

Vol.9 (2019) No. 3

ISSN: 2088-5334

A New Native Video Filtering based on OpenGL ES for Mobile
Platform

Sari Wijayanti#, Burhan Alfironi Muktamar#, Sunu Wibirama+*, Agus Bejo+

#Department of Information System, Faculty of Engineering and Information Technology, Jenderal Achmad Yani University, Jl. Siliwangi,
Yogyakarta, 55294, Indonesia

+Departement of Electrical Engineering and Information Technology, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2,

Yogyakarta, 55281, Indonesia
E-mail: sunu@ugm.ac.id

*Intelligent Systems Research Group, DTETI Bld. Jalan Grafika 2 Yogyakarta 55281, Indonesia.

Abstract— In the last five years, there have been many Android applications implementing video filter or video effect as an excellent
feature. OpenCV is an open source computer vision library that can be simply and easily used for video filtering in Android
application. However, using OpenCV library for video filtering commonly yields a bigger size of Android application. The concept of
“Develop for Billion People” has enforced the developers to optimize the size of their applications to preserve resources and size of
memory—as not all Android devices come with sufficiently large memory. On the other hand, OpenGL ES does not burden the
filtering process because of its smaller size when it is implemented during the application development. In this research, we present a
new native video processing technique using OpenGL ES. We implement the proposed method on a native video file without
decreasing its quality before video filtering process. The experiments were conducted with five different mobile devices. We compared
several metrics including: quality of the resulted video, file size of the apk, power consumption, and memory usage. Based on the
experimental results, OpenGL ES produces smaller file size of apk (2 MB) compared with the produced file size of apk by OpenCV
(20MB). The resulted file after video filtering possesses same properties as observed before video filtering. Additionally, OpenGL ES
uses more efficient power with 0.1965 mAh, while OpenCV consumes 0.283 mAh. Finally, video filtering with OpenGL ES uses 29.3%
lesser memory than video filtering with OpenCV. The proposed method is proven to be more appropriate with “Develop for Billion
People” as it preserves more computational resources compared with the existing video filtering technique in Android.

Keywords— video processing; video filter; OpenCV; OpenGL ES.

I. INTRODUCTION
According to the statistics of Google Developer in 2017

[1], 85% out of all smartphone users in the world use the
Android operating system. Google I/O 2018 conference [2]
stated that the active users of Android smartphone had
reached more two billion users. The concept of “Develop for
Billion People” enforces the developers of Android
applications to pay attention to some critical things such as
internet connection, the local language, and apk size.

Android applications are commonly developed to support
users’ activities in business, social media, and entertainment.
Most of these activities are inevitably related to the use of
visual media and video. One functionality from Android is
its ability to implement both 2D and 3D effects on video
contents, namely video filtering. This ability improves the
quality of the video while encouraging the users to do

interactive video editing on a mobile platform. In the last
five years, there have been various Android applications that
implement video filter or video effect.

Real-time video filtering is commonly developed using
OpenCV—an open source computer vision library—with
simple and easy implementation for Android operating
system [3]. On the other hand, Android also provides an
Open Graphics Library Embedded System (OpenGL ES)
API to support 2D and 3D graphics rendering. Android
supports several versions of OpenGL ES API: OpenGL ES
1.0, OpenGL ES 1.1, OpenGL ES 2.0, OpenGL ES 3.0, and
OpenGL ES 3.1 [1]. In this case, OpenCV supports
OpenGL ES for best performance in administering visual
media [4],[5]. Rapid usage of video processing has attracted
different research group to scientifically prove the
effectiveness of this technique (see Table I).

759

TABLE I
COMPARATIVE ANALYSIS OF THIS RESEARCH AND SEVERAL PRIOR WORKS IN NATIVE VIDEO FILTER

Author Year Aim of the Study Object of Study Studied Factor Library

This Research

2018

Video filter on video file with
small size apk, less battery
consumption, and less
memory
consumption

Video file

Efficiency, apk size, Quality

OpenGL ES

Borg and Debono [6]

2016

Depth Image Based Rendering
(DBIR) technique to generate a
virtual view by utilizing the
GPU of the mobile device

Camera setup video
(Kendo, Ballons,
and Champagne)

Bad boundary detection,
forward warping and pixel
shifting, color balancing,
blending, and inpainting

OpenCV

Kamath et al. [7] 2016 Bitstream video watermarking
on Mobile Devices

Mpeg videos Execute time, power
consumption, and

OpenCV

Venugopal et al. [8]

2015

Video watermarking for
Android Mobile Devices

Video file

Time taken, Energy
consumed, pixel value

OpenCV,
JavaCV,
JavaCpp,
FFmpeg

Chaudhari and Patil
[9]

2015

Compariso of real-time video
processing and object detection
between OpenCV and CamTest

Video file

Frame processing rate

OpenCV,
FAST,
CamTest

Saipullah et al. [10]

2012

Real-time video processing
using native programming

Video file

Frame processing rate

OpenCV

In 2012, Saipullah et al. [10] researched real-time video

processing using native programming to provide a filtering
effect on a video file. They implemented image processing
methods to each frame of a video captured from a
smartphone that was running on an Android platform. In
their research, there was a comparative study of observing
frame processing rate during the development of two
applications—the first application was developed using
native programming while the second was developed using
Java programming. They found that out of the eight images
processing methods, six methods that were executed using
the native programming were faster than that of the Java
programming with a total average ratio of 0.41.

In 2015, Chaudhari and Patil [9] compared real-time
video processing and object detection between OpenCV and
Cam Test. Real-time video processing was done by giving
several effects on the video file (RGB, grayscale, threshold,
mean, median, Gaussian, Laplacian, and Sobel). They
measured Frame Processing Rate (FPR) between OpenCV
and CamTest. Chaudhari and Patil also compared
performance between object detection and several
algorithms (e.g., FAST, SURF, SIFT, MSER, ORB, STAR,
GFTT). Results from thevideo effects showed that OpenCV
yielded more excellent performance compared with CamTest.
The results from object detection showed that the FAST
algorithm yielded the best performance compared with the
other algorithms.

In 2015, Venugopal et al. [8] implemented OpenCV,
OpenCpp, and FFmpeg to put a watermark on a video file. In
their studies, watermarking was used for ownership and
copied the right information by drawing a watermark on
every frame after being extracted. From the experiments,
they found that there were challenges faced on video
watermarking such as Frame Extraction, Video Type and
Efficiency Factors, Compression of Frame, Payload, SVD

watermarking, Size Difference in Frames and Difference in
Pixel Value.

In 2016, Kamat et al. [7] also researched video
watermarking by inserting a text into a video file. The
experiment was carried out to analyze the execution time of
the insertion and the extraction process of bitstream
watermarking on the video. They found that the longer the
inserted text, the longer time is taken for insertion dan
extraction — the process equivalents to the needs of battery
consumption.

In 2016, Borg and Debono [6] used the Depth-Image-
Based Rendering (DIBR) technique to generate a virtual
view by utilizing the Graphical Processing Unit (GPU) of
the mobile device. Depth-Image-Based Rendering (DIBR) is
a technique where a new view is synthesized based on the
depth maps of the reference views. To handle video
processing, they used OpenCV for Android and OpenCL for
GPU programming framework. Based on their experiment,
they found that the achieved maximum performance for a
video with 1024 × 768 pixel resolution is 19.17 frames per
second and the best Peak Signal-to-Noise Ratio (PSNR)
value for the 1024 x 768-pixel resolution is 35.09 dB.

Nevertheless, the research mentioned above works mainly
used the OpenCV library to handle real-time video
processing. OpenCV is a computer vision library that is
mostly used on the video filter because of its practical
implementation. Despite all the easiest things offered,
implementing OpenCV in video filter commonly increases
the size of the resulted binary file (i.e., apk file). On the
other hand, “Develop for Billion People” concept shows that
there are various Android devices with different memory
capacities, starting from 8GB to more than 128GB. This
condition enforces the development of Android applications
with the smallest apk size as possible. Compared with
OpenCV, OpenGL ES does not yield a big apk file when it is

760

implemented during the application development.
Furthermore, the video effect implemented by the previous
researchers did not change their video file, but the only
effect of real-time visualization when the video was played.

To fill this research gap, we present a novel native video
processing technique using OpenGL ES. The effect of the
proposed video processing technique is implemented on the
video file without decreasing the quality of its original video
file. Compared with previous approaches, we empirically
demonstrate that our new approach is more compatible with
the concept of “Develop for Billion People.”

II. MATERIAL AND METHOD

A. Object of Experiment

We use two video files in our experiments. The detailed
information of the two video files can be seen in Table 2.

TABLE II
DETAIL OF VIDEO FILE USED IN THIS RESEARCH

Description VIDEO 1 VIDEO 2

Extension .mp4 .mp4

Duration 10 seconds 60 seconds

Frame width 320 640

Frame height 176 360

Data rate 300 kbps 613 kbps

Bit rate video 622 kbps 678 kbps

Frame rate 25 fps 23 fps

Bit rate audio 321 kbps 65 kbps

Channels 2 (stereo) 2 (stereo)

Sample rate 48 kHz 22 kHz

B. Android Platform

Android is an open source, Linux-based software stack
created for a wide array of devices and form factors.
Android consists of several components, as seen in Fig.1 [1].
Linux Kernel is the foundation of the Android platform.
Using a Linux Kernel allows Android to take advantages of
key security features and allows device manufacturers to
develop hardware. The Hardware Abstraction Layer (HAL)
provides a standard interface that exposes the capabilities of
device hardware to the higher-level Java API Framework.

Android Runtime is written to run multiple virtual
machines on low-memory devices by executing DEX files, a
bytecode format designed especially for Android that is
optimized for minimal memory footprint. Native C/C++
Libraries is a component that provides a library in C/C++,
such as OpenGL ES that allows developers to use them on
Android application development. Java API Framework is
the entire feature-set of the Android OS written in the Java
programming languages. System apps are a set of core
applications for email, SMS Messaging, Calendar, and so
forth [1]. In our research, the developed native video
filtering technique uses OpenGL ES that is positioned on the
component of Native C/C++ Libraries. Our approach aims to
achieve faster-filtering performance as OpenGL ES gets
direct support from the Graphics Processing Unit of the
Android device [11]–[13].

Fig. 1 The Android software stack [16]

C. Native Video Filter OpenCV

In this research, we compared the implementation of
video filter in two Android applications. The first application
used OpenCV, while the second application used OpenGL
ES. The flow process of the video filter with OpenCV is
depicted in Fig. 2.

Fig. 2 Flow of video filtering using OpenCV

The first step is the initialization of Frame Grabber,

Frame Filter, and Frame Recorder. The Frame Grabber is
used to extract a frame video. The Frame Filter is used to

761

filter the extracted frame. The extracted process is simply
implemented using pixel color manipulation. Finally, the
Frame Recorder is used in the merging process into the
video file. The filtering process is accommodated by the
repeating process to check whether there is an available
frame whose image is to be filtered. Not always that the
extracted frame has its image to be filtered, when the
extracted frame does not have image, it will be directly
inserted into a frame recorder. After the repetition process
has been done, the last step is doing flushing and releasing
the Frame Grabber, the Frame Filter, and the Frame
Recorder [3].

D. Native Video Filter OpenGL ES

Native video filter with OpenGL ES is divided into five
main steps, namely Extracting, Decoding, Editing, Encoding,
and Mixing as seen in Fig. 3.

Fig. 3 The flow of video filtering using OpenGL ES

OpenGL ES is a subset of OpenGL, commonly used for
the development of 3D graphics in digital media with a more
traditional approach. Therefore, implementation of
application development using OpenGL ES requires more
complicated source code compared with implementation
using OpenCV library that directly calls the provided API
[14]. In this case, the extracting process decomposes a video

file to get the video track and audio track. Android provides
API Media Extracting to conduct the extracting process.

Decoding is a step where a video track is divided into a
sequence of image frames. Editing is a step of applying a
filter on every video frame. Encoding is a step of reuniting
the filtered frames. Processes of decoding, editing, and
encoding are repeated on every frame. Android provides API
MediaCodec and MediaFormat to handle the decoding and
encoding process. In this application, the processes of
editing or filtering seem more complicated compared with
former video filtering implementation using OpenCV. In this
case, we need to make a vertex buffer that is then
manipulated with a vertex shader and a fragment shader as
seen in Fig. 4.

Fig. 4 Flow of frame editing

OpenGL ES uses a programmable pipeline, as shown in

Fig. 4 [15]. Input surface obtained from the result of the
decoder with class MediaCodec will be prepared to be
processed by the GPU on the Vertex Buffer Object form and
to set the point vertex for editing. This process is
calledprimitive processing. After processing vertex shader or
setting the position of vertex point has been conducted, we
perform rasterizer or pixel forming into video frames. After
the pixel is formed, we do pixel coloring using fragment
shader to the formed of point vertex by a vertex shader.
Then, in the step of Color Buffer Blend, we conduct a
process of color blending from the rest of the pixel.
Therefore, frames from the input surface will be placed into
buffer frames that will be encoded into the output surface
later.

TABLE III
SPECIFICATION OF DEVICE TESTING

No Device OS Chipset CPU GPU Memory

1 Samsung Galaxy
S5

Android 6.0
(Marshmallow)

Qualcomm MSM8974AC
Snapdragon 801

Quad-core 2.5 GHz Krait 400 Adreno 330 16 GB, 2 GB RAM

2 LG Nexus 5 Android 6.0
(Marshmallow)

Qualcomm MSM8974
Snapdragon 800

Quad-core 2.3 GHz Krait 400 Adreno 330 16 GB, 2 GB RAM

3 Smartfren
Andromax

Android 4.3
(Jelly Bean)

Snapdragon Quad-Core 1.2GHz Processor
Cortex A7

Adreno 302 4 GB, 2 GB RAM

4 Xiaomi Note 4X Android 7.0
(Nougat)

Qualcomm MSM8953
Snapdragon 625

Octa-core 2.0 GHz Cortex-A53 Adreno 506 16 GB, 3 GB RAM

5 Asus Zenfone 2 Android 6.0
(Marshmallow)

Intel Atom Z3560 Quad-core 1.8 GHz PowerVR
G6430

16 GB, 2 GB RAM

762

E. Design and procedures of the experiment

The experiment aimed to compare the resulted file size of
apk, memory consumption, and battery consumption
between the proposed algorithm (native video filtering using
OpenGL ES) and the existing algorithm (video filtering
using OpenCV). The experiment was implemented on two
video files shown in Table 2. We experimented with five
different devices, each of which had its specification, as
shown in Table 3. We evaluated each video file with 30
iterations in each device. We then collected the best, the
worst, and the average experimental results.

III. RESULTS AND DISCUSSION

A. Video Filter Result

Native video filter with OpenGL ES on the Android
platform was successfully implemented, and it produced
results as seen in Fig. 5, and Fig. 6.

Fig. 5 The video before filtering shows the original color video

Fig. 6 The resulted in the video after diltering shows color blending effect

The implemented filter on the video file did not decrease
the previous quality of the video before being filtered. The
detailed information about the video file after the filtering
process is shown in Table 4.

TABLE IV
DETAIL VIDEO RESULT

Description VIDEO 1 VIDEO 2

Extension .mp4 .mp4
Duration 10 seconds 60 seconds
Frame width 320 640
Frame height 176 360
Data rate 300 kbps 613 kbps
Bit rate video 622 kbps 678 kbps
Frame rate 25 fps 23 fps
Bit rate audio 321 kbps 65 kbps
Channels 2 (stereo) 2 (stereo)
Sample rate 48 kHz 22 kHz

B. File size apk

As shown in Table 5, Android application with OpenCV
library yielded a debug apk with the size of 63MB while
Android application with OpenGL ES yielded a debug apk
with the size of 4MB.

TABLE V
DETAIL VIDEO RESULT

The size of the apk can be optimized in several ways. In
this case, the process removed unused resources. After this
process was done, the apk split was also conducted for
several architectures: armeabi, armeabi-v7a, arm64-v8a,
mips, x86, x86_64, and arm64-v8a. They yielded a released
apk size of 20 MB and 2MB for OpenCV and OpenGL ES,
respectively. The size of the apk file resulted by OpenCV
was larger because when we incorporated the OpenCV
library, we ought to put all modules and components,
although we only used particular modules and components.
OpenGL ES produced smaller apk size because the process
used only a subset of OpenGL ES depending on the required
modules and components. On the other hand, practical
implementation of video filter with OpenCV was easier than
implementation with OpenGL as it required the programmer
to shortly write computer code—given that the OpenCV
library provided the rest of the required functions and classes.
Compared with OpenCV, however, OpenGL ES is more
suitable to the criteria of “Develop for Billion People.”

C. Power Consumption

After doing 30 times of experiments for every device on
the video 1 and video 2, the results of the power
consumption between the native video filter using OpenGL
ES and OpenCV are shown in Table 6 and 7, respectively.

TABLE VI
POWER CONSUMPTION OF OPENGL ES

Devices
VIDEO 1 (mAh) VIDEO 2 (mAh)

Best Worst Avg Best Worst Avg

Samsung Galaxy S5 0.044 0.094 0.064 0.289 1.05 0.718
LG Nexus 5 0.032 0.046 0.043 0.168 0.180 0.172

Smartfren Andromax 0.061 0.066 0.063 0.296 0.306 0.302
Xiaomi Note 4X 0.053 0.057 0.055 0.230 0.243 0.233

Asus Zenfone 2 0.053 0.057 0.054 0.256 0.265 0.261

TABLE VII
POWER CONSUMPTION OF OPENCV

 OpenCV OpenGL ES
Debug apk size 63 MB 4 MB
Release apk size 20 MB 2 MB

Devices
VIDEO 1 (mAh) VIDEO 2 (mAh)

Best Worst Avg Best Worst Avg
Samsung Galaxy S5 0.044 0.075 0.061 0.494 0.841 0.679

LG Nexus 5 0.093 0.124 0.118 0.369 0.493 0.469
Smartfren
Andromax

0.106 0.113 0.109 0.514 0.544 0.523

Xiaomi Note 4X 0.062 0.063 0.062 0.262 0.265 0.263
Asus Zenfone 2 0.092 0.098 0.094 0.445 0.471 0.452

763

We show the best, the worst, and the average results.
Fig.7 shows a comparison of the average power
consumption between OpenCV and OpenGL ES during the
first ten iterations.

Fig. 7 Comparison of average power consumption between native video
filtering with OpenCV and OpenGL ES. OpenGL ES and OpenCV are
denoted by the blue and orange line, respectively

Based on the experimental results, native video
processing using OpenGL consumed less power than native
video processing using OpenCV. Our experiment proved
that computational resources could be reduced by
implementing the proposed method. Additionally, we also
proved that the proposed method was independent of devices,
as the average power consumption could be reduced in all
devices.

D. Memory usage

After 30 times of experiments on video 1 and video 2 in
all devices, the results of memory usage between native
filtering using OpenGL ES and OpenCV are shown in Table
8 and 9, respectively.

TABLE VIII
MEMORY USAGE OF OPENGL ES

TABLE IX

MEMORY USAGE OF OPENCV

We present the best, the worst, and the average results.

Fig.8 shows the comparison of the average memory usage
between OpenCV and OpenGL ES during the first ten

iterations. Based on our experimental results, OpenCV
consumed more memory than OpenGL ES in the process of
video filtering. This might result from larger library files of
OpenCV. During the process, we ought to include all
modules and components, despite only a few parts of those
components that were used in the video filtering process.

Fig. 8 Comparison of average memory usage between native video filtering
using OpenCV and OpenGL ES. OpenGL ES and OpenCV are denoted by the
blue and orange line, respectively.

As seen in Fig. 8, the proposed method was able to reduce
memory usage in each iteration, showing that the proposed
method consistently using fewer resources compared with
the traditional method based on OpenCV.

IV. CONCLUSIONS
Previous studies of native video processing on various

mobile devices mainly implement OpenCV library. OpenCV
library provides an easy native video filter implementation.
However, the OpenCV library commonly produces a large
apk file. In this case, native video filtering based on OpenCV
should consider the availability of hard drive space in the
mobile device. To tackle this problem, we propose a new
native video filtering technique using OpenGL ES. By
design, the proposed method requires more complicated
implementation.

However, the resulted apk file is considerably smaller
than the one resulted by OpenCV library. In this study, the
size of the resulted apk file from native video filtering with
OpenCV library was 20 MB, while the size of the resulted
apk file from native video filtering with OpenGL ES was 2
MB. In management, power consumption and memory usage,
OpenGL ES yielded better performance than OpenCV. The
average power consumption needed by OpenGL ES during
video filtering process was 0.1965 mAh, while OpenCV
needed 0.283 mAh. The average memory usage of OpenGL
ES was 54.026 MB, while the average memory usage of
OpenCV was 76.472 MB. Our finding implies that the
proposed native video filtering method using OpenGL ES is
more relevant to the concept of “Develop for Billion
People”—providing more efficient solution for development
in various mobile devices.

REFERENCES
[1] Google Developers Guide. (2019) OpenGL ES. [Online]. Available:

https://developer.android.com/guide/topics/graphics/opengl.

Devices VIDEO 1 (MB) VIDEO 2 (MB)
Best Worst Avg Best Worst Avg

Samsung Galaxy S5 45.5 69.3 58.55 57.2 77.3 74.83

LG Nexus 5 75.3 79.1 76.67 87 88 87.46

Smartfren Andromax 23.8 24.96 24.43 24.5 26 25.28
Xiaomi Note 4X 69.8 70.3 70.12 79.6 80.1 79.9
Asus Zenfone 2 20.6 21.6 21.14 21.2 22.5 21.88

Devices VIDEO 1 (MB) VIDEO 2 (MB)
Best Worst Avg Best Worst Avg

Samsung Galaxy S5 57.7 89.7 71.72 73.74 114.64 91.66
LG Nexus 5 90.4 94 91.07 103.12 107.23 103.89
Smartfren Andromax 46.6 71.06 53.42 53.04 70.72 60.41
Xiaomi Note 4X 89.4 96.3 93.31 97.1 104.4 100.73
Asus Zenfone 2 40.3 61.5 46.23 45.9 61.2 52.28

764

[2] B. van der Wielen. (2018) Insight into the 2.3 Billion Android
Smartphones in Use around the World. [Online]. Available:
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-
android-smartphones-in-use-around-the-world/.

[3] A. Kaehler and G. Bradski, Learning OpenCV 3: Computer Vision in
C++ with the OpenCV Library, California, United States of America:
O'Reilly, 2017.

[4] B. Radovic, G. Miljkovic, B. Bogicevic, and V. Mihic, “Rendering of
digital video content through OpenGL ES on Smart TV,” in 2013
21st Telecommunications Forum Telfor, TELFOR 2013 -
Proceedings of Papers, 2013, pp. 709–712.

[5] E. Angel, “The Case for Teaching Computer Graphics with WebGL:
A 25-Year Perspective,” IEEE Comput. Graph. Appl., vol. 37, no. 2,
pp. 106–112, 2017.

[6] M. Borg and C. J. Debono, “Fast High Definition Video Rendering
on Mobile Devices,” in Proc. 18th Mediterr. Electrotech. Conf.
MELECON 2016, 2016, pp. 18–20.

[7] V. P. S., S. Kamath, H. Sarojadevi, and N. N. Chiplunkar, “An
Approach for Bitstream Video Watermarking on Mobile Device,” in
Proc. of. International conference on Signal Processing,
Communication, Power and Embedded System (SCOPES), 2016, pp.
578–583.

[8] P. S. Venugopala, A. A. Nayak, H. Sarojadevi, and N. N. Chiplunkar,
“Various challenges in video watermarking for Android mobile
devices,” in Proc. - IEEE Int. Conf. Inf. Process. ICIP, 2015, pp.
248–253.

[9] S. B. Chaudhari and S. A. Patil, “Real Time Video Processing and
Object Detection on Android Smartphone,” in Proc. of International
Conference on Electrical, Electronics, Signals, Communication and
Optimization (EESCO), 2015.

[10] K. M. bin Saipullah, A. Anuar, N. A. binti Ismail, and Y. Soo, “Real-
Time Video Processing Using Native Programming on Android
Platform,” in 2012 IEEE 8th Int. Colloq. Signal Process. its Appl.,
pp. 276–281, 2012.

[11] C. Wu, B. Yang, W. Zhu, and Y. Zhang, “Toward High Mobile GPU
Performance Through Collaborative Workload Offloading,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 2, pp. 435–449, 2018.

[12] J. Song, P. Wang, Q. Miao, R. Liu, and B. Huang, “The
Reconnection of Contour Lines from Scanned Color Images of
Topographical Maps Based on GPU Implementation,” IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 2, pp. 400–408,
2017.

[13] Y. Shen, M. Yang, B. Wei, C. T. Chou, and W. Hu, “Learn to
Recognise: Exploring Priors of Sparse Face Recognition on
Smartphones,” IEEE Trans. Mob. Comput. vol. 16, no. 6, pp. 1705–
1717, 2017.

[14] Z. Zhang and C. Yin, “Research on video rendering on android,” in
Proc. of The 8th International Conference on Wireless
Communications, Networking and Mobile Computing, 2012, pp. 1– 4.

[15] J. Luo, J. Chen, L. Han, and M. Li, “Video after-effect rendering
based on pipelining principle,” in Proc. - 6th Int. Conf. Internet
Comput. Sci. Eng. ICICSE 2012, 2012, pp. 102–106.

[16] Google Developers Guide. (2019) Platform Architecture. [Online].
Available: https://developer.android.com/guide/platform.

[17] S. Wibirama, H. A. Nugroho, and K. Hamamoto, "Evaluating 3D
Gaze Tracking in Virtual Space: A Computer Graphics Approach,"
Entertainment Computing, Vol. 21, pp. 11-17, 2017.

765

