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Abstract– Convolutional Neural Networks (CNNs) are the state-of-the-art in computer vision for different purposes such as image and 
video classification, recommender systems and natural language processing. The connectivity pattern between CNNs neurons is 
inspired by the structure of the animal visual cortex. In order to allow the processing, they are realized with multiple parallel 2-
dimensional FIR filters that convolve the input signal with the learned feature maps.  For this reason, a CNN implementation requires 
highly parallel computations that cannot be achieved using traditional general-purpose processors, which is why they benefit from a 
very significant speed-up when mapped and run on Field Programmable Gate Arrays (FPGAs). This is because FPGAs offer the 
capability to design full customizable hardware architectures, providing high flexibility and the availability of hundreds to thousands 
of on-chip Digital Signal Processing (DSP) blocks. This paper presents an FPGA implementation of a hand-written number 
recognition system based on CNN. The system has been characterized in terms of classification accuracy, area, speed, and power 
consumption. The neural network was implemented on a Xilinx XC7A100T FPGA, and it uses 29.69% of Slice LUTs, 4.42% of slice 
registers and 52.50% block RAMs. We designed the system using a 9-bit representation that allows for avoiding the use of DSP. For 
this reason, multipliers are implemented using LUTs. The proposed architecture can be easily scaled on different FPGA devices thank 
its regularity. CNN can reach a classification accuracy of 90%. 
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I. INTRODUCTION 

In the last few years, Machine Learning (ML) gained an 
important role in several fields that as health, computer 
vision, and communications energy [1]–[14]. The 
availability of increasingly high computational power and 
the introduction of new technologies have increased the 
interest in ML [15]–[27]. The mix of these two aspects 
provides the possibility to implement complex algorithms 
without compromising real-time computation on embedded 
devices. 

CNN's [28], [29] is a class of deep feed-forward artificial 
Neural Networks (NN), they are very used in the video, 
image and generally in signal processing. CNN's are 
characterized by a significant level of parallelism in terms 
of computation requirement. Their implementation requires 
complex operations as 2D convolutions, vector matrix 
multiplications, nonlinear operators and memory accesses. 
For this reason, when high performances are required, their 
implementation cannot be realized on standard 
microprocessors. In facts, microprocessors are inefficient 
because they are not optimized for parallel processing [21]. 
In these cases, different hardware architectures are required; 

among these architectures, the most interesting is the 
Graphics Processing Units (GPUs) and the Field 
Programmable Gate Arrays (FPGAs). 

The capability of customizable design architectures, their 
flexibility and the availability of hundreds or thousands of 
on-chip (Digital Signal Processing) DSP blocks, makes the 
FPGAs the best choice in case of very high-performance 
requirements [28], [29]. This paper presents an FPGA 
implementation of a hand-written number recognizer based 
on CNN. The proposed CNN has been designed in 
MATLAB. Before the hardware implementation, a fixed-
point analysis has been performed. After such analysis, the 
CNN   has been coded in VHDL and finally implemented 
on a Xilinx Artix 7 FPGA. Results are in terms of 
classification accuracy, area, speed, and power consumption. 

II. MATERIAL AND METHODS 

The design and the FPGA implementation of CNN have 
been performed according to several steps: 

 

• MATLAB CNN design. 
• MATLAB CNN training. 
• MATLAB fixed point analysis. 
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• VHDL coding. 
• Synthesis and P&R. 
• CNN performance analysis. 
 
During the first phase (MATLAB CNN design), we 

defined the CNN architecture and dimensions (Fig 1.). For 
our experiments, the target in terms of accuracy has been 
fixed at about 90%. Such target has been reached with the 
following configuration: 
 

• Input Layer: [28x28] 
• Convolutional Layer: 3 [3x3] mask 
• Batch Normalization Layer 
• ReLU Layer 
• Fully Connected Layer 
• Softmax Layer 
• Classification Layer 

 

 
Fig. 1 Proposed CNN architecture 

 
The training of CNN has been performed in MATLAB 

2018 using the Deep Learning Toolbox provided by 
MathWorks. For the training, we used a set of 7500 samples 
(750 for each character). For the validation, we used 2500 
samples.  Training has been performed in 4 epochs with the 
stochastic gradient method.  Fig.2 shows the block diagram 
of the CNN of Fig.1. The input is a [28x28] pixel image 
representing a hand-written number. The first operations 
performed by CNN is the 2D convolution among the input 
image and three different 3x3 kernels. The results of these 
convolutions are three different features of maps. Such 
features maps are stored in 147 RAMs (of 16 locations each) 

and formatted in order to be multiplied efficiently with the 
matrix containing the weights of the fully connected layer.  

The fixed-point analysis shows that the CNN of Fig.1 can 
reach a classification accuracy of 90% using a 9 bits 
representation for all the multiplications and the additions 
(we use 9 bits truncation both in convolution layer and 
classification layer). The most complex blocks in terms of 
design and computational capability are the convolutional 
stage and the fully connected layer. This is because such 
operations require lots of parallel computations. These 
blocks will be analyzed in the following subsection. 

A. Preliminary network design and accuracy tests 

After the training of the Network, in order to better 
estimate the complexity in terms of required operations, the 
entire algorithm has been coded in a tonsorial fashion in 
terms of algebraic matrix-vector multiplications and 
convolutions. After the fixed-point analysis, the inferred 
fixed-point CNN was tested using the test set (MNIST) 
provided by the Deep Learning Toolbox. The test results are 
shown in the confusion matrix in Tab.1  
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Fig. 2 CNN block diagram 
 

The fixed-point CNN developed in MATLAB achieves 
an accuracy of 90% of correctly classified instances. This 
performance level is considered enough for our 
implementation purposes. As the confusion matrix shows, 

the most incorrect digit is the “5”, which is confused for a 
“3” in the 22% of the cases. Intuitively, the network 
confusion statistics correlate with the digit shape 
resemblance: if two digits look similar, the network is more 
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prone to classify one digit for another. In the following 
subsections, the circuital implementation of such a 
Convolutional Neural Network is described in detail. 

B. Implementation of convolutional layer 

As discussed in the previous section, in the convolutional 
layer there is the 2D convolution between the input image 
and three different kernels. The 2D convolution formula is 
shown in Eq.1 
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In Eq.1 f(x,y) represents the pixel involved in the 

convolution. The matrix w is the kernel used for a single 
convolution and contains the weights estimated in the 
training phase. Each convolution output is added to a bias 
value. Also, the bias values are estimated in the training 
phase. After these operations, results are scaled by a v value 
to normalize values in the range [-1:1]. Finally, results are 
put in the input of the Rectified Linear Unit (ReLU) (Fig.3). 
 

 
Fig. 3 ReLU function 

 
In our FPGA implementation, we realize the above-

discussed operations with the circuit shown in Fig.4.  
Such a circuit is composed of 9 main blocks called 
convolutional Processing Elements (PE). The nine 
convolutional PEs elaborate a single pixel in one clock 
cycle. 

The convolutional PE works as follow: the first clock 
cycle it elaborates the pixel [x,y] of the first feature map, the 
second clock cycle the pixel [x,y] of the second one and 
finally the third clock cycle it elaborates  the pixel [x,y] of 
the third one. In the proposed implementation, we use nine 
convolutional PE in parallel in order to process in three 
clock cycles the entire 2D convolution between the three 
kernels (2D filters) and the input. The number of 
convolutional PEs depends on the FPGA size. Using a large 
FPGA, it is possible to implement more convolutional PEs 
in parallel and consequently increase the performances of 
the systems in terms of computational power. In facts, 
increasing the number of convolutional PE makes it possible 
to elaborate more pixels in parallel. 

Each convolutional PE is composed of two 
multiplexers for the selection of the appropriate weight and 
bias values, two multipliers and one adder. After the ReLU 
operations, data are arranged in 147 distributed RAM 
having 16 locations each. This solution allows the 
possibility to read 147 data in parallel and put them 
simultaneously in the fully connected layer. Also, in this 
case, the choice derived from the FPGA capabilities. Using 
a more powerful FPGA, it is possible to increase the number 
of multiplications for the cycle and consequently the 
performance of the entire CNN based classifier. 
 

 
Fig. 4 Convolutional layer circuit 

C. Implementation of a Fully Connected Layer 

A vector-matrix multiplication implements the fully 
connected layer. In the proposed application, the vector size 
is [1x2352] while the matrix of the weights of the fully 
connected layer has dimension [2352x10]. A fully parallel 
implementation of this product could require 23520 
multiplications and, for this reason, it cannot be realized on 
actual FPGAs. In facts, modern FPGAs are provided of 
about 10.000 multipliers in most expensive devices. For this 
reason, the implementation of this matrix-vector 
multiplication requires a semi-parallel approach.  

The number of multiplications that can be performed in 
parallel depends on the device. For our experiments, we use 
Xilinx XC7A100T FPGA and choose 147 multiplications. 
This number is compatible with the FPGA size. In Figure 5 
the block diagram of the implemented circuit is shown. 
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Fig. 5 Convolutional layer circuit 

 
Data coming from convolutional PEs are stored in the 

147 RAMs and multiplied with the weights of the fully-
connected layer stored in 147 ROMs. Fig 6 shows an 
example of semi-parallel vector-matrix multiplication. For 
the sake of simplicity, in the example, the vector and the 
matrix size are reduced. The input vector A is split into two 
parts that are multiplied with sub-matrices obtained by the 
one required by the computation. In our case, the [2352x10] 
matrix is divided in 16 [147x10] matrices. An adder tree 
finally adds results. After these computations, we obtain a 
[10x1] vector that is put in input to the softmax operation.  
 

 
Fig. 6 Semi parallel approach 

III.  RESULT AND DISCUSSION 

The CNN has been implemented on a Xilinx XC7A100T 
FPGA using the Xilinx Vivado tool-chain. The entire 
system has been coded in VHDL using the Register 
Transfer Level (RTL) abstraction level and synthesized by 
VIVADO.  In Tab 2 the resources utilization has been 
provided. 

TABLE  II 
RESOURCES UTILIZATION  

RESOURCE Used % 

Slice LUTs 15.796 29,69 % 

Slice Registers 106.400 4,42% 
Block RAM  73 52,50% 

 
Because, as previously discussed, the CNN requires 9x9 

multiplications with truncation to 9 bits of the results, we 
avoid the use of DSPs and implements all the 
multiplications using LUTs.  

In Fig.7 the CNN power consumption is provided.  Power 
consumption nowadays represents a crucial aspect 
especially for embedded systems where the power supply is 
usually provided by batteries [30-36]. There are three power 

dissipation components in CMOS digital circuits and 
consequently in microprocessors [23]: 

• Switching Power 
• Short-Circuit Power 
• Static Power. 

 
Fig. 7 Convolutional layer circuit 

 
Among these contributions, the switching power 

represents the main one, and it is defined in Eq.2, where a is 
the switching activity, C is the switching capacitance, f is 
the clock frequency and Vdd the supply voltage. 
 
 2aCfVddP =  (2) 

 
The second contribution, the short-circuit power, is 

related to the short-circuit currents flowing through the 
MOS transistors in the gate at each switching. It is strongly 
dependent on the parameters present in equation 1 
(switching activity, clock frequency, and supply voltage) 
but it also depends on the design (the transistor ratios and 
the node waveforms). Finally, the static power depends on 
the leakage currents, and it is related to the circuit design, 
the technology, and the supply voltage. The set of switching 
power and short-circuit power is named dynamic power. 

Results show that dynamic power is about 90% of the 
total power. The measured value is 0.975 W. The static 
component represents only the 11% and is 0.121 W. Power 
estimation has been performed using the post-P&R 
simulation using real images as input. In this way, the 
switching activity used for the estimation is very accurate.  
Our implementation reaches 300 MHz of maximum clock 
frequency and can process an entire character in 0.041 ms. 

IV.  CONCLUSIONS 

In this paper, we presented an FPGA implementation of a 
hand-written number recognition system based on CNN. 
The system was implemented on a Xilinx XC7A100T 
FPGA. The proposed implementation uses the 29.69 % of 
the Slice LUTs, the 4.42% of the slice registers and the 
52.50% the block RAM. The few numbers of bit estimated 
in the fixed-point analysis allow avoiding the use of DSP. 
Multipliers are implemented using LUTs. The proposed 
architecture can be easily scaled on different FPGA devices 
thank its regularity.  
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