
 

 

 

Vol.8 (2018) No. 4-2 

ISSN: 2088-5334 

An Efficient and Robust Mobile Augmented Reality Application 
Siok Yee Tan#, Haslina Arshad#, Azizi Abdullah# 

# Center for Artificial Intelligence and Technology, Faculty of Information Science and Technology,  

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia. 
 E-mail: esther@ukm.edu.my, haslinarshad@ukm.edu.my, azizia@ukm.edu.my 

 
 
Abstract— Augmented Reality (AR) technology is perceived to be evolved from the foundation of Virtual Reality (VR) technology. 
The final objective of AR is to offer ubiquitous access and better management to information through the use of seamless techniques 
in which the interactive computer-generated world is combined with the interactive real world in a coherent environment. The 
direction of research in the field of AR has been shifted from traditional Desktop based mediums to the mobile devices such as the 
smartphones. However, image recognition on smartphones executes many challenges and restrictions in the form of robustness and 
efficiency which are the general performance measurement of image recognition. Smart phones have limited processing capabilities as 
compared to the PC platform, hence the process of mobile AR application development and use of image recognition algorithm need 
to be emphasised. The processes of mobile AR application development include detection, description and matching. All the processes 
and algorithms need to be properly selected in order to create a robust and efficient mobile AR application. The algorithm used in 
this work for detection, description and matching are AGAST, FREAK and Hamming distance respectively. The computation time, 
robustness towards rotation, scale and brightness are evaluated. The dataset used to evaluate the mobile AR application is the 
benchmark dataset; Mikolajczyk. The results showed that the mobile AR application is efficient with a computation time of 29.1ms. 
The robustness towards scale, rotation and brightness changes of the mobile AR application also obtained high accuracy which is 
89.76%, 87.71% and 83.87% respectively. Hence, combination of algorithm AGAST, FREAK and Hamming distance are suitable to 
create an efficient and robust mobile AR application.  
 
Keywords— augmented reality; image recognition algorithm; detection; description; matching;  
 
 

I. INTRODUCTION 

Augmented Reality (AR) is the combination of virtual 
content and the real world where it allows users to interact 
with virtual objects in real world and real time [1]. The 
extensive use of AR in mobile devices such as tablets and 
smartphones has become a growing phenomenon due to the 
increasing popularity of mobile devices worldwide [2]–[5]. 
Mobile AR allow users to enjoy the combination of virtual 
and real world experiences in the palm of their hands [6]. 
There are mainly two reasons for its success; the hardware 
and the available tools for programming. Tablets and 
smartphones nowadays are designed for a wide range of 
consumers with unexpected robust for an AR application 
performance [7], [8]. Most tablets and smartphones come 
with a built-in camera which allows the computer vision 
approaches like AR to be used by a modern-day consumer. 
However, the process of developing mobile AR and 
choosing the right image recognition algorithm need to be 
underlined in order to achieve optimum performance for 
mobile AR application as smart phone has limited 
processing capabilities as compared to the PC platform [9].  

AR application may during the application process. It may 
occur due to number of reasons for example, sudden changes 
in distance of the marker and the camera or sudden changes 
in lighting [10]. It is important that the application can 
recover from it as smoothly as possible after a failure. The 
process of mobile AR application can be improved by 
implementing effective and robust image recognition 
algorithm. The image recognition process to develop a 
mobile AR application involve the following process; image 
detection, image description and image matching. Hence, the 
main target of this research is to present the implementation 
of an image recognition algorithm in producing a high 
performance mobile application. The detector, descriptor and 
matcher used in this resesarch are AGAST, FREAK and 
Hamming distance respectively.  

The rest of the paper is organised as follows. After a 
discussion on the material and method in Section II, result 
and discussion are discussed in Section III and the 
conclusion are discussed in Section IV.  

 
 
 

1672



II. MATERIAL AND METHOD 

A. Image Recognition Algorithm 

Image recognition in mobile AR can be divided into three 
main components; detector, descriptor and matcher. 
Basically, an image will be captured through video frame by 
using phone's camera and the image is converted into grey 
scale image. The first step in image recognition process is 
image feature detection where feature detectors were used to 
identify  the keypoints or the natural features of an image. 
The next step is to obtain a descriptor of each keypoints 
from the image. A feature descriptor is required to describe 
or extract the keypoints that had been detected or extracted 
in the first step; detection process. Descriptors can be 
categorised into two categories; floating-point descriptors 
and binary descriptors. SURF (Speeded-Up Robust Feature) 
and SIFT (Scale Invariant Feature Transform)  are good 
instances of floating-point descriptors, while FREAK (Fast 
Retina Keypoint), BRISK (Binary Robust Invariant Scalable 
Keypoints), ORB (Oriented Fast and Rotated BRIEF) and 
BRIEF (Binary Robust Independent Elementary Feature) are 
another instances of binary descriptors. Matching the feature 
descriptor is the third step in the image recognition process. 
The features or keypoints of the reference image should be 
kept first in the database to allow the application to match 
the points of a query image with those of reference image 
during the matching process [11].  

 
1) Feature Detection:  Detecting or identifying 

features used for image recognition can be traced a long way 
back in the literature. Harris & Stephens [12] proposed one 
of the earliest and probably most famous detectors; corner 
and edge detector. Mikolajczyk [13] introduced a 
comprehensive assessment of the most efficient  detection 
method at the time, indicating no single versatile detector 
unless the additional properties of the different approaches 
depend on the context of the application. Another recent 
feature detector, FAST (Features from Accelerated Segment 
Testis) is based on a characteristic feature criterion 
accelerated segment test (AST) [14]. FAST is an order of 
magnitude faster than other feature detectors such as 
Difference of Gaussians (DoG) used by SIFT [15] and 
SURF [16]. FAST detector is used in real time application 
which have limited computational resources. FAST has 
obvious advantages from many perspective. However, there 
is still imperfection in limiting FAST to be used in computer 
vision applications. In order to improve the processing speed, 
FAST is enhanced by the machine learning algorithm ID3 
[17]. This machine learning algorithm is a way to yield a 
decision tree from a training dataset. FAST needs to be 
trained on an image dataset from its work environment, and 
then a decision tree is obtained to verify each center pixel 
whether it can be a feature or not. However, this approach 
does not guarantee that each pixels combination can be 
found; this may produce erroneous results. In addition, the 
FAST detector must be trained each time when the working 
environment changes. This limits FAST to work AR 
application that work without any prior environmental 
knowledge [18]. 

In order to overcome the weakness of FAST, AGAST 
(Adaptive and Generic Corner Detection Based on the 

Accelerated Segment Test) feature detector is proposed [19]. 
AGAST followed the same AST feature criterion similar to 
FAST but AGAST uses a different decision tree. AGAST is 
trained based on a unique dataset. This dataset includes all 
possible combinations of 16 pixels on the circle. This assure 
that the decision tree is suitable for any work environments. 
This makes AGAST ideal for real-time computer vision 
applications such as mobile AR application. Therefore, 
AGAST had been selected as feature detector to detect 
image features in this work in order to develop an efficient 
and robust mobile AR application. 

2) Feature Description:  Feature descriptors of the 
keypoints need to be constructed so that it can detect and 
match the features across the images. The description of 
each features must be unique and also persistent under all 
viewpoints. The idea that identified keypoints are invariant 
suggests that the small patches around them also have some 
characteristics that are unchangeable to rotation, brightness 
and scale. Hence, the mission of the descriptors is to capture 
these properties. Feature descriptors are grouped by two 
categories; floating-point descriptors and binary descriptor.  

One of the most well-known floating-point keypoint 
descriptors is SIFT. This descriptor detects keypoints using 
Difference of Gaussians (DoG) [15]. Although SIFT was 
released in 2004, it still produced results that compete with 
state-of-the-art techniques. Apart from SIFT itself, several 
modified SIFT-like descriptors have been released, such as 
PCA-SIFT [20]. SURF almost matched the quality of SIFT 
but the use of integral images accelerates the gradient 
computations [16]. To date, the SURF descriptor is 
considered to be the most well-known alternative to SIFT. 
Both SIFT and SURF have well performance with their high 
distinctiveness and robustness in various of computer vision 
or image recognition  applications [21], [22]. However, the 
floating-point descriptors still required high computation 
time for real-time applications, particularly for those 
application running on limited memory capacity and 
computing power such as tablet and smart phone [23]. 
Therefore, binary descriptors are designed to fill this gap. 

Binary descriptors that achieved a compact storage and 
quick runtime are become increasingly popular due to fast 
evolvement of real-time application [24]. They show the 
similar quality as SIFT-like descriptors but at significantly 
lower computational costs and required a small amount of 
memory. Hamming distance is used to match binary 
descriptor due to each bit in the binary descriptor is 
independent. The four most promising binary feature 
descriptors are BRIEF [24], ORB [25], BRISK [26] and 
FREAK [27]. Hamming distance can be calculated 
effectively because the distance between descriptors were 
calculated by using XOR operation. Binary strings were 
generated by comparing the intensity of each pixel in the 
image. Binary string representing the area around the 
keypoint will be encoded in a string of "0" or "1". Generally, 
single bit of a binary descriptor are calculated by comparing 
the intensity value of point x in a sampling pair with the 
intensity value of point y in the pair. A single bit of a binary 
descriptor B on patch p can be calculated using Equation (1).  

 

1673



B�p; x, y� ∶
 �    1 ∶ I�p, x� � I�p, y�0 ∶       otherwise                     (1) 

 
where I�p, x� is the pixel intensity at point x of a sampling 
pair and I�p, y�  is the pixel intensity at point y  of the 
sampling pair. A binary feature descriptor can be formed by 
concatenating the bits formed by B, as shown in Equation (2). 
 ∑ 2���B�p; x, y������ ,                                               (2) 
 
where the n  value for BRIEF and ORB is 256, while for 
BRISK and FREAK, it is 512. Based on previous researchers, 
FREAK descriptor has been identified as the most suitable 
descriptor for AR application [28]. FREAK descriptor was 
able to perform in shortest computation time and robust to 
rotation, scale and illumination invariance. Hence, this work 
is implement FREAK descriptor to describe image feature.  

3) Feature Matching:  Both descriptors obtained from 
reference image and query image are matched by comparing 
the distance between the descriptors using some metric 
[29].Euclidean distance is used to match features produced 
by floating-point descriptor (SIFT and SURF) as equation 
below [30]: !"#$%&'() *%+,()#' 

 -.�/'0'1')#' *'+#1%2,31 4 5 6"'17 *'+#1%2,314�89:

4;�  

                                                                                             (3) 
 

The smaller the Euclidean distance between reference 
descriptor and query descriptor, the more similar feature 
they have. Given two sets of descriptors, the best match in 
the first set (query image) is the descriptor that yields the 
lowest distance in the second set (reference image). 
Matching every descriptor in the reference image to every 
descriptor in query image will return the most matches.  

Hamming distance is usually used to match features 
obtained from binary descriptor (BRIEF, ORB, BRISK and 
FREAK). Hamming distance is defined as the number of bits 
that differ between the strings. The distance can be 
computed quickly by performing an XOR (exclusive-or) 
operation on the two strings and counting the number of bits 
as Equation (4). 

 <(==%)> *%+,()#'
 ?@?ABC �/'0'1')#' *'+#1%2,31 ^ 6"'17 *'+#1%2,31 � 
                                                                                              (4) 
 

Logical operation such as XOR are very fast and most 
processor architectures have a built-in instruction for 
counting the number of “1” in a binary string (known as 
population count instruction). This makes matching binary 
descriptors can perform in shorter time compared to  
matching floating-point descriptors. The first step to obtain 
Hamming distance is to compare the first two bits in each 
string. If both bits are the same, a “0” will be recorded for 
that bit. If they are different, a “1” will be recorded. Then 
compare each bit in succession and record either “1” or “0” 
as appropriate. For example;  

 

String 1: 1100 0110 0011; 
String 2: 1000 0111 1011 

 
and the results recorded are 0100 0001 1000. The last step in 
Hamming distance is to do addition mathematical operation 
for the recorded results which is 0 E 1 E 0 E 0 E 0 E 0 E0 E 1 E 1 E 0 E 0 E 0 
 3 . As a result, the Hamming 
distance for these two string is 3. Similar to Euclidean 
distance, the smaller the Hamming distance, the more similar 
the feature. Hamming distance is used in this work since 
binary descriptor is used to describe feature.  

B. Mobile Augmented Reality 

A mobile AR application was developed using Eclipse 
software in HTC One X+ android smart phone. Most current 
available AR technologies support iOS and Android devices; 
however there is currently no standard library for use in 
mobile AR applications. OpenCV is rapidly becoming the 
accepted standard for computer vision application 
development and it can be used rapidly expandable AR 
frameworks. OpenCV is a library used for image processing. 
Hence, the image recognition algorithms used in this work 
are obtained from OpenCV 2.4.9 library. A simple flow to 
develop mobile AR application is shown in Fig. 1. 

 
 

Fig. 1 Mobile AR application flow 
 
The first step in mobile AR application is to record video 

frame using mobile’s camera. The features in the reference 
image and query image are detected and described using 
feature detector and feature descriptor respectively. After 
successfully obtain keypoints from both image, the 
keypoints will be matched using a matcher. If the matching 
percentage between feature from reference image and query 
image is less than a threshold, the process need to repeat step 
one which is recording video frame. The process of 
estimating position and orientation of query image will take 
place if the matching percentage between feature from 
reference image and query image is more than a threshold. 
The last step in mobile AR application is to augment a 3D 
virtual object on top of query image. The mobile AR 
application development process can be described in more 
detail by dividing it into two parts, one is offline image 
recognition and the other is real time image recognition. Fig. 
2 shows the proposed mobile AR application process. 

1) Offline Image Recognition Process:  Offline image 
recognition happens before the mobile phone camera work 
and does not happen in real time. All the image recognition 
algorithm are provided in OpenCV 2.4.9. OpenCV 2.4.9 
library are imported into the programme. The reference 
image needs to be converted to gray scale image before 
performing the image recognition function because AGAST 

 

1674



and FREAK algorithm can only recognized gray scale 
images. Therefore, the function “cvtColor()” with parameter 
COLOR_RGBA2GRAY needs to be implemented to the 
reference image and stored in “referenceImageGray”.  

 

 
Fig. 2  Mobile AR Application Development Process 

 
Offline image recognition is performed to detect and 

describe the features of images that have been stored in the 
database (“referenceImageGray”). Each reference image will 
be detected and described before the matching process 
between the reference image and query image. 
“FeatureDetector.create()” and “FeatureExtractor.create()” 
function are implemented in the programme and declare 
AGAST detectors and FREAK descriptor as the detector and 
descriptor algorithm. These declared algorithms are used in 
both parts (offline and real time) as offline and real time 
parts are using the same detector and descriptor. After 
declaring the algorithm, the next step is the process of 
detecting and describing the features of the reference image 
using the "detect ()" and "compute ()" functions. The 
detected reference image feature is stored in 
"mReferenceKeypoints". The descriptor describes the 

features stored in "mReferenceKeypoints" and store the 
features described in "mReferenceDescriptors". Fig. 3 shows 
the pseudocode used to detect and describe features in 
database (reference image). 

 
 

 
 

 
 
 
 
 

 
Fig. 3  Pseudocode used to detect and describe feature in database 

(reference image) 

2) Real Time Image Recognition Process:  Real time 
image recognition happens when mobile phone camera is 
working it  has some processes which are similar to offline 
image recognition. Real time image recognition also 
includes feature detection and feature description process. 
However real time image recognition takes place in real time 
or when mobile phone camera is working. The first step is to 
make sure real time image recognition is recording a video 
frame with the mobile phone camera. This process can be 
taken by implementing "CameraBridgeViewBase" function. 
Camera configurations can be set for high quality video 640 
× 480, medium quality video 480 × 360 or low quality video 
192 × 144 using the "setMaxFrameSize ()" function 
provided by the OpenCV library. Computation time is 
directly affected by reducing or increasing the video’s 
quality. The higher the video’s quality, the longer the 
computation time. The video quality used in this work are 
high quality video which is 640 x 480. The next process is 
the same as offline image recognition which is to convert the 
images obtained through video frame recording (query 
image) to gray scale query image and stored in 
"inputImageGray". The next step after getting a gray scale 
query image is to detect and describe the image features. 
This process is the same as the offline part but this is to 
detect and describe the feature from query image. Functions 
used to detect and describe features are "detect ()" and 
"compute ()". The detected features obtained from query 
image are stored in "mInputKeypoints" and the described 
features are stored in "mInputDescriptors". The following 
step is to match between the two descriptor sets (feature 
descriptors obtained from the query image and the reference 
image). "BRUTEFORCE_HAMMING" , where hamming 
distance is declared as the matching algorithm. 
"DescriptorMatcher.create ()" function needs to be 
implemented in order to carry out the matching process. The 
matching algorithm used in this work is hamming distance 
because the detector and descriptor algorithm used are 
binary. The matching process between reference image 
descriptors and query image descriptors is done by 
implementing the "match ()" function and stored in 
"mMatches". Fig. 4 shows the pseudocode used to match 
descriptor from reference image and query image.The total 
number of matches are always lower than the number of 
feature descriptors since not all query image descriptor will 
have best match with the reference image descriptors. Pose 

Programme detect and describe features in database: 
Declare detector as AGAST; 
Declare descriptor as FREAK; 
Convert RGB reference image to gray scale reference 
image; 
Detect features in gray scale reference image using 
detector; 
Describe features detected from gray scale reference 
image using descriptor 

1675



estimation process is carried out where the features in query 
image are matched with reference image in database. If the 
number of matching is lower than the threshold, the process 
will be repeated where the video frame is taken with the 
camera. Pose estimation is performed to determine the 
position of a virtual object on top of the input image.  

 
 
 
 
 
 
 
 
 

 
Fig. 4 Pseudocode used to match descriptor from reference image and query 

image 
 
The next step is to implement "myPoseEstimation ()" 

function to determine the 3D object positions on top of query 
images. In addition, the "CameraProjectionAdapter" 
adjustment tool is used to provide "Camera.Parameters" 
object and get one projected matrix in OpenCV or OpenGL 
format. All the data needed to build projection matrix is 
stored in "CameraProjection". The next step is to find the 
position and rotation of the query image based on the 
projection matrix. The "Calib3d.solvePnP ()" function is 
used to perform the positioning and rotation of the query 
image. This function stored position and rotation results in 
two separate vectors. The position matrix and the rotation 
results are manually diverted to 16 bits of the appropriate 
layout for presenting 3D objects. After this process is 
successful, a 3D cube will be augmented on top of query 
image (Fig. 5). 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 3D virtual cube is successfully augmented on top of query image 

C. Dataset 

The evaluation was implemented on HTC One X+ 
android smart phone. It has a built-in camera and is able to 
record video with 1080 pixels at 28 fps or 720 pixels at 30 
fps which fulfils the basic requirements for successful 
implementation of mobile AR application. The image 
recognition algorithms are obtained from OpenCV 2.4.9 
library. The dataset used for evaluation in this research is the 
well-known dataset introduced by researcher [13] which had 
been used by most researchers [31]–[33] shown in Fig. 6.  

 

 
Fig. 6  Mikolajczyk Dataset 

 
This dataset consists of image sets with different 

photometric and geometric and transformations (rotation, 
scale, viewpoint, blur and illumination) and with different 
scene types (textured and structured) as shown in Table I. In 
the case of rotation, scale change, blur and view point 

Programme matching descriptor from reference image 
and query image: 
Detect features in gray scale query image using 
detector; 
Describe features detected from gray scale query image 
using descriptor 
Declare descriptor as HAMMING MATCHER; 
Match features describe from reference image and query 
image; 

(d) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

1676



change, two different scene types are used; textured and 
structured. For illumination case, the light changes are 
proposed by varying the camera aperture. Each image set 
contains six images with a photometric distortion or gradual 
geometric. 

 

TABLE I 
TRANSFORMATION AND SCENE TYPE FOR EACH IMAGE 

No Image Scene Type Transformation 
a. Boat Structured Scale, Rotation 
b. Graffiti Structured View Point 
c. Bikes Structured Blur 
d. UBC Structured JPEG 

Compression 
e. Bark Textured Scale, Rotation 
f. Wall Textured View Point 
g. Trees Textured Blur 
h. Leuven Structured Illumination 

D. Efficiency 

Efficiency is generally defined as the ability to recognize 
corresponding points between consecutive frames (reference 
image and query image) in the shortest time possible. It is 
often interchanged with words such as “fast” and “speed”.  

The most important evaluation for mobile AR application 
is its computation time for the whole process. Computation 
time of an efficient mobile AR application should function 
in short time to ensure the application is able to run in real 
time. The total computation time to perform augmentation 
process is calculated by adding the computation time of each 
individual process such as start video frame, feature 
detection, feature description, feature matching, pose 
estimation and 3D object augmentation. The computation 
time for each individual process is calculated using Equation 
(5). Let a process start time denote as CG, a process end time 
denote as CH and total process time denote as CI. If 0�J� is 
the function for each process (start video frame, feature 
detection, feature description, feature matching, pose 
estimation and 3D object augmentation), then computation 
time for function 0�J� is as below: 

 0�J� 
  CI�CH 5  CG�                                (5) 

E. Robustness 

Robustness can be defined as accurate recognition of 
corresponding points between two frames (reference image 
and query image) in large changes in scale, rotation and 
illumination [34]. “Accuracy” is another term often used to 
describe robustness of the image recognition techniques. The 
robustness or accuracy rate of a mobile AR application is 
calculated using the equation below: K##"1(#7 ?'1#'),(>'
  B"=L'1 30 A311'#, M(,#ℎ'+B"=L'1 30 M(,#ℎ'+ J100% 

               (6) 
 
The section discussed the experimental results of the 

evaluation. The performance of mobile AR application is 

measured in terms of efficiency (computation time) and 
robustness (rotation, scale and illumination invariance).  

III.  RESULTS AND DISCUSSION 

A. Computation Time 

Computation time to carry out detection, description and 
matching process is recorded every 500 keypoints and 
repeated 50 times. The results shown in Table II are the 
average computation time used to perform each process and 
total computation time of the entire mobile AR application 
process. Computation time for each process is calculated 
using Equation (5). 

TABLE II 
TRANSFORMATION AND SCENE TYPE FOR EACH IMAGE 

Process Time (ms) 
Capture from video frame 1.3 
Convert image to gray scale 2.3 
Detect 500 keypoints 13.8 
Describe 500 features 4.3 
Matching 500 keypoints 1.9 
Pose Estimation 4.1 
Augmented 3D object 1.4 
Total Computation Time 29.1 
 
The mobile AR application is able to perform in short 

computation time which is 29.1ms. All image recognition 
algorithms used in this work are able to function in real time 
and as a result the mobile AR application is also able to 
work in real time where the computation time is less than 
100ms.   

B. Accuracy 

Accuracy of mobile AR application in terms of scale, 
rotation and illumination are evaluated using Mikolajczyk 
dataset mentioned in Section IV. The accuracy of the mobile 
AR application is calculated using Equation (6) and repeated 
50 times for each evaluation. The accuracy of each 
invariance is concluded in Table III.  

TABLE III 
ACCURACY OF EACH INVARIANCES 

Invariance Accuracy 
Brightness 83.87% 
Scale 89.76% 
Rotation 87.71% 

 
The mobile AR application is able to obtain good 

accuracy in terms of brightness, scale and rotation invariance. 
All the three invariances are able to perform higher than 
80%.  

IV.  CONCLUSION 

This work presents an efficient and robust mobile AR 
application. The image recognition used in detection, 
description and matching are AGAST, FREAK and 
Hamming distance respectively. From the evaluation result, 
the mobile AR application is able to work in real time and is 
robust to scale, brightness and rotation invariance. The 
mobile AR application performs in a short time and have a 

1677



good recognition accuracy percentage up to 83.67% even 
though the image had experience changes in brightness, 
scale and rotation. Therefore, the development process and 
algorithm suggested in this work guarantees a good 
performance of mobile AR application.  

ACKNOWLEDGMENT 

This research work is supported by UKM Research Grant 
(GGPM-2018-011). 

REFERENCES 
 
[1] R. T. A. Azuma, “Survey of Augmented Reality,” Presence: 

Teleoperators and Virtual Environments, vol. 6, no. 4. pp. 355–385, 
1997. 

[2] D. Nincarean, M. B. Alia, N. D. A. Halim, and M. H. A. Rahman, 
“Mobile Augmented Reality: The Potential for Education,” Procedia 
- Soc. Behav. Sci., vol. 103, pp. 657–664, 2013. 

[3] M. Pu, N. A. A. Majid, and B. Idrus, “Framework based on Mobile 
Augmented Reality for Translating Food Menu in Thai Language to 
Malay Language,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 1, 
pp. 153–159, 2017. 

[4] M. J. Sadik and M. C. Lam, “Stereoscopic Vision Mobile Augmented 
Reality System Architecture in Assembly Tasks,” J. Eng. Appl. Sci., 
vol. 12, no. 8, pp. 2098–2105, 2017. 

[5] H. Arshad, M. C. Lam, W. K. Obeidy, and S. Y. Tan, “An Efficient 
Cloud based Image Target Recognition SDK for Mobile 
Applications,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 2, pp. 
496–502, 2017. 

[6] N. C. Hashim, N. A. A. Majid, H. Arshad, and W. K. Obeidy, “User 
Satisfaction for an Augmented Reality Application to Support 
Productive Vocabulary Using Speech Recognition,” Adv. Multimed., 
2018. 

[7] L. W. Shang, M. H. Zakaria, and I. Ahmad, “Mobile phone 
augmented reality postcard,” J. Telecommun. Electron. Comput. Eng., 
vol. 8, no. 2, pp. 135–139, 2016. 

[8] H. Arshad, S. A. Chowdhury, L. M. Chun, B. Parhizkar, and W. K. 
Obeidy, “A freeze-object interaction technique for handheld 
augmented reality systems,” Multimed. Tools Appl., 2016. 

[9] D. Wagner and D. Schmalstieg, “History and Future of Tracking for 
Mobile Phone Augmented Reality,” in 2009 International 
Symposium on Ubiquitous Virtual Reality, 2009, pp. 7–10. 

[10] W. K. Obeidy, H. Arshad, S. Y. Tan, and H. Rahman, 
“Developmental Analysis of a Markerless Hybrid Tracking 
Technique for Mobile Augmented Reality Systems,” in Advances in 
Visual Informatics, 4th International Visual Informatics Conference, 
IVIC 2015, 2015, pp. 99–110. 

[11] H. Uchiyama and E. Marchand, “Object Detection and Pose Tracking 
for Augmented Reality: Recent Approaches,” Found. Comput. Vis., 
pp. 1–8, 2012. 

[12] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” 
in Procedings of the Alvey Vision Conference 1988, 1988, p. 23.1-
23.6. 

[13] C. Mikolajczyk, K.Schmid, “A performance evaluation of local 
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, 
pp. 1615–1630, 2005. 

[14] E. Rosten and T. Drummond, “Fusing points and lines for high 
performance tracking,” in Proceedings of the IEEE International 
Conference on Computer Vision, 2005, vol. II, pp. 1508–1515. 

[15] G. Lowe, “SIFT - The Scale Invariant Feature Transform,” Int. J., vol. 
2, pp. 91–110, 2004. 

[16] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up 
Robust Features (SURF),” Comput. Vis. Image Underst., vol. 110, no. 
3, pp. 346–359, 2008. 

[17] J. R. Quinlan, “Induction of Decision Trees,” Mach. Learn., vol. 1, 
no. 1, pp. 81–106, 1986. 

[18] H. Zhang, J. Wohlfeil, and D. Grießbach, “Extension and evaluation 
of the agast feature detector,” ISPRS, vol. III, no. 4, pp. 133–137, 
2016. 

[19] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, 
“Adaptive and generic corner detection based on the accelerated 
segment test,” in Lecture Notes in Computer Science (including 
subseries Lecture Notes in Artificial Intelligence and Lecture Notes 
in Bioinformatics), 2010, vol. 6312 LNCS, no. PART 2, pp. 183–196. 

[20] Y. K. Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive 
representation for local image descriptors,” Proc. 2004 IEEE Comput. 
Soc. Conf. Comput. Vis. Pattern Recognition, 2004. CVPR 2004., 
vol. 2, pp. 2–9, 2004. 

[21] K. Mikolajczyk, A. Zisserman, and C. Schmid, “Shape recognition 
with edge-based features,” in Procedings of the British Machine 
Vision Conference 2003, 2003, p. 79.1-79.10. 

[22] T. Quack, H. Bay, and L. Van Gool, “Object Recognition for the 
Internet of Things,” First Int. Conf. Internet Things (IoT 2008), vol. 
4952, pp. 230–246, 2008. 

[23] L. Naimark and E. Foxlin, “Circular data matrix fiducial system and 
robust image processing for a wearable vision-inertial self-tracker,” 
in Proceedings - International Symposium on Mixed and Augmented 
Reality, ISMAR 2002, 2002, pp. 27–36. 

[24] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary 
robust independent elementary features,” in Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6314 
LNCS, no. PART 4, pp. 778–792. 

[25] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An 
efficient alternative to SIFT or SURF,” in Proceedings of the IEEE 
International Conference on Computer Vision, 2011, pp. 2564–2571. 

[26] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary 
Robust invariant scalable keypoints,” in Proceedings of the IEEE 
International Conference on Computer Vision, 2011, pp. 2548–2555. 

[27] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina 
keypoint,” in Proceedings of the IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition, 2012, pp. 510–517. 

[28] S. Y. Tan, H. Arshad, and A. Azizi, “Evaluation on Binary 
Descriptor in Markerless Augmented Reality,” in The 3rd National 
Doctoral Seminar on Artificial Intelligence Technology, 2014, pp. 1–
6. 

[29] A. Ufkes and M. Fiala, “A markerless augmented reality system for 
mobile devices,” in Proceedings - 2013 International Conference on 
Computer and Robot Vision, CRV 2013, 2013, pp. 226–233. 

[30] P. E. Danielsson, “Euclidean distance mapping,” Comput. Graph. 
Image Process., vol. 14, no. 3, pp. 227–248, 1980. 

[31] T. Tian, F. Yang, K. Zheng, and Q. Gao, “A Fast Local Image 
Descriptor Based on Patch Quantization,” in International 
Conference on Human Centered Computing, 2017, pp. 64–75. 

[32] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, “HPatches: A 
benchmark and evaluation of handcrafted and learned local 
descriptors,” in Proceedings - 30th IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017–Janua, 
pp. 3852–3861. 

[33] D. J. Matuszewski, A. Hast, C. Wahlby, and I.-M. Sintorn, “A short 
feature vector for image matching: The Log-Polar Magnitude feature 
descriptor,” PLoS One, vol. 12, no. 11, 2017. 

[34] W. K. Obeidy, “A Markerless Hybrid Tracking Technique To 
Improve The Efficiency And Robustness Of Mobile Augmented 
Reality,” Universiti Kebangsaan Malaysia, 2014. 

 
 
 
 
 
 
 

 

1678




