

Vol.9 (2019) No. 1

ISSN: 2088-5334

FPGA Implementation of Hand-written Number Recognition
Based on CNN

Daniele Giardino#1, Marco Matta#2, Francesca Silvestri#3, Sergio Spanò#4, Valerio Trobiani#5
#Department of Electronic Engineering, University of Rome Tor Vergata, Via Del Politecnico 1, Rome, 00133, Italy

 E-mail: 1giardino@ing.uniroma2.it; 2matta@ing.uniroma2.it; 3f.silvestri@ing.uniroma2.it; 4spanr@ing.uniroma2.it;
5valerio.trobiani@gmail.com

Abstract– Convolutional Neural Networks (CNNs) are the state-of-the-art in computer vision for different purposes such as image and
video classification, recommender systems and natural language processing. The connectivity pattern between CNNs neurons is
inspired by the structure of the animal visual cortex. In order to allow the processing, they are realized with multiple parallel 2-
dimensional FIR filters that convolve the input signal with the learned feature maps. For this reason, a CNN implementation requires
highly parallel computations that cannot be achieved using traditional general-purpose processors, which is why they benefit from a
very significant speed-up when mapped and run on Field Programmable Gate Arrays (FPGAs). This is because FPGAs offer the
capability to design full customizable hardware architectures, providing high flexibility and the availability of hundreds to thousands
of on-chip Digital Signal Processing (DSP) blocks. This paper presents an FPGA implementation of a hand-written number
recognition system based on CNN. The system has been characterized in terms of classification accuracy, area, speed, and power
consumption. The neural network was implemented on a Xilinx XC7A100T FPGA, and it uses 29.69% of Slice LUTs, 4.42% of slice
registers and 52.50% block RAMs. We designed the system using a 9-bit representation that allows for avoiding the use of DSP. For
this reason, multipliers are implemented using LUTs. The proposed architecture can be easily scaled on different FPGA devices thank
its regularity. CNN can reach a classification accuracy of 90%.

Keywords— machine learning; FPGA; accelerator; CNN.

I. INTRODUCTION

In the last few years, Machine Learning (ML) gained an
important role in several fields that as health, computer
vision, and communications energy [1]–[14]. The
availability of increasingly high computational power and
the introduction of new technologies have increased the
interest in ML [15]–[27]. The mix of these two aspects
provides the possibility to implement complex algorithms
without compromising real-time computation on embedded
devices.

CNN's [28], [29] is a class of deep feed-forward artificial
Neural Networks (NN), they are very used in the video,
image and generally in signal processing. CNN's are
characterized by a significant level of parallelism in terms
of computation requirement. Their implementation requires
complex operations as 2D convolutions, vector matrix
multiplications, nonlinear operators and memory accesses.
For this reason, when high performances are required, their
implementation cannot be realized on standard
microprocessors. In facts, microprocessors are inefficient
because they are not optimized for parallel processing [21].
In these cases, different hardware architectures are required;

among these architectures, the most interesting is the
Graphics Processing Units (GPUs) and the Field
Programmable Gate Arrays (FPGAs).

The capability of customizable design architectures, their
flexibility and the availability of hundreds or thousands of
on-chip (Digital Signal Processing) DSP blocks, makes the
FPGAs the best choice in case of very high-performance
requirements [28], [29]. This paper presents an FPGA
implementation of a hand-written number recognizer based
on CNN. The proposed CNN has been designed in
MATLAB. Before the hardware implementation, a fixed-
point analysis has been performed. After such analysis, the
CNN has been coded in VHDL and finally implemented
on a Xilinx Artix 7 FPGA. Results are in terms of
classification accuracy, area, speed, and power consumption.

II. MATERIAL AND METHODS

The design and the FPGA implementation of CNN have
been performed according to several steps:

• MATLAB CNN design.
• MATLAB CNN training.
• MATLAB fixed point analysis.

167

• VHDL coding.
• Synthesis and P&R.
• CNN performance analysis.

During the first phase (MATLAB CNN design), we

defined the CNN architecture and dimensions (Fig 1.). For
our experiments, the target in terms of accuracy has been
fixed at about 90%. Such target has been reached with the
following configuration:

• Input Layer: [28x28]
• Convolutional Layer: 3 [3x3] mask
• Batch Normalization Layer
• ReLU Layer
• Fully Connected Layer
• Softmax Layer
• Classification Layer

Fig. 1 Proposed CNN architecture

The training of CNN has been performed in MATLAB

2018 using the Deep Learning Toolbox provided by
MathWorks. For the training, we used a set of 7500 samples
(750 for each character). For the validation, we used 2500
samples. Training has been performed in 4 epochs with the
stochastic gradient method. Fig.2 shows the block diagram
of the CNN of Fig.1. The input is a [28x28] pixel image
representing a hand-written number. The first operations
performed by CNN is the 2D convolution among the input
image and three different 3x3 kernels. The results of these
convolutions are three different features of maps. Such
features maps are stored in 147 RAMs (of 16 locations each)

and formatted in order to be multiplied efficiently with the
matrix containing the weights of the fully connected layer.

The fixed-point analysis shows that the CNN of Fig.1 can
reach a classification accuracy of 90% using a 9 bits
representation for all the multiplications and the additions
(we use 9 bits truncation both in convolution layer and
classification layer). The most complex blocks in terms of
design and computational capability are the convolutional
stage and the fully connected layer. This is because such
operations require lots of parallel computations. These
blocks will be analyzed in the following subsection.

A. Preliminary network design and accuracy tests

After the training of the Network, in order to better
estimate the complexity in terms of required operations, the
entire algorithm has been coded in a tonsorial fashion in
terms of algebraic matrix-vector multiplications and
convolutions. After the fixed-point analysis, the inferred
fixed-point CNN was tested using the test set (MNIST)
provided by the Deep Learning Toolbox. The test results are
shown in the confusion matrix in Tab.1

TABLE I
CONFUSION MATRIX

 Detected class

0 1 2 3 4 5 6 7 8 9

T
ar

g
et

 C
la

ss

0 99.
5%

0.0
%

0.2
%

0.0
%

0.0
%

0.0
%

0.0
%

0.0
%

0.1
%

0.2
%

1 3.6
%

89.
4%

0.5
%

1.0
%

2.0
%

0.0
%

0.0
%

3.1
%

0.2
%

0.2
%

2 4.1
%

1.6
%

90.
0%

2.0
%

0.3
%

0.2
%

0.0
%

0.4
%

0.8
%

0.6
%

3 1.1
%

0.3
%

2.4
%

90.
8%

0.1
%

0.2
%

0.1
%

0.4
%

0.3
%

4.3
%

4 1.3
%

0.3
%

0.0
%

0.1
%

97.
6%

0.0
%

0.4
%

0.2
%

0.1
%

0.0
%

5 1.2
%

0.0
%

0.3
%

22.
0%

0.4
%

68.
0%

2.4
%

0.2
%

0.7
%

4.8
%

6 6.4
%

0.4
%

0.4
%

1.1
%

6.2
%

0.6
%

82.
4%

0.7
%

1.0
%

0.8
%

7 0.5
%

0.4
%

7.4
%

0.2
%

0.4
%

0.0
%

0.5
%

90.
1%

0.0
%

0.5
%

8 1.5
%

0.1
%

0.2
%

6.7
%

1.8
%

0.5
%

0.9
%

0.9
%

87.
3%

0.1
%

9 8.7
%

0.2
%

0.0
%

0.8
%

0.7
%

0.3
%

0.0
%

3.9
%

0.5
%

84.
9%

Fig. 2 CNN block diagram

The fixed-point CNN developed in MATLAB achieves
an accuracy of 90% of correctly classified instances. This
performance level is considered enough for our
implementation purposes. As the confusion matrix shows,

the most incorrect digit is the “5”, which is confused for a
“3” in the 22% of the cases. Intuitively, the network
confusion statistics correlate with the digit shape
resemblance: if two digits look similar, the network is more

168

prone to classify one digit for another. In the following
subsections, the circuital implementation of such a
Convolutional Neural Network is described in detail.

B. Implementation of convolutional layer

As discussed in the previous section, in the convolutional
layer there is the 2D convolution between the input image
and three different kernels. The 2D convolution formula is
shown in Eq.1

],[].,[),(*],[2121

1 2

nynxwnnfyxwyxf
n n

−−=  
∞

−∞=

∞

−∞=

 (1)

In Eq.1 f(x,y) represents the pixel involved in the

convolution. The matrix w is the kernel used for a single
convolution and contains the weights estimated in the
training phase. Each convolution output is added to a bias
value. Also, the bias values are estimated in the training
phase. After these operations, results are scaled by a v value
to normalize values in the range [-1:1]. Finally, results are
put in the input of the Rectified Linear Unit (ReLU) (Fig.3).

Fig. 3 ReLU function

In our FPGA implementation, we realize the above-

discussed operations with the circuit shown in Fig.4.
Such a circuit is composed of 9 main blocks called
convolutional Processing Elements (PE). The nine
convolutional PEs elaborate a single pixel in one clock
cycle.

The convolutional PE works as follow: the first clock
cycle it elaborates the pixel [x,y] of the first feature map, the
second clock cycle the pixel [x,y] of the second one and
finally the third clock cycle it elaborates the pixel [x,y] of
the third one. In the proposed implementation, we use nine
convolutional PE in parallel in order to process in three
clock cycles the entire 2D convolution between the three
kernels (2D filters) and the input. The number of
convolutional PEs depends on the FPGA size. Using a large
FPGA, it is possible to implement more convolutional PEs
in parallel and consequently increase the performances of
the systems in terms of computational power. In facts,
increasing the number of convolutional PE makes it possible
to elaborate more pixels in parallel.

Each convolutional PE is composed of two
multiplexers for the selection of the appropriate weight and
bias values, two multipliers and one adder. After the ReLU
operations, data are arranged in 147 distributed RAM
having 16 locations each. This solution allows the
possibility to read 147 data in parallel and put them
simultaneously in the fully connected layer. Also, in this
case, the choice derived from the FPGA capabilities. Using
a more powerful FPGA, it is possible to increase the number
of multiplications for the cycle and consequently the
performance of the entire CNN based classifier.

Fig. 4 Convolutional layer circuit

C. Implementation of a Fully Connected Layer

A vector-matrix multiplication implements the fully
connected layer. In the proposed application, the vector size
is [1x2352] while the matrix of the weights of the fully
connected layer has dimension [2352x10]. A fully parallel
implementation of this product could require 23520
multiplications and, for this reason, it cannot be realized on
actual FPGAs. In facts, modern FPGAs are provided of
about 10.000 multipliers in most expensive devices. For this
reason, the implementation of this matrix-vector
multiplication requires a semi-parallel approach.

The number of multiplications that can be performed in
parallel depends on the device. For our experiments, we use
Xilinx XC7A100T FPGA and choose 147 multiplications.
This number is compatible with the FPGA size. In Figure 5
the block diagram of the implemented circuit is shown.

169

Fig. 5 Convolutional layer circuit

Data coming from convolutional PEs are stored in the

147 RAMs and multiplied with the weights of the fully-
connected layer stored in 147 ROMs. Fig 6 shows an
example of semi-parallel vector-matrix multiplication. For
the sake of simplicity, in the example, the vector and the
matrix size are reduced. The input vector A is split into two
parts that are multiplied with sub-matrices obtained by the
one required by the computation. In our case, the [2352x10]
matrix is divided in 16 [147x10] matrices. An adder tree
finally adds results. After these computations, we obtain a
[10x1] vector that is put in input to the softmax operation.

Fig. 6 Semi parallel approach

III. RESULT AND DISCUSSION

The CNN has been implemented on a Xilinx XC7A100T
FPGA using the Xilinx Vivado tool-chain. The entire
system has been coded in VHDL using the Register
Transfer Level (RTL) abstraction level and synthesized by
VIVADO. In Tab 2 the resources utilization has been
provided.

TABLE II
RESOURCES UTILIZATION

RESOURCE Used %

Slice LUTs 15.796 29,69 %

Slice Registers 106.400 4,42%
Block RAM 73 52,50%

Because, as previously discussed, the CNN requires 9x9

multiplications with truncation to 9 bits of the results, we
avoid the use of DSPs and implements all the
multiplications using LUTs.

In Fig.7 the CNN power consumption is provided. Power
consumption nowadays represents a crucial aspect
especially for embedded systems where the power supply is
usually provided by batteries [30-36]. There are three power

dissipation components in CMOS digital circuits and
consequently in microprocessors [23]:

• Switching Power
• Short-Circuit Power
• Static Power.

Fig. 7 Convolutional layer circuit

Among these contributions, the switching power

represents the main one, and it is defined in Eq.2, where a is
the switching activity, C is the switching capacitance, f is
the clock frequency and Vdd the supply voltage.

 2aCfVddP = (2)

The second contribution, the short-circuit power, is

related to the short-circuit currents flowing through the
MOS transistors in the gate at each switching. It is strongly
dependent on the parameters present in equation 1
(switching activity, clock frequency, and supply voltage)
but it also depends on the design (the transistor ratios and
the node waveforms). Finally, the static power depends on
the leakage currents, and it is related to the circuit design,
the technology, and the supply voltage. The set of switching
power and short-circuit power is named dynamic power.

Results show that dynamic power is about 90% of the
total power. The measured value is 0.975 W. The static
component represents only the 11% and is 0.121 W. Power
estimation has been performed using the post-P&R
simulation using real images as input. In this way, the
switching activity used for the estimation is very accurate.
Our implementation reaches 300 MHz of maximum clock
frequency and can process an entire character in 0.041 ms.

IV. CONCLUSIONS

In this paper, we presented an FPGA implementation of a
hand-written number recognition system based on CNN.
The system was implemented on a Xilinx XC7A100T
FPGA. The proposed implementation uses the 29.69 % of
the Slice LUTs, the 4.42% of the slice registers and the
52.50% the block RAM. The few numbers of bit estimated
in the fixed-point analysis allow avoiding the use of DSP.
Multipliers are implemented using LUTs. The proposed
architecture can be easily scaled on different FPGA devices
thank its regularity.

ACKNOWLEDGMENT

The authors would like to thank Xilinx Inc., for providing
FPGA hardware and software tools by Xilinx University
Program.

170

REFERENCES
[1] G. Lo Sciuto, G. Susi, G. Cammarata e G. Capizzi: A spiking neural

network-based model for anaerobic digestion process, in IEEE 23rd
Int. Symp. on power electronics, electrical drives, automation and
motion (SPEEDAM), 2016.

[2] S. Brusca, G. Capizzi, G. Lo Sciuto e G. Susi: A new design
methodology to predict wind farm energy production by means of a
spiking neural network based-system, Int. Journal of Numerical
Modelling: Electronic Networks, Devices and Fields, vol. 7, 2017.

[3] Scarpato, N., Pieroni, A., Di Nunzio, L., Fallucchi, F.: E-health-IoT
universe: A review 2017 International Journal on Advanced Science,
Engineering and Information Technology, 7 (6), pp. 2328-2336

[4] I. Dalmasso, I. Galletti, R. Giuliano, F. Mazzenga, “WiMAX
Networks for Emergency Management Based on UAVs”, IEEE –
AESS European Conference on Satellite Telecommunications.
(IEEE ESTEL 2012), Rome, Italy, Oct. 2012, p. 1 - 6.

[5] Pieroni, A., Scarpato, N., Di Nunzio, L., Fallucchi, F., Raso, M.
Smarter City: Smart energy grid based on Blockchain technology
(2018) International Journal on Advanced Science, Engineering and
Information Technology, 8 (1), pp. 298-306.

[6] Hidra Amnur Customer Relationship Management and Machine
Learning Technology for Identifying the Customer 2017 JOIV:
International Journal on Informatics Visualization Vol 1, No 1

[7] Salah, R.E.E, Zakaria, L.Q. A comparative review of machine
learning for Arabic named entity recognition International Journal
on Advanced Science, Engineering and Information Technology
Volume 7, Issue 2, 2017, Pages 511-518

[8] Giuliano, R., Mazzenga, F., Neri, A., Vegni, A.M., “Security access
protocols in IoT capillary networks”, IEEE Internet of Things
Journal, Vol. 4, Is. 3, Jun. 2017, p.645-657.

[9] Guadagni, F., Zanzotto, F.M., Scarpato, N., Rullo, A., Riondino, S.,
Ferroni, P., Roselli, M. RISK: A random optimization interactive
system based on kernel learning for predicting breast cancer disease
progression (2017) Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 10208 LNCS, pp. 189-196.

[10] Ferroni, P., Zanzotto, F.M., Scarpato, N., Riondino, S., Guadagni, F.,
Roselli, M. Validation of a machine learning approach for venous
thromboembolism risk prediction in oncology (2017) Disease
Markers, 2017, art. no. 8781379

[11] Fallucchi, F., Zanzotto, F.M. Inductive probabilistic taxonomy
learning using singular value decomposition 2011 Natural
Language Engineering

[12] Fallucchi, F., Zanzotto F.M. Singular value decomposition for
feature selection in taxonomy learning 2009 International
Conference Recent Advances in Natural Language Processing,
RANLP

[13] Pazienza, M.T., Scarpato, N., Stellato, A., Turbati, A. Semantic
Turkey: A browser-integrated environment for knowledge
acquisition and management (2012) Semantic Web, 3 (3), pp. 279-
292.

[14] Ferroni, P., Zanzotto, F.M., Scarpato, N., Riondino, S., Nanni, U.,
Roselli, M., Guadagni, F.Risk Assessment for Venous
Thromboembolism in Chemotherapy-Treated Ambulatory Cancer
Patients (2016) Medical Decision Making, 37 (2), pp. 234-242.

[15] Cardarilli, G.C., Cristini, A., Di Nunzio, L., Re, M., Salerno, M.,
Susi, G.: Spiking neural networks based on LIF with latency:
Simulation and synchronization effects (2013) Asilomar Conference
on Signals, Systems and Computers, pp. 1838-1842.

[16] Khanal, G.M., Acciarito, S., Cardarilli, G.C., Chakraborty, A., Di
Nunzio, L., Fazzolari, R., Cristini, A., Re, M., Susi, G.: Synaptic
behaviour in ZnO-rGO composites thin film memristor 2017
Electronics Letters, 53 (5), pp. 296-298.

[17] Cardarilli, G.C., Di Nunzio, L., Re, M., Nannarelli, A. ADAPTO:
Full-adder based reconfigurable architecture for bit level operations
(2008) Proceedings - IEEE International Symposium on Circuits and
Systems, art. no. 4542197, pp. 3434-3437.

[18] Khanal, G.M., Cardarilli, G., Chakraborty, A., Acciarito, S., Mulla,
M.Y., Di Nunzio, L., Fazzolari, R., Re, M. A ZnO-rGO composite
thin film discrete memristor (2016) IEEE International Conference
on Semiconductor Electronics, Proceedings, ICSE, 2016-September,
art. no. 7573608, pp. 129-132

[19] Acciarito, S., Cardarilli, G.C., Cristini, A., Nunzio, L.D., Fazzolari,
R., Khanal, G.M., Re, M., Susi, G.: Hardware design of LIF with
Latency neuron model with memristive STDP synapses 2017
Integration, the VLSI Journal, 59, pp. 81-89.

[20] Acciarito, S., Cristini, A., Di Nunzio, L., Khanal, G.M., Susi, G.: An
aVLSI driving circuit for memristor-based STDP, 2016 12th
Conference on Ph.D. Research in Microelectronics and Electronics,
PRIME 2016,

[21] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Pontarelli, S., Re, M.,
Salsano, A., Implementation of the AES algorithm using a
Reconfigurable Functional Unit, ISSCS 2011 - International
Symposium on Signals, Circuits and Systems, Proceedings, art. no.
5978668, pp. 97-100.

[22] Cardarilli, G.C., Di Nunzio, L., Re, M. Arithmetic/logic blocks for
fine-grained reconfigurable units (2009) Proceedings - IEEE
International Symposium on Circuits and Systems, art. no. 5118184,
pp. 2001-2004

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proc. IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998.

[24] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Silvestri, F.
and Spanò, S. Energy consumption saving in embedded
microprocessors using hardware accelerators, Telkomnika
(Telecommunication Computing Electronics and Control), vol. 16,
no. 3, pp. 1019-1026, 2018.

[25] Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele
Giardino, Marco Matta, Marco Re, Francesca Silvestri and Sergio
Spanò Efficient Ensemble Machine Learning implementation on
FPGA using Partial Reconfiguration Lecture Notes in Electrical
Engineering 2019 ARTICLE IN PRESS

[26] Daniele Giardino, Marco Matta, Marco Re, Francesca Silvestri and
Sergio Spanò : IP Generator Tool for Efficient Hardware
Acceleration of Self-Organizing Lecture Notes in Electrical
Engineering 2019 ARTICLE IN PRESS

[27] Khanal, G., Acciarito, S., Cardarilli, G.C., Chakraborty, A., Di
Nunzio, L., Fazzolari, R., Cristini, A., Susi, G., Re, M. ZnO-rGO
composite thin film resistive switching device: Emulating biological
synapse behavior (2017) Lecture Notes in Electrical Engineering,
429, pp. 117-123

[28] Li, S., Wen, W., Wang, Y., Han, S., Chen, Y., Li, H.H An FPGA
design framework for CNN sparsification and acceleration
(2017) Proceedings - IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines, FCCM 2017, art.
no. 7966642, p. 28.

[29] Huang, C., Ni, S., Chen, G. A layer-based structured design of CNN
on FPGA (2018) Proceedings of International Conference on ASIC,
2017-October, pp. 1037-1040.

[30] Simonetta, A., Paoletti, M.C. Designing digital circuits in multi-
valued logic (2018) International Journal on Advanced Science,
Engineering and Information Technology, 8 (4), pp. 1166-1172

[31] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Lee, R.B.
Integration of butterfly and inverse butterfly nets in embedded
processors: Effects on power saving (2012) Conference Record -
Asilomar Conference on Signals, Systems and Computers, art. no.
6489268, pp. 1457-1459

[32] Silvestri, F., Acciarito, S., Cardarilli, G.C., Khanal, G.M., Di Nunzio,
L., Fazzolari, R., Re, M. FPGA implementation of a low-power QRS
extractor (2019) Lecture Notes in Electrical Engineering, 512, pp. 9-
15.

[33] Francesca, S., Carlo, C.G., Luca, D.N., Rocco, F., Marco, R.
Comparison of low-complexity algorithms for real-time QRS
detection using standard ECG database (2018) International Journal
on Advanced Science, Engineering and Information Technology, 8
(2), pp. 307-314

[34] Acciarito, S., Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M. A
wireless sensor node based on microbial fuel cell (2017) Lecture
Notes in Electrical Engineering, 409, pp. 143-150

[35] Iazeolla, G., Pieroni, A Power management of server farms
(2014) Applied Mechanics and Materials, 492, pp. 453-459.

[36] Cardarilli, G.C., Di Nunzio, L., Massimi, F., Fazzolari, R., De Petris,
C., Augugliaro, G., Mennuti, C. A wireless sensor node for acoustic
emission non-destructive testing (2019) Lecture Notes in Electrical
Engineering, 512, pp. 1-7

171

