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Abstract— Generally, long span bridges have multiple columns as known as piers to support the stability of the bridge. The pier is 
the most vulnerable part of the deck against the earthquake load. The study aims to predict the performance of the pier on the 
bridge structure subject to earthquake loads using a Neuro-Genetic Hybrid. The mix design of the Back Propagation Neural 
Networks (BPNN) and Genetic Algorithm (GA) method obtained the optimum-weight factors to predict the damage level of a pier. 
The input of Neuro-Genetic hybrid consists of 17750 acceleration-data of bridge responses. The outputs are the bridge-damage 
levels based on FEMA 356. The categorize of a damage level was divided into four performance levels of the structure such as safe, 
immediate occupancy, life safety, and collapse prevention. Bridge responses and performances have resulted through analysis of 
Nonlinear Time History. The best of Mean Squared Error and Regression value for the Neuro-Genetic hybrids method are 0.0041 
and 0.9496 respectively at 50000 epochs for the testing process.  The Regression value denotes the predicted damage values more 
than 90% closer to the actual damage values. Thus, the damage level prediction of the pier in this study offers as an alternative to 
structural control and monitor of bridges. 
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I. INTRODUCTION 

Stability and performance of bridge structure are essential 
to ensure un-disrupted traffic without compromising the 
safety of its users. Natural disaster such as an earthquake can 
affect the stability of bridge structures. The problem is 
revealed in the Euro Code 2 [1]  by imposing stricter damage 
natural disasters such as quake can affect the stability of 
bridge structures.  Even a well-designed bridge may face 
damage as a result of the increased vulnerability of the 
bridge to non-structural modifications which may alter the 
imposed load as well as structural deterioration due to 
earthquake loads [2]. 

The pier is the most vulnerable element of a bridge due to 
earthquake load. The complexity of the whole bridge system 
caused the presence of much uncertainty and variations to 
predict the bridge responses. Commonly, seismic responses 
of the bridge only known from past incidents. However, 
post-earthquake inspection often takes time for the 
authorized assessor to perform specific checks on the 
affected bridge. Fig.1 shows the failure of the piers that 
caused by shear failures under earthquake loads [3]. 
Therefore, the bridge should be supervised to obtain the 
service life, ensure public safety, and reduce maintenance 
costs.   

 

 
 

Fig.1 Higashi-Nada Viaduct collapse in 1995 due to Kobe earthquake [3] 
 
The maintenance of bridges become complicated by the 

increased age of the bridges.  One of the essential efforts to 
know the life cycle performances and management 
procedures of bridges is through Structural Health 
Monitoring (SHM).  According to [4], SHM refers to the 
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implementation of a damage identification strategy for Civil 
Engineering infrastructures.  Application of SHM in Bridge 
Engineering aims to ensure long service life and improve the 
high-level service to the highway users.  Moreover, the 
objectives of bridge monitoring are to ensure bridge safety 
and provide better maintenance planning. Commonly, bridge 
evaluation used any aspect of the condition of a bridge 
proactively, through the measured data from wireless 
sensors and the finite element method [5].  

The bridge authorities should establish the systems and 
existing technologies for bridge monitoring system. 
Commonly in developing countries, the engineers use the 
conventional method such as Non-Destructive Test (NDT) 
and Visual Inspection (VI) for bridge evaluation and 
maintenance. On the other hand, modern technology such as 
the recording data SHM used the various sensors along the 
bridge in real time. The observation is in the monitoring 
room or remote area using internet connection.  So, the 
experts rationally should make the right decisions based on 
the bridge SHM results.  

According to FEMA 365 [6], the structural performance 
indicated the stability of structure that consists of operational 
and damage states as minor damage (Immediate Occupancy, 
IO), moderate damage (Life Safety, LS) and severe damage 
(Collapse Prevention, CP). The structural performance can 
be analyzed using static load (pushover analysis) such as has 
studied by [7] and dynamic load (non-linear time history 
analysis). Pushover analysis is used by researchers to 
analyze the structure due to static load while the material in 
the plastic stage. Meanwhile, the bridge structure analysis in 
this study used the nonlinear time history analysis due to 
dynamic load such as the earthquake load.    

Commonly, problems faced by a conventional bridge 
monitoring system include the errors to interpret monitoring 
data and submission database system (server).  Back-
Propagation Neural Network (BPNN) can solve the issue of 
the existing system to unite bridge monitoring and analysis. 
One of the solutions is to interpret and predict the damage 
level of bridge structure due to earthquake loads.  The 
BPNN links non-linear input and output data regardless of 
the specified mathematical equations. In addition to that, 
Neural Networks require no prior knowledge of the 
correlation between the data and target.  Although the BPNN 
has its limitations, the use of this method has solved many 
cases in Civil Engineering.  

The Artificial-Intelligent (AI) technologies include Neural 
Networks, Fuzzy Logic, and Genetic Algorithm technology.  
According to [8] and [9], many cases cannot be solved using 
each AI technology separately; then the solution can adopt a 
combination of two or three AI technologies to provide a 
more accurate and efficient solution. 

The Genetic Algorithms use three basic operations: 
selection, crossover, and mutation.  The selection process is 
the process of choosing the fitness string from the current 
population (parents) to the next generation (offspring).  
Crossover process generates the new child from existing 
individuals (each parent) by cutting each old string 
(chromosome) at a random location (crossover point) and 
replacing the tail of one line with the other.  Mutation is a 
random process whereby the value of elements is changed 
such as 1’s to 0’s and vice versa in a binary string. A 

complete replacement for chromosome, crossover, mutation, 
and inversion at specific probabilities used computer 
programming-coding.  The locations of observation points 
are determined according to modal identification function 
from the structural analysis results.  Genetic Algorithm (GA) 
with Back-Propagation Neural Network (BPNN) is a hybrid 
architecture in which a BPNN employs Genetic Algorithms 
for the determination of its weights.   

The Genetic Algorithm is an optimization technique that 
simulates the phenomenon of natural evolution.  The basis of 
a Genetic Algorithm is survival of the fittest, means survival 
and the passing on of the characteristics of future children. 
The Genetic Algorithm has also defined a population of 
candidate generation. The encoded as known as a 
chromosome.  Within the chromosome is a separate gene 
that represents the independent variables for the problem at 
hand.  Each parameter of the problem is a chromosome, 
which represents a unique independent setting.  This 
condition could represent bit strings, floating-point 
variables, or simple binary-encoded integers. The Genetic 
Algorithms provide the initial population, which is done by 
creating chromosomes randomly or by seeding the 
community with known fit chromosomes [10].   

According to [11], the Genetic Algorithms consist of 
three fundamental steps, namely evaluation, selection, and 
recombination.  The evaluation process accessed each 
chromosome to solve the problem.  The stage used decoding 
the candidate solution into the cases.  Next step is 
verification of the result using the parameters. The last is the 
calculation of fitness. After this step, a subset of the 
population is selected based on a predefined selection 
criterion. 

Many researchers have studied the application of the 
BPNN and GA methods. One of them is  [12] who applied 
the Neuro-Genetic Hybrids for prediction of pile bearing 
capacity with 99% accuracy, and adopted the Neuro-Genetic 
algorithm to more effectively forecast and the best 
performance for the daily water demands. Meanwhile [13] 
who considered the optimization of the neural networks 
parameters. The results of the studies show that the method 
can predict with 96% accuracy. The other researchers have 
developed the hybrid of Artificial Intelligent (AI) using the 
Particle Swarm Optimization (PSO) to result in the highly 
accurate in numerical optimization such as [14] who studied 
fiber reinforced optimization, [15] who studied soil stability 
optimization, and [16] who studied structural failure 
optimization.  

The previous study about Neuro Genetic Hybrid has 
applied to the intelligent system monitoring for bridge 
structure [17], [18]. The result indicates the Neuro Genetic 
Hybrid method can solve the problem to predict the 
condition of the bridge after the earthquake. This study 
continues the previous research, but input data is scaled on 
three classifications, low until high ground acceleration. 
Meanwhile, the target (output) data are damage level of 
bridge structure based on FEMA 356.   Therefore, this paper 
aims to predict the bridge condition after earthquakes using 
the Neuro-Genetic hybrids.  
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II. MATERIAL AND METHOD 

A. Bridge Model 

This study used the prestress bridge model with 102 m 
length. The bridge model has four piers and three spans.  
Each span is 34 m-long as shown in Fig. 2. The height of the 
piers is 9 m.  The supports between the decks and the piers 
are free in both translation and rotation. Meanwhile, the 
support at the base of all piers is fixed in both translation and 
rotation. The points of observation for the bridge 
deformation are at the top of Pier B1, Pier B2, Pier B3, Pier 
B4 pier and the middle of spans such as Span A1, Span A2, 
and Span A3. The directional properties of the supports for 
Pier B1, Pier B2, and Pier B4 are free on x, y, and z-
direction while Pier B3 is fixed for all the directions.    

 
 

   (a) 3D view   
 

  

   (b) 2D view 
 

Fig. 2. The geometry of Bridge Model in 3D and 2D view 

 
The bridge consists of concrete with reinforcing steels. 

The compressive design strength for the concrete is 40 MPa, 
and 50 MPa for the superstructure. Primary reinforcement 
bars in this study have the characteristic yield strength of 
290 MPa. Frame element was assigned for the pier while the 
deck was represented by a shell element with a thickness of 
12 mm. The damping of the bridge model was assumed to be 
5 % of the critical damping. Nonlinear hinges element was 
assigned at top, middle and base of among the piers.  

B. Earthquake load data 

The seismic designs for the bridge model used five 
ground motion accelerations from Pacific Earthquake 
Engineering Research (PEER) database [19] as shown in 
Table. I. The finite-element analysis used SAP2000 
Software for Nonlinear Time History analysis.  The loading 
on the bridge structure is dead load, live load, and five 
earthquake loads. The earthquakes have been scaled to Peak 
Ground Acceleration (PGA) values: 0.5g (low acceleration), 
0.75g (moderate acceleration) and 1.0g (high acceleration). 

 

TABLE I 
DESCRIPTION OF THE EARTHQUAKE DATA RECORDS 

 

C. The procedure of Neuro-Genetic Hybrids 
 

The study used Neuro Genetic Hybrid for prediction of 
the optimum weight and damage levels of the bridge 
structure.  The Neuro-Genetic hybrid is a combination of 
Back Propagation Neural Networks (BPNN) and Genetic 
method in the design of the network, especially for the 
optimum design of the Neural Networks.  The total error in 
Back Propagation Neural Network output is defined as, 

2
jj

Jj
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2
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Er −=

∈
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where Tj is the target output, while Oj is the activation rate 
of output, and J is some training iteration. 

Mean-Squared Error (MSE) should be convergent until 
the last iteration to get the sufficiently small output error 
(near to null).  Error (Eri) in Equation (2) can be calculated 
using Equation (1) previously.  The root-mean-square, E; for 
N number of the Error can be rewritten as shown in Equation 
(2),  

N

Er
E i
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=       (2) 

 

The fitness value FVi for each of the chromosome 
(individual parameter) can be stated as  

E
FVi

1=     (3) 

In the study, the Neuro-Genetic Hybrid requires 
acceleration, and time as input data, while output data are 
damage levels based on FEMA 356. In the training process 
used 75% of bridge acceleration response data while in the 
testing and validation process used 15% of the data 
respectively. Neuro-genetic calculations begin with the 
determination of the population number of chromosomes 
(Po) with N size randomly. The Po data determines the set of 
BPNN weight. The errors in the training process are used to 
calculate the value of fitness for each chromosome. The 
option of appropriate initial weight, learning rate, and 
activation function resulted in the best performances of 
Neuro-Genetic Hybrid (NGH). The weight of Neuro-Genetic 
method showed the acceleration or retardation of the input 
signals.  

The architectural model has n number of input neurons, 
one hidden layers with 2n+1 neurons and an output layer 
with some neurons. Time and acceleration data are used as 
input neuron while the target is the bridge damage data. The 
damage level consists of the safe level until the minor 

No Name of 
Earthquake Year Magnitude  

(Mw) 
PGV 

m/s 

PGA 

(g) 

1. San Francisco, NA 1957 5.28 0.0391 0.095 

2. New Zealand 1987 6.6 0.2167 0.255 

3. Cape Mendocino 1992 7.01 0.2014 0.150 

4. Landers, NA 1992 7.28 0.097 0.104 

5. Loma Prieta 1989 6.93 0.1735 0.120 
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(Immediate Occupancy, IO), moderate (Life Safety, LS) and 
severe damage (Collapse Prevention, CP). This study has 
chosen eight neurons in input layer consist of time history, 
four accelerations on top of Pier B1, Pier B2, Pier B3, and 
Pier B4, three accelerations on the middle of Span A1, Span 
A2 and Span A3. Meanwhile, the hidden layer has 17 
neurons, and the output layer has four neurons such as safe, 
IO, LS and CP.  

In the next stage, the worst chromosome is replaced by 
the best chromosome. The chromosomes of parent are 
randomly chosen in pairs and resulted in the best offspring 
through the crossover process. The first derivative (P1) of 
the population has the fitness after error calculation and 
weight extraction. Progress generation is ended since the 
community integrates with the same fitness value. The 
weight factor of BPNN is extracted from the best result of 
the population. 

The procedure of testing is the same process with the 
BPNN training in the previous step, but without a weight 
optimization by Genetic Algorithm.  The method uses the 
final weight and uses other data for testing.  The control 
phase is over-fitting between training and testing of BPNN.  
If over-fitting occurred, then the structure of Neuro-Genetic 
hybrid should be modified.  The structure includes some 
hidden layers, iteration, mutation, and crossover operator. 
The last step is writing the results such as the prediction of 
damage level, Mean Squared Error and Regression values as 
an indicator of the duration of the run-time process. 

III.  RESULTS AND DISCUSSION 

The observation points for monitoring are on the top of 
Pier B1, Pier B2, Pier B3, and Pier B4. Meanwhile, the 
observation points on the span of the bridge are in the 
middle of Span A1, Span A2, and Span A3 individually.  
This study used 40 modes in the analysis of the finite 
element method which captured more than 90% mass 
participation in Ux and Uy direction.  

The acceleration of an earthquake is required for the 
function input in Finite Element Nonlinear Time History 
analysis using SAP2000 Program.  The results stated the 
location of critical parts of the bridge structure failure due to 
5 earthquakes in Table I with three scaled PGAs (0.5g, 
0.75g, and 1g). Bridge performance due to the earthquakes 
scaled PGA 0.75g are shown in Fig. 3 to Fig. 7.  

 

Fig. 3 Bridge performance due to San Fransisco NA Earthquake 0.75g. 

 

Fig. 4 Bridge performance due to the New Zealand Earthquake 0.75g. 

 
Fig. 5  Bridge performance due to Cape Mendocino Earthquake 0.75g. 

 

 
Fig. 6  Bridge performance due to Landers Earthquake 0.75g. 

 

 
Fig. 7 Bridge performance due to the Loma Prieta Earthquake 0.75g. 

 
The critical damage level of the bridge model during the 

time history of 0.75g scaled earthquake loads occurred on 
Pier B3. The support of Pier B3 has been designed fixed in 
all direction (x, y, and z-direction).  Damage level occurred 
at IO, LS and CP level, while B level is a condition before 
first damage.   

Bridge responses consist of acceleration at the piers and 
spans of the bridge such as are shown in Fig. 8 to Fig. 12. 
The bridge acceleration due to the San Francisco earthquake 
0.75g is shown in Fig 8 and Fig 9.  

 

 
 
Fig. 8 The acceleration occurred in the middle of span due to San Fransisco 
NA Earthquake 0.75g. 

 

 
 

Fig. 9 The acceleration occurred in the top of the pier due to San Fransisco 
NA Earthquake 0.75g. 
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Fig 10 and Fig 11 show the acceleration of the bridge 
model due to the New Zealand earthquake 0.75g. The 
analysis results stated the maximum acceleration for the 
span is occurred at the middle span A2 (12.596 m/s2) and for 
the piers is happened at the Pier B3 (7.845 m/s2).   

 

 
Fig. 10 The acceleration occurred in the middle of the span due to the New 
Zealand Earthquake 0.75g. 

 
Fig. 11 The acceleration occurred in the top of pier due to New Zealand 
Earthquake 0.75g 

 
The analysis results of bridge model due to Cape 

Mendocino earthquake 0.75g are shown in Fig 12 and Fig 
13.  

 
Fig. 12 The acceleration occurred in the middle of span due to Cape 
Mendocino Earthquake 0.75g. 

 

 
Fig. 13 The acceleration occurred in the top of pier due to Cape Mendocino 
Earthquake 0.75g. 

The maximum acceleration for the span occurs at the middle 
span A2 (15.692 m/s2) and for the piers is occurred at the 
Pier B3 (6.255 m/s2).   

Fig 14 and Fig 15 show the finite element result analysis 
of the bridge model due to the Landers earthquake 0.75g. 
The analysis results show the maximum acceleration for the 
span occurs at the middle span A2 (9.898 m/s2) and for the 
piers occurs at the Pier B3 (19.755 m/s2).   

  

 
Fig. 14 The acceleration occurred in the middle of the span due to Landers 
Earthquake 0.75g. 

 

 
Fig. 15 The acceleration occurred in the top of the pier due to Landers 
Earthquake 0.75g. 

 
The analysis results of bridge model due to the Loma 

Prieta earthquake 0.75g are shown in Fig 16 and Fig 17. The 
maximum acceleration for the span occurs at the middle 
span A1 (13.592 m/s2) and for the piers is occurred at the 
Pier B2 (10.289 m/s2).   

 

 
Fig. 16 The acceleration occurred in the middle of span due to Loma Prieta 
Earthquake 0.75g. 
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Fig. 17 The acceleration occurred in the top of the pier due to Loma Prieta 
Earthquake 0.75g. 
 

The resume of Nonlinear Time History analysis with 
damage level which is used in the training and testing of the 
Neural Networks process is shown in Table II. 

 

TABLE II 
DAMAGE LEVEL OF BRIDGE MODEL FOR TRAINING AND TESTING DATA 

 
 

The NGH method in this study used seven number of 
input neurons, one hidden layers with 17 neurons and one 
output layer. The neurons for input layer consist of time, 
four accelerations on the top of the bridge model and three 
accelerations on the middle of the span. The output layer in 
this study consists of four indexes such as 0 (zero) states 
safety (S), 1 (one) states IO, 2 (two) states LS and 3 (three) 
for CP level. The total numbers of input and output data are 
17750, which is resulted from finite-element analysis due to 
15 earthquake excitations.  The NGH used 70% data for 
training, 15% data for testing and 15% data for the 
validation process.  The results of NGH are shown in Fig 18 
and Fig 19. 

The figure illustrates MSE for the training and testing 
process declined from the 5000th epoch to 50000th iterations.  
The error on all operations decreases along the iterations.  
The best result of NGH based on the suitable option of the 
first weight, the system architecture model, and activation 
functions.  The best performances of Neuro-Genetic Hybrids 
(NGH) is determined by the selection of initial weights, the 
architecture model of networks and appropriate activation 
functions. The NGH neurons applied to this study had an 
input layer comprising time and acceleration which are 
obtained through the analysis of the finite element software 
SAP2000. The research used the Back-Propagation Neural 

Network (BPNN) and Genetic Algorithms (GA) to estimate 
the optimum weight and damage level of the bridge model.  
The MSE for one hidden layer is 0.0041, and the R-rate has 
resulted in more than 94% closer to the actual damage 
values.  
The results proved the Neuro-Genetic Hybrids method based 
on the bridge acceleration data domain could produce the 
best performance for estimation the damage level due to 
earthquake loads on 94% accuracy.  Therefore, this inventive 
method can be applied to monitor and predict bridge 
performances during and after the earthquakes. Furthermore, 
the engineers can use the bridge health monitoring results as 
a guide to a reasonable decision.   
 

 Fig. 18. The Mean Squared Error (MSE) of the acceleration domain input 
of Neuro-Genetic Hybrids 
 

 
Fig. 19. The Regression (R) of acceleration domain input of Neuro-Genetic 
Hybrids 

 
The calculation NGH stopped when the Mean Squared 

Error (MSE) indicated the small errors at the maximum of 
50000 iterations. The performance goal of training and 
testing in this study is 0.05, and the learning rate parameter 
is 0.15. That means an acceptable MSE is reachable. The 
best performance of MSE value is the smallest of MSE. It 
indicates the lowest of the error occurred in the calculation.  
Meanwhile, the best Regression (R) value is the highest one 
close to 1. When the regression value is close to 1, then the 
prediction value is almost 100% close to the actual one.    

The best performance of Central Processing Unit (CPU) 
time indicates the shortest time to process the training 
calculation in CPU. The CPU time is dependent on the 
CPU’s computational power and specification of the 
computer. In this study, the training and testing process used 
the computer specification Intel Core i5-2410M with 2.30 
GHz turbo boost up to 2.90 GHz.  The CPU time for every 
iteration shown in Fig 20. 

-10

-5

0

5

10

0 4 8 12 16

A
cc

el
er

at
io

n 
(m

/s
2)

Time (sec)

B1 B2 B3 B4

Safe                                                       Damage

0.0058
0.0055

0.0052
0.0049

0.0045

0.0050
0.0047

0.0046
0.0044

0.0041

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0 10000 20000 30000 40000 50000
M

ea
n

 S
q

u
ar

ed
 E

rr
or

 
(M

S
E

)
Epoch

MSE traning MSE Testing

0.8887

0.8990

0.9090 0.9191
0.93280.9097

0.9165 0.9218
0.9318

0.9496

0.8000

0.8500

0.9000

0.9500

1.0000

0 10000 20000 30000 40000 50000

R
eg

re
ss

io
n

 ( 
R

 ) 

Epoch 

R training R testing

2398



 
Fig. 20. The CPU time of training process of Neuro-Genetic Hybrids 
system.  

IV.  CONCLUSION 

The best performances of Neuro-Genetic Hybrids (NGH) 
is determined by the selection of initial weights, the 
architecture model of networks and appropriate activation 
functions. The NGH neurons applied to this study had an 
input layer comprising time and acceleration obtained 
through the analysis of the finite element software SAP2000. 
The research has used the Back Propagation Neural Network 
(BPNN) and Genetic Algorithms (GA) to estimate the 
optimum weight and damage level.  The results proved the 
Neuro-Genetic Hybrids method based on the bridge 
acceleration data domain could produce the best 
performance for estimation the damage level due to 
earthquake loads.  Therefore, this inventive method can be 
applied to the monitoring system and predict bridge 
performances during and after the earthquakes. Furthermore, 
the engineers can use the bridge health monitoring results as 
a guide to a reasonable decision.   
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