

Vol.8 (2018) No. 4

ISSN: 2088-5334

Auto-marking System: A Support Tool for Learning of Programming
Marini Abu Bakar#, Mohd Isrul Esa*, Norleyza Jailani#, Muriati Mukhtar#, Rodziah Latih#,

Abdullah Mohd. Zin#
Center for Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600

UKM Bangi, Selangor, Malaysia
 E-mail: {marini, njailani, muriati, rodziah.latih, amzftsm}@ukm.edu.my

*Educational Planning and Research Division, Ministry of Education Malaysia, 62604 Putrajaya, Malaysia

E-mail: 2m.isrul@gmail.com

Abstract—Computer programming requires skills in designing algorithms, understanding syntax, writing programs, as well as the
ability to correct errors in order to produce good programs. These skills can be developed through much practice on a continuous
basis. The students’ proficiency in programming is measured by the number of exercises that can be solved correctly within a
specified period. From past observations, it is discovered that most students were able to solve the problems given during laboratory
sessions. However, their performances did not carry over to laboratory tests. This situation points to the possibility that the students
might not have performed adequate self-practice in preparing for laboratory tests. In a student-centered learning environment,
fulfilling the notional learning hours is essential to ensure that students are prepared to take their subsequent classes. Based on a
constructivist-learning framework, this article reports the development and evaluation of a prototype system to assist in the self-
learning of programming. The online Auto-marking Programming Exercise System was developed based on the UVa Online Judge as
a benchmark. The system can provide real-time feedback to students immediately after the students submit their programs. This
instant feedback is an essential characteristic of the constructivist approach to learning. This will help students learn to programme in
a useful way. The system is tested and evaluated for usability by selected users from among instructors and former students of
computer programming course.

Keywords— competition based learning; self-practice; notional hours; continuous learning; instant feedback.

I. INTRODUCTION

Computer programming is one of the core courses in the
STEM study field, which comprises Science, Technology,
Engineering, and Mathematics. Programming requirements
in this field have made programming a compulsory course in
most courses offered at the higher education level especially
for students in Computer Science and Information
Technology. It is essential that students master the basic
concepts of programming so that they can prepare for later
studying of new languages and tools [1]. In the era of the 4th
Industrial Revolution, programming is an essential element
in the learning system. Developed countries such as the
United States and Japan have begun to introduce
programming from as early as in the primary. In the United
State, there have been a string of developments designed to
bring Computer Science education into every primary and
secondary school [2]. Recently, the government of Japan
adopted new policy strategies, including a plan to make
computer programming compulsory at all public elementary
schools from 2020 [3].

Programming is a skill acquired through continuous
practice. Students should always practice mastering this skill.
To assist students in honing their skills in programming,
assignment, and exercises covering a variety of topics should
be provided. The number of problem-solving assignments
and programming exercises completed by the students can
reflect the level of programming skills mastered by them [4].

Competition based learning approach or also known as
competitive learning as a programming training medium has
attracted students to the programming field. This is because
programming competitions have a competitive edge to them,
such as that presented in games, in which students are most
interested in as compared to the conventional methods [5].
Through competition approach, students will be motivated to
compete with their friends in order to achieve victory. ACM-
ICPC, Aizu Online Judge, and PKU Judge Online are among
the well-known programming competition websites which
are participated by programmers all over the world.
However, the questions in most programming competition
websites are challenging and only suitable for skilled
programmers. Students who are still in the beginner stage

1313

need questions that are more appropriate to their level.
Hence, a learning environment for programming which
applies the competition approach for programming course
students at the basic level is highly essential [6].

Programming promotes meaningful learning, which
challenges the students’ thinking. This is embedded through
a constructive process, which requires students to build and
develop knowledge by linking concepts that are newly
acquired with the existing knowledge and concepts that they
have. Computer programming can be a great way to improve
computational thinking skills and build problem-solving
skills [7].

To produce a skilled programmer is a long process and
requires many problems solving experience. Students' skills
and abilities in solving problems can be analyzed through
three different phases. The first phase: the student's
knowledge and experience are less organized and difficult to
achieve. The second phase: knowledge becomes hierarchical
and easy to achieve. The third phase involves the
reorganization of knowledge and the ability to link the
knowledge learned to build unique knowledge and skills.
This is the same as the requirement for a student to master
problem-solving skills in mathematics. Programming also
requires students to perform continuous training to sharpen
their minds and skills in programming. Training provides
much experience to students. The extensive experience in
successfully solving programming problems then makes it
possible for a programmer to have resources and materials
available to be used to solve other problems in the future.

At the Faculty of Information Science and Technology,
Universiti Kebangsaan Malaysia, the first programming
course is required for all students. This course includes
lectures, tutorials, and laboratory sessions. The learning
outcomes of this course give a strong emphasis on aspects of
program writing skills. Students are given training in
program writing during lab sessions every week. Assessment
of programming skills is done through three laboratory tests
on topics taught. From observations in the last few sessions,
most students were able to solve the problems given during
laboratory sessions. However, their performances in the
laboratory tests were somewhat less promising. This
situation may be because the students copied each other
during the laboratory sessions and did not do enough self-
practice in preparation for the laboratory tests.

Many studies related to basic programming course have
been conducted. Among them is an analytical study on the
student’s interest and attitude to identify problems in writing
programs [8], as well as a study on students’ perceptions
towards the use of PC2 to check lab assignments [9].
Nevertheless, there is still a lack of research on the notional
hours of students learning time outside the class. The
notional hour's guideline Malaysian Institutions of Higher
learning is that one credit is equivalent to 40 notional
learning hours [10]. Thus in a student-centered learning
environment, fulfilling the notional hours is essential to
ensure students are prepared to take the next class [11]. For
example, after going to lectures, students need to review the
topic before following through with tutorials and lab
sessions. Furthermore, after finishing the lab sessions,
students will still have to try additional questions to improve
their problem-solving skills. However, the amount of time

spent by the students in revising and carrying out self-
practice cannot be ascertained. Further studies are needed to
investigate how to encourage and ensure that students do
self-practice on programming outside the classroom. Self-
practice is important to improve the students' skills in
programming.

Based on research [8], outstanding students have their
initiative to do additional exercises and to ask the lecturer or
tutor if they encounter problems. On the other hand, other
students mostly feel the training and the examples provided
by the lecturers are adequate, and they have no effort to do
additional exercises. One of the excuses given is the
difficulty in understanding the errors obtained in the
program. The difficulty of seeking assistance or asking
questions further breaks their spirits to do self-practice.

The method of encouraging self-practice is to provide a
competitive environment that provides instant feedback in
order to increase the students’ self-esteem so that they can
improve themselves for the better.

II. MATERIAL AND METHOD

Learning programming involves both theoretical and
practical learning. Both of these elements are important and
interconnected. Practical learning is necessary to apply the
theories learned in lectures, whereas theoretical knowledge
is needed during practical training. In order to develop a
system that will aid in the self-learning of programming, it
must be based on a specific learning framework. The
learning framework implements the constructivism theory,
which helps students build their knowledge and skills
through the experience of solving various programming
problems. This learning framework is also integrated with
competitive learning models by way of providing a medium
for students to compete in solving programming problems.
Each of the components of this framework is explained
below.

A. Student Centred Learning

Student-centered learning is a strategy in which students
play an essential role and actively involve themselves in the
learning process [12]. Lecturers become facilitators who
guide students and allocate more time to carry out learning
activities, whether in groups or individuals [13]. In this
approach, students control the teaching process. Control here
means that the students are the ones controlling the
procedures, time and evaluation to meet their different needs.

Through this approach, students are trained to engage in
learning sessions actively. The burden of communicating
during learning sessions is given to the students. Techniques
such as problem-solving that require critical and creative
thinking; involving students in simulation and role-play
methods, using self-study and co-operative learning can also
be used as methods for this approach. Overall, the
implementation of student-centered learning strategy
encourages teachers to provide opportunities for students to
learn independently.

B. Competition Based Learning

Competition in learning takes place when students
compete with each other for the best grade in the classroom.
Students will be encouraged to complete an assignment or

1314

test, faster and better than their peers. However, as a rule for
every game speaks, if there is a winner, there will be a loser.
Likewise, in a competition based learning environment,
there will be unsuccessful students who lose in competitions.
This kind of thing can trigger situations whereby students
will face disappointment and feel inferior when comparing
themselves to their winning peers [14].

A competition based learning environment can make
students feel more enthusiastic about winning, rather than
learning. Besides that, a hostile and tensed situation can be
easily created when there is a gap between the winning
students and the losing students. In a competitive
environment, some combination of personality dominance
and individual level of competence will define the values of
the process, inevitably marginalizing weaker and less skilled
team members [15].

Competition in learning will possibly work when all
students in the classroom understand and master the learning
materials tested. Furthermore, if a student considers the
competition as a fun game that does not merely focus on
winning or losing, competition based learning will be a
useful learning style in the classroom.

A competition which is structured and well-balanced can
be a useful and harmless way of motivating students to do
their best. Having competitions as part of competition based
learning can also help students to face the real world, where
they have to compete with other people for their job and so
on. Competition based learning will also give students
valuable moral experience and lessons to prepare themselves
for work or business.

C. Online Program Assessment System

A programming competition is a competition, which
requires participants to solve the problems given by
producing a program. The ACM International Collegiate
Programming Contest (ACM-ICPC) and the International
Olympiad of Informatics (IOI) are among the organizations
responsible for organizing regular competitions. ACM-ICPC
is the premier global programming competition conducted
by and for the world’s universities. For nearly four decades,
ICPC has grown to be a renowned competitive educational
program that has raised aspirations and performance of
generations of the world’s problem solvers in computer
sciences and engineering. On the other hand, UVa Online
Judge, Aizu Online Judge, and PKU JudgeOnline host online
programming competitions, which are participated by
programmers from around the world.

Currently, most programming competitions use the online
assessment concept. Online assessment is a system that users
can send solutions for questions provided for automated
system checks [16] [17] and gives instant feedback [18]. The
solution will be tested with the test data set provided. Test
results will result in keywords such as Accepted, Wrong
Answer, Run Time Error, Output Limit Exceeded, Time
Limit Exceeded, Memory Limit Exceeded, and Compile
Error. Accepted means the received program uses the correct
algorithm, the memory usage and time do not exceed the
prescribed limit, and the program produces the output as per
asked by the question. The wrong Answer means that the
program produces an output that is not the same as the

requested answer and others in which each keyword has a
specific meaning.

D. Methodology

The use of an appropriate development model is essential
to ensure the smooth running of the project and to ensure
quality work. The methodology used in the development of
this system is the waterfall model. This methodology is
chosen because of its structured approach that helps
developers to stay on the right track and away from
problems. There are five phases in the waterfall model that
are the needs analysis phase, the design phase, the
development phase, the testing phase and the maintenance
phase. System specification and system design is the
outcome of the requirement analysis phase and design phase
respectively. The system is developed based on the
specifications, design, tested using black box testing
strategies, and usability tests. The system is improved based
on the results of the test.

III. RESULTS AND DISCUSSION

This section will discuss the specification and design,
implementation as well as testing of the Auto-marking
Programming Exercise System (APEs).

A. Specification and Design of the Auto-marking
Programming Exercise System

Because a student’s confidence in programming can only
be obtained by doing many self-exercises that provide
instant feedback on a continuous basis, a support system is
needed to help accomplish the process.

1) System Specification: Fig. 1 illustrates the use case

diagram for the APEs. The actors in this system comprise of
students, problem setters, lecturers and system
administrators. All users need to be registered by the system
administrator to get access to the system.

The proposed Auto-marking Programming Exercise
System has extensive programming exercises and can
respond immediately to students so that students can proceed
to do the next exercise as soon as possible. Questions are of
varying degrees of difficulty so that students can practice
and learn according to their performance and rhythm. After
login, the student can conduct the exercises, view the
delivery list of exercise answers, view the questions in the
exercises, send the answer to the exercises and view the
scoreboard. Problem setters have only access to questions,
such as adding and updating questions as well as test data.

Lecturers, on the other hand, can create exercises and
classes, search for students, view questions, view answers,
and view scoreboards. Lastly, the system administrator has
access to all components of the system.

2) System Architecture Design: The system architecture
for APEs consists of APEs web applications and automated
assessment applications, as shown in Fig. 2. Functional
specifications for APEs web applications have been
explained in the previous sections

The automatic assessment application integrated into this
APE system is the MOE Contest Environment. The program
code sent by the user will be compiled based on the selected
programming language and implemented by entering a test

1315

data set. The output generated from the implementation of
the program is then compared to the output test data to verify
the program. The results of the assessment will be displayed

on the scoreboard. Fig.3 illustrates this automated
assessment process.

Fig. 1 The Auto-marking programming exercise system use case diagram.

Fig. 2 APEs system architecture

Fig. 3 Automated assessment process

1316

B. Implementation of the Auto-marking Programming
Exercise System

The Auto-marking Programming Exercise System
consists of six modules. The modules are user management,
question bank management, exercise management, class
management, and scoreboard and automated program
assessment. Each module is explained in the next section.

1) User Management Module: User management module
function is to register users into the system. Only registered
users can log into and have access to the system. There are
four user categories namely system administrator, problem
setter, instructors, and students. Users are categorized based
on their roles. The only system administrator can register
new users. Once a user logs into the system, the user
dashboard will be displayed. APEs provides two types of
user dashboards, one for students and a different type for the
system administrator, instructors, and problem setter. The

student dashboard displays a list of exercises assigned for
the class the student is registered with (Fig. 4). The
information displayed consists of (a) the exercise set title, (b)
timestamp when the exercise starts and (c) end, (d) its status
(ongoing or completed) and (e) a button for users to select
the exercise. For ongoing exercises, students are allowed to
submit answers while for completed exercises students are
only allowed to review questions and answers.

The dashboard for the system administrator, instructor,
and problem setter allows them to view APEs current
operations. The dashboard displays a list of active exercises.
The status for active exercises may be completed or ongoing.
System administrator and other users can also monitor other
users and graders (instructors) who are currently active.
Status for auto-marking is also displayed to ensure it is ready
to receive answer submission from students.

Fig. 4. Student dashboard

2) Question Bank Management Module: Programming
questions are entered into the system via this module. Only
users who are assigned the role of problem setter have access
to the module. Details of the problem include problem name,
author's name, time limit, memory limit, problem description,
input format, output format, sample input and sample output
as shown in Fig. 5. Problem setter will also have to prepare
input and output test data sets to be used during program
assessment in the auto-marking module. Other instructors
while forming programming practice session according to
topics can use questions in the question bank.

3) Class Management Module: Class Management
Module is developed to assist instructors in monitoring and
helping students in their programming practice sessions.
This module allows instructors to form classes for a specific
practice session. Instructors can select students registered by
the administrator to join a specific class. Students practice
programming and compete amongst each other in this class.

4) Exercise Management Module: Through the Exercise
Management Module instructors can prepare programming
exercises for students. Instructors can select suitable
questions prepared by question setters according to a specific
topic. This module requires instructors to set a time duration
for students to solve programming problems. Only problems
from the questions bank can be selected for exercise. If
instructors want to create their problems, they have to log in
as problem setters. When students click on a specific
ongoing exercise of a particular topic, a list of problems will
be displayed as depicted in Fig. 6(a). Next, students select a
specific problem, and the question will be displayed in the
ACM-ICPC format. Each problem has problem description,
input, and output formats, as well as input and output
samples. Button to submit solution (b) and remaining time
for submission (c) are also displayed in this screen.

(a) (b) (c) (d) (e)

1317

Fig. 5 Input problem interface

Fig. 6 Student exercise interface

To submit a solution, students will click on the submit
button and a dialog box as shown in Fig. Seven will pop up.
Next, students need to select a targeted (a) programming
language, (b) upload the program solution file and (c) send
the solution for auto-marking. When a student submitted a
program, the list of all submissions will be displayed as
depicted by Fig. 8. Information related to each submission
include (a) the list of problem answered, (b) selected
programming language, (c) timestamp of submission, (d)
auto-marking verdict i.e. AC (Accepted), CE (Compile
Error), WA (Wrong Answer), RTE (Runtime Error) and
TLE (Time Limit Exceeded), and (e) icon to access details
of auto-marking results.

Fig. 7. Problem solution submission dialog box

5) Scoreboard Module: A score is given to every
problem solved by students based on the duration and the
number of attempts required to solve the problem. Students

(a)

(b) (c)

(a)

(b)

(c)

1318

are penalized 20 minutes for every failed attempt. The
overall score is displayed on the scoreboard in ascending
order. A student with the lowest score means that he or she
is the fastest to solve the problem. Fig. 9 shows the
scoreboard interface.

6) Automatic Assessment: This is the most important
module in the Auto-marking Programming Exercise System.
Each submitted program solution is compiled automatically.
If the submitted program has a syntax error, the system will
give error feedback, and the solution will not be accepted. If
the submitted program is successfully compiled without
error, the program will be evaluated with associated input
test data. The generated output will be compared against the
output test data. If they match perfectly, the submitted
program is accepted and regarded as the correct solution, and
the score collected will be displayed on the scoreboard. In
contrast, if outputs compared are different, the system will
give wrong answer feedback and score will not be recorded

C. System Testing

 Testing for APEs is divided into two strategies namely
the black box testing and usability testing. During the black
box testing, each function is tested to ensure the modules
developed to operate as stated and the outputs are by the
system requirement. The black box test is divided into
security testing, input data testing as well as out data testing.

 Users to identify bugs, to test system effectiveness and
to ensure that the system fulfils user’s requirements, carry
out usability testing. Individuals who require the individual
users to use the system test the system interactively. The
selection of respondents for the usability test is by randomly
asking lecturers involved in the teaching of programming
and former students who have taken programming courses.
In total 11 respondents participated in this test.

Fig. 8. List of submitted exercises

Fig. 9. Scoreboard interface

The primary aspects evaluated by users include:
1) System usability: System usability is evaluated based

on whether it is easy to use fulfills the user’s demand and
requirement, and the user’s readiness to recommend the
system to students. Results from the test show that 58% of
the respondents answered strongly agree, 33% answered

agree, 9% answered not sure, and none of them answered
disagrees or strongly disagrees.

2) System ability: System ability is evaluated based on its
capability and effectiveness in performing all processes and
modules in the system based on the models and approaches
used. The result from the questionnaire shows that majority

(a) (b) (c) (d) (e)

1319

of respondents agree that the APEs has the expected
characteristics. The details result shows 24% of the
respondents strongly agree, 76% agree, and none has chosen
not sure, disagree or strongly disagree.

3) System user interface: The system user interface
evaluation is carried out based on the functionalities and
supports provided by the system. Also, the aspects of user-
friendliness and understanding are also evaluated. The result
from the questionnaire shows that 51% strongly agree, 49%
agree, and none of the respondents have chosen not sure,
disagree or strongly disagree.

IV. CONCLUSIONS

The Auto-marking Programming Exercise System has
been developed and tested to evaluate its functionalities and
usability. The APEs can provide some support. Firstly, it
creates a question bank of programming exercises complete
with their associated input and output data sets. Secondly, it
supports a new class, supports for creating a new exercise
based on selected questions from the question bank. Thirdly,
it supports for accepting and evaluating programs submitted
by students for selected exercises. Lastly, it supports for
calculating, recording and displaying students’ scores on a
class’s scoreboard. However, it can be further improved.

The auto-marking feature for APEs can perform the same
functionalities as top online programming contest systems
such as UVa Online Judge, Aizu Online Judge, and PKU
JudgeOnline. It is also equipped with a question bank that is
designed in such a way so that it is appropriate for novice
programmers. The system also provides class management
and user management functions so that teachers can monitor
student performance in their respective classes.

It is every instructor’s dream to provide a platform where
students can perform self-exercise to improve computer-
programming skills. Through such systems, instructors can
monitor and identify students’ weaknesses in specific topics
and devise plans and methods to help them understand and
master the topics.

By calculating the strategy of competition-based learning
in the system developed it is hoped that instructors can
create a healthy competitive environment to motivate
students to perform programming exercises. To avoid
students who sit at the bottom of the scoreboard from having
low self-esteem, losing interest and focus towards
programming courses, the instructors must explain the
purpose of using such system in the teaching and learning
process. Such a system should not emphasize on the rating
on the scoreboard but rather on the efforts put in by students
in practicing developing solutions to programming problems
to gain experience through solving as many problems as
possible.

ACKNOWLEDGMENT

We would like to thank the Ministry of Higher Learning,
Malaysia for the earlier ground work on the project through
its research grant fund FRGS/1/2011/SG/UKM/02/5 and to
Universiti Kebangsaan Malaysia for supporting this work
through its research grant fund PTS-2013-105.

REFERENCES
[1] V. Aleksić and M. Ivanović, “Introductory programming subject in

European higher education,” Informatics Educ., vol. 15, no. 2, 2016.
[2] Mark Nelson, “Computer Science Education in the Age of CS for

All” HuffPost, 2016. [Online]. Available:
https://www.huffingtonpost.com/acm-the-association-for-computing-
machinery/computer-science-educatio_1_b_9373808.html. [Accessed:
16-Oct-2017].

[3] S. Murai, “Computer programming is seen as key to Japan’s place in
‘fourth industrial revolution,’” The Japan Times, 2016. [Online].
Available:
https://www.japantimes.co.jp/news/2016/06/10/business/tech/comput
er-programming-industry-seen-key-japans-place-fourth-industrial-
revolution/ [Accessed: 15-Sep-2017].

[4] A. Lishinski, A. Yadav, R. Enbody, and J. Good, “The Influence of
Problem Solving Abilities on Students’ Performance on Different
Assessment Tasks in CS1,” in Proceedings of the 47th ACM
Technical Symposium on Computing Science Education -
SIGCSE ’16, 2016, pp. 329–334.

[5] Nishimura Tomoharu, K. Shinichiro, and T. Hiroyuki, “Monitoring
System Of Student Situation In Introductory C Programming
Exercise With A Contest Style,” in ITHET, 2011.

[6] Kurata, Tominaga, Hayashi, and Yamasaki, “Contest Style Exercise
with Execution Tests for Every Lesson in Introductory C
Programming,” in International Conference on Information
Technology Based Higher Education and Training (ITHET 2007),
2007.

[7] S. Grover, R. Pea, and S. Cooper, “Designing for deeper learning in a
blended computer science course for middle school students,”
Comput. Sci. Educ., vol. 25, no. 2, pp. 199–237, 2015.

[8] M. Rahmat, S. Shahrani, R. Latih, N. F. M. Yatim, N. F. A. Zainal, R.
A. Rahman, “Major Problems in Basic Programming that Influence
Student Performance,” Procedia - Soc. Behav. Sci., vol. 59, pp. 287–
296, 2012.

[9] R. Latih, M. A. Bakar, N. Jailani, N. M. Ali, S. M. Salleh, and A. M.
Zin, “PC2 to support instant feedback and good programming
practice,” in 2017 6th International Conference on Electrical
Engineering and Informatics (ICEEI), 2017, pp. 1–5.

[10] Malaysian Qualifications Agency, “Malaysian Qualifications
Framework 2nd Edition,” 2018.

[11] Rodziah Latih, Norleyza Jailani, Marini Abu Bakar and Zarina
Shukur, “Pendekatan Pembelajaran Berasaskan Masalah dalam
Kursus Pengaturcaraan Komputer” in Inovasi Pengajaran dan
Pembelajaran dalam Teknologi Maklumat, Pusat Pengajaran &
Teknologi Pembelajaran, UKM, 2015, pp. 104–111.

[12] P. K. Sevella and Y. Lee, “Determining the barriers faced by novice
programmers,” Int. J. Softw. Eng., vol. Vol.4, no. 1, pp. 10–22, 2013.

[13] V. Goodyear and D. Dudley, “‘I’m a Facilitator of Learning!’
Understanding What Teachers and Students Do Within Student-
Centered Physical Education Models,” Quest, vol. 67, no. 3, pp. 274–
289, 2015.

[14] D. W. Johnson and R. T. Johnson, Learning Together And Alone:
Cooperative, Competitive And Individualistic Learning. Boston:
Allyn and Bacon, 1994.

[15] J. Shindler, Transformative classroom management : positive
strategies to engage all students and promote a psychology of
success. Jossey-Bass, 2010.

[16] M. A. Revilla, S. Manzoor, and R. Liu, “Competitive Learning in
Informatics: The Uva Online Judge Experience,” Olympiads in
Informatics, vol. 2, pp. 131–148, 2008.

[17] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and J. De Halleux,
“Code Hunt: Experience with Coding Contests at Scale,” in
Proceedings - International Conference on Software Engineering,
2015, vol. 2, pp. 398–407.

[18] H. Keuning, J. Jeuring, and B. Heeren, “Towards a Systematic
Review of Automated Feedback Generation for Programming
Exercises,” in Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education -
ITiCSE ’16, 2016, pp. 41–46.

1320

