properties (2) and (3), restricting the field of interest to the 
four arithmetic operations above, a possible candidate for 
op1 that satisfies the properties (2) and (3) is the 
multiplication operation. 

TABLE III 
CANDIDATE FUNCTIONS FOR OP1 

I1 I0 max(I1,I0) I1+I0 min(I 1,I0) I1 I0 op1 
0 0 0 0 0 0 0 
0 1 1 1 0 0 0 
0 2 2 2 0 0 0 
1 0 1 1 1 0 0 
1 1 1 2 1 1 1 
1 2 2 0 1 2 2 
2 0 2 2 0 0 0 
2 1 2 0 1 2 2 
2 2 2 1 2 1 X 

 

With regard to the second op2 operator, similarly to what 
was done for op1, various functions with the propriety (4) 
can be used; in our subset of interest: the arithmetic sum and 
the maximum. 

TABLE IV 
CANDIDATE FUNCTIONS FOR OP2 

I1 I0 max(I1,I0) I1+I0 min(I 1,I0) I1 I0 op2 
0 0 0 0 0 0 0 
0 1 1 1 0 0 1 
0 2 2 2 0 0 2 
1 0 1 1 1 0 1 
1 1 1 2 1 1 X 
1 2 2 0 1 2 X 
2 0 2 2 0 0 2 
2 1 2 0 1 2 X 
2 2 2 1 2 1 X 

 
Summarizing, in the ternary number system we can 

represent any two-input function (F) using its description of 
the truth table. The method is similar to the binary case: we 
have to consider all possible combination of the input 
variables and for each of them consider the corrisponding 
value of the function. 

TABLE V 
TRUTH TABLE OF A GENERIC FUNCTION F  

i I1 I0 F 
0 0 0 k0 
1 0 1 k1 
2 0 2 k2 
3 1 0 k3 
4 1 1 k4 
5 1 2 k5 
6 2 0 k6 
7 2 1 k7 
8 2 2 k8 

 
we can write that F is calculated as the union of the nine 
exclusive and not overlaped cases: 
 
F =  k0S0(I1)S0(I0)+ k1S0(I1)S1(I0) + ... 
     + k8S2(I1)S2(I0) 

(5) 

 
that is: 

  
(6) 

where: 
• ki is the value assumed in the row corresponding to 

the number i, with ki∈{0,1,2};  

• cj(i) is the j-th digit of the number i, represented in 
base n = 3, with j∈{0,1}:  

 
(7) 

TABLE VI 
VALUES OF COEFFICENTS C0 AND C1 

i c0(i) c1(i) 
0 0 0 
1 0 1 
2 0 2 
3 1 0 
4 1 1 
5 1 2 
6 2 0 
7 2 1 
8 2 2 

 

•  is the selector of the cj(i) value applied to 

the operand   with j∈{0,1}.  

The proof of the validity of the formula is simple: only 
one group of selectors can obtain the value 1 at a time, as 
only one configuration of the inputs is possible, being 
discrete. The other groups will get value 0. 

The group of selectors corresponding to the input 
configuration will be multiplied by the related value ki 
(property (1)) which, added to the others with null value 
groups (property (2)), will be returned as output (property 
(3)). 

B. N-ary algebra 

The interesting thing is that we can go further by 
generalizing the representation base (n) and describing with 
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the same method any function (F) with a predefined number 
of operands (p) within the set of nx possibile functions, with 
x=np. Also in this case we can write the table of values: 

 

TABLE VII 
TRUTH TABLE OF A GENERIC FUNCTION F IN GENERAL DOMINION 

in Ip-1 Ip-2 ... I1 I0 F 
0 0 0 0 0 0 k0 
1 0 0 0 0 1 k1 
2 0 0 0 0 2 k2 
. . . . . . . 
. . . . . . . 

n-1 0 0 0 0 n-1 kn-1 
n 0 0 0 1 0 kn 

n+1 0 0 0 1 1 kn+1 
. . . . . . . 
. . . . . . . 

np-1 n-1 n-1 n-1 n-1 n-1 kn
p
-1 

In a similar way to what has already been seen in the case 
n = 3, it is possible to represent F according to the inputs I0, 
I1, ...,Ip-1: 

 

(8) 

where: 
• ki is the value assumed in the line corresponding to 

the number i, with ki∈{0,1,...,n-1}; 
• cj(i) is the j-th digit of the number i, represented in 

the base n with j∈ {0,1, ..., p-1}; 
•  is the  value selector applied to the  

operand with j∈{0,1,...,p-1}. 

III.  RESULT AND DISCUSSION 

A. The realization process of a combinational circuit in 
MVL 

In this section we will show the algorithm to design the 
multivalue circuit corresponding to a generic function in the 
multi-value domain. The proposed algorithm is based on 
four sequential steps: 

1) building the truth table that describes exhaustively the 
function to be implemented through all the possible 
combinations of the inputs (np, logic with n values and 
function with p operands), 

2) for each non-zero element of the column that describes 
the function in the truth table, multiply the value for the row 
selector group, 

3) the function is given by the sum of the groups of terms 
identified in point 2). 

To simplifity the use of the algorithm, and in analogy with 
[8] in order to grasp the differences between different 
representation systems, we will implement the two-digit 
half-hadder circuit (I1 and I2) in base 4. 

Initially we can consider the circuit as a black box in 
which we have 2 inputs and 2 outputs: 

 
 

 
 
 

Fig. 2  Half-adder analyzed as a black box 

The behavior of the circuit is described exhaustively by the 
truth table, in this case with p = 2 inputs we will have 42 = 
16 combinations (ie the numbers from 0 to 15, column i): 

TABLE VIII 
HALF-ADDER TRUTH TABLE 

i I1 I0 f1 f0 
0 0 0 0 0 
1 0 1 0 1 
2 0 2 0 2 
3 0 3 0 3 
4 1 0 0 1 
5 1 1 0 2 
6 1 2 0 3 
7 1 3 1 0 
8 2 0 0 2 
9 2 1 0 3 
10 2 2 1 0 
11 2 3 1 1 
12 3 0 0 3 
13 3 1 1 0 
14 3 2 1 1 
15 3 3 1 2 

According to the illustrated methodology, the output 
functions are: 

 
f1 =  1S1(I1)S3(I0)+ 1S2(I1)S2(I0) + 1S2(I1)S3(I0) + 
 1S3(I1)S1(I0) + 1S3(I1)S2(I0) + 1S3(I1)S3(I0) = 
    = S1(I1)S3(I0)+ S2(I1)S2(I0) + S2(I1)S3(I0) + 
 S3(I1)S1(I0) + S3(I1)S2(I0) + S3(I1)S3(I0) 

(9) 

 
f0 = 1S0(I1)S1(I0)+ 2S0(I1)S2(I0) + 3S0(I1)S3(I0) + 
 1S1(I1)S0(I0) +2S1(I1)S1(I0) +3S1(I1)S2(I0) + 
 2S2(I1)S0(I0) +3S2(I1)S1(I0) +1S2(I1)S3(I0) + 
 3S3(I1)S0(I0) +1S3(I1)S2(I0) +2S3(I1)S3(I0)  

(10) 

 
Transforming these expressions into the corrisponding 

digital circuits is a simple process, as happens in the binary 
case. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  MVL circuit that implements the function f1 
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Fig. 4  MVL circuit that implements the function f0 

 
The corresponding to f0 circuit will be implemented using 
the set of base functions explained but in this specific case, 
remembering the semantic of our operators, we can also 
calculate f0 as: 

B. Basic element for an MVL memory 

In this section, we present our design of a D flip-flop 
which is based on an extension of binary D flip-flop. In a D 
flip-flop the next state Q(t+1) is characterized by a function 
of both the current state Q(t) and the D data input. The next 
state Q(t+1) could be defined by: 

 

 (12) 
or 

 (13) 
these two equations can be transformed in a fuzzy domain by 
replacing the binary operators by fuzzy operators as shown 
in [20][6]. Using min-max type operation and fuzzy negation 
we can write the following transformation: 

 (14) 

 (15) 

The symbol  represents min operation and represents 
max operation. Because these equations do not transform D 
flip-flop to the fuzzy domain, the authors proposed a 
different equation. The proposed circuit, however, is not 
simple to realize, therefore starting from the assumption that 
normally to construct memory elements, a clock is used that 
allows to restrict the sampling interval of the input D. In this 
case the transfer function can be written through the 
operators we have defined in Session II: 

 (16) 

It can be understood easily that working with the flip-flop 
shown in Fig. 3, the value of the input D is posted to the 
output Q(t) when the CLK values is 1, otherwise (CLK=0) 
the circuit store the previous value: Q(t+1)=Q(t). 

The corresponding digital circuit will then be: 

 
Fig. 5  D-Type Flip-Flop with clock signal (CLK) 
 

Excitation table for this circuit is shown in Table IX. 

TABLE IX 
SIMULATION OF THE HALF-ADDER CIRCUIT 

t CLK  D Q(t) Q(t+1) 

0 0 0 0 0 

1 1 0 0 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 0 1 1 

1 1 0 1 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 0 2 2 

1 1 0 2 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 0 3 3 

1 1 0 3 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 1 0 0 

1 1 1 0 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 1 1 1 

1 1 1 1 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 1 2 2 

1 1 1 2 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 1 3 3 

1 1 1 3 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 2 0 0 

1 1 2 0 2 
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2 0 2 2 2 

3 1 2 2 2 

0 0 2 1 1 

1 1 2 1 2 

2 0 2 2 2 

3 1 2 2 2 

0 0 2 2 2 

1 1 2 2 2 

2 0 2 2 2 

3 1 2 2 2 

0 0 2 3 3 

1 1 2 3 2 

2 0 2 2 2 

3 1 2 2 2 

0 0 3 0 0 

1 1 3 0 3 

2 0 3 3 3 

3 1 3 3 3 

0 0 3 1 1 

1 1 3 1 3 

2 0 3 3 3 

3 1 3 3 3 

0 0 3 2 2 

1 1 3 2 3 

2 0 3 3 3 

3 1 3 3 3 

0 0 3 3 3 

1 1 3 3 3 

2 0 3 3 3 

3 1 3 3 3 

 

To simulate the behavior of this flip-flop, we investigate 
our design using a simple java program. The table 1 has been 
calculated importing the CSV output file generated by the 
class JMAT into a spreadsheet application like MS Excel or 
OO Calc. 

TABLE X 
JAVA EXAMPLE CODE  FOR SIMULATE D-TYPE FLIP-FLOP CLOCKED 

package jmat; 
import java.io.IOException; 
import java.io.PrintWriter; 
public class JMAT { 
    final static int N = 4; // The domain dimension 
    public static void main(String[] args) throws IOException { 
        int saveQt; // used to save the state Q(t) 
        int CLK=0; // the square wave of the clock 
        PrintWriter writer = new PrintWriter("logging.csv", "UTF-8"); 
        //heading of CSV file 
        writer.println("t,CLK,D ,Q(t),Q(t+1)");  
        for (int D = 0; D < N; D++) { 
            for (int Qt = 0; Qt < N; Qt++) { 
 // save actual state Q(t)  
                saveQt = Qt; 

                for (int t = 0; t < N; t++) {// t stands for time 
                    CLK= t % 2; //the clock 
                    // writing the row inside the CSV file 
                    writer.println("" + t + "," + CLK + "," +D + "," +  
                                           Qt + "," + FlipFlopD (CLK, D, Qt)); 
                    Qt = FlipFlopD (CLK , D, Qt); //the next state for Q(t) 
                } 
                // resume original Q(t) 
                Qt = saveQt; 
            } 
        } 
        // Close writer 
        writer.close(); 
    } 
    public static int FlipFlopD (int CLK, int D, int Qt) { 
        // this function realize the flip-flop’s behaviour 
        int x1 = MULTgate(SELgate(1, CLK), D); 
        int x2 = MULTgate(SELgate(0, CLK), Qt); 
        Qt = SUMgate(x1, x2); 
        return Qt; 
    } 
    public static int SELgate(int S, int x) { 
        return (x == S ? 1 : 0); 
    } 
    public static int MULTgate(int x, int y) { 
        return (x * y) % N; 
    } 
    public static int SUMgate(int x, int y) { 
        return (x + y) % N; 
    } 
} 

 
As you can see, we have realized a simple method 

(SELgate()) that implements the 3 selectors and other 2 
methods (SUMgate() and MULTgate()) that implement the 
binary functions SUM and MULT. 

To simulate the operation of the sequential circuit we use 
grafted loops that allow you to vary D, Qt and the clock 
(CLK) in the set of possible values. We are interested in 
seeing the operation of the circuit both in the ability to keep 
the information stored when CLK=0, and to transfer D in the 
internal memory (Qt) if CLK=1. 

IV.  CONCLUSION 

This article provides a different evolutionary line to 
improve the computing capacity of the CPUs that is based on 
the extension of the binary system in a multi-value coding 
system or, commonly, called MVL.  

Although this direction has already been explored, the 
idea behind the study is in the representation of the generic 
function in the MVL domain. This representation has a link 
to the binary system and a surprisingly greater simplicity of 
the corresponding digital circuits (combinatorial and 
sequential). A different mathematical approach is thus 
provided for the realization of the multivalue logic gates. 
This could enable the use of different data encoding systems 
no longer linked to the voltage value of a signal (as seen in 
[18]) but to other physical quantities as it happens at present, 
for example, in the world of telecommunications. 

The other important aspect is the scalability of the 
solution: this study illustrates a methodology that is 
independent of the basis of the adopted domain and could 
even be extended to fuzzy logic [8]. 
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The proposed solution is not opposed to multi-core 
architectures, since it describes how the internal operating 
logic of a future CPU could be and therefore nothing 
prevents the creation of multi-core architectures with MVL. 

REFERENCES 
[1] D. Etiemble, 45-year CPU Evolution: one law and two equations, 

Second Workshop on Pioneering Processor Paradigms, Vienna, 
February 2018, 

[2] Haissam El-Aawar, Increasing the transistor count by constructiong 
a two-layer crystal square on a single chip, International Journal of 
Computer Science & Information Technology (IJCSIT) Vol 7, No 3, 
June 2015 

[3] X. Chen, Y. Wardi, S. Yalamanchili, Power regulation in high 
performance multicore processors, Decision and Control (CDC) 
2017 IEEE 56th Annual Conference on, pp. 2674-2679, 2017. 

[4] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Silvestri, F., 
Spanò, S. Energy consumption saving in embedded microprocessors 
using hardware accelerators, Telecommunication Computing 
Electronics and Control (Telkomnika), 16 (3), pp. 1019-1026, 2018. 

[5] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Lee, R.B. 
Integration of butterfly and inverse butterfly nets in embedded 
processors: Effects on power saving, Conference Record - Asilomar 
Conference on Signals, Systems and Computers, art. no. 6489268, pp. 
1457-1459, 2012 

[6] Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh. 
Design of Low Power MAX Operator for Multi-Valued Logic System, 
Procedia Computer Science, pages 428 – 433, 2015. 

[7] W. Alexander, The ternary computer, Electronics and Power, pages 
36-39. February 1964. 

[8] Ben Choi and Kankana Shukla, Multi-Valued Logic Circuit Design 
and Implementation, International Journal of Electronics and 
Electrical Engineering Vol. 3, No. 4, August 2015. 

[9] Prashant S. Wankhade, Gajanan Sarate. Minimization of Multiple 
Value function using Quine Mc-Cluskey Technique. International 
Journal of Computer Applications (0975 – 8887) Volume 143 – No.7, 
June 2016. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[10] Israel Halpern and Michael Yoeli. Ternary arithmetic unit, 
Proceedings of the Institution of Electrical Engineers, Volume 115, 
Issue 10, October 1968 

[11] Dhande A.P., Ingole V.T. and Ghiye V.R., Thernary Digital System: 
Concepts and Applications, SM Online Publishers LLC, ISBN: 978-
0-9962745-0-0, October 2014. 

[12] Satish Narkhede, Design and Implementation of an Efficient 
Instruction Set for Ternary Processor, International Journal of 
Computer Applications (0975 – 8887) Volume 83 – No.16, 
December 2013. 

[13] Nayan Kumar, Naware Deepti, S. Khurge and S.U.Bhandari, Review 
of Quaternary Algebra & its Logic Circuits, International Conference 
on Computing Communication Control and Automation, pages 969- 
973, 2015. 

[14] Ifat Jahangir, Dihan Md. Nuruddin Hasan, Shajid Islam, Nahian 
Alam Siddique, Md. Mehedi Hasan. Development of a Novel 
Quaternary Algebra with the Design of Some Useful Logic Blocks, 
Proceedings of 2009 12th International Conference on Computer and 
Information Technology (ICCIT 2009), Dhaka, Bangladesh, , pages 
197 – 202, December 2009. 

[15] Miller D.M. and Thornton M.A., Multiple Valued Logic: Concepts 
and Representations, Digital Circuits and Systems, Vol. 2, No. 1 , 
Pages 1-127, 2007. 

[16] L. P. Nascimento, “An Automated Tool for Analysis and Design of 
MVL Digital Circuits”, in 14th Symposium on Integrated Circuits 
and Systems Design, Pirenópolis-GO-Brazil, 2001. 

[17] Amnon Rosenmann, A Multiple-Valued Logic Approach to the 
Design and Verication of Hardware Circuits, Journal of Applied 
Logic, Volume 15 Issue C, pages 69-93, May 2016  

[18] B. Srinivasa Raghavan and V.S Kanchana Bhaaskaran, Design of 
Novel Multiple Valued Logic (MVL) Circuits, International 
Conference on Nextgen Electronic Technologies: Silicon to Software 
(ICNETS2 2017) Chennai, India 23-25 March 2017. 
 

 
 
 

 
 

1172




