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Abstract— Naive Bayes is one of the most widely used classifier algorithms in various data mining problems. The performance of the 
Naïve Bayes Classifier is comparable to other classifiers as it yields impressive results in multiple applications. An increase in the 
performance of the Naive Bayes Classifier is possible by identifying and forming segments of the data handled by the classifier. In this 
paper, a novel fuzzy-based fusion approach to selected quantitative features is proposed. The approach is used to improve the 
prediction accuracy of the Naive Bayes Classifier (NBC). The linguistic computing model with fusion operators, using ranked indexes 
of the linguistic terms in the dataset is made use in this proposed approach. Fuzzy values are generated only for the numerical 
attributes in the initial phase using 2-tuple linguistic computations. The equivalent real value computations are performed in order to 
express the results in the initial domain of the expression. These computations ensure improved comprehensiveness of the results of 
the classifier. The model incorporates the concepts of linguistic terms, fuzzy logic, fusion methods, and aggregation operations to the 
classical Naïve Bayes Classifier. Such incorporation is used to improve the performance of the classifier in various decision-making 
applications. The proposed model is validated using a standard benchmark dataset–Stat log Heart disease dataset. It is obtained from 
the UCI Machine Learning Repository. The proposed Linguistic Fuzzy Naive Bayes Classifier showed better accuracy compared to 
the Simple Naive Bayes Classifier performance. 
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I. INTRODUCTION 

Naive Bayes is suitable for many decision-making 
applications in the field of bioinformatics, medicine, 
business, education, text classification, supplier 
segmentation, pattern recognition. In Naive Bayes, along 
with the probabilistic approach, the assumption of 
independence among the attributes makes it more simple, 
effective, and robust [1]. The rules or methods devised for 
prediction in many decision-making applications can be made 
more useful and accurate by incorporating human knowledge 
into it. There are various techniques in a classification that 
allow the impact of human understanding to be found out in 
the decisions made. Naive Bayes and Bayes Network 
methods work well with this approach [2]. 

As the fuzzy set theory is used, the approach is “fuzzy.” 
The terms such as “good,” “very good,” and “poor” and so on 
are used to describe the vagueness and uncertainties in the 
decision maker’s thoughts. Hence the approach is termed as 
“linguistic.” Finally, the use of fusion operators in the 
computational steps explains the use of the term “fusion.” 
The linguistic description is transformed into a linguistic 
computational model with the definition of membership 
functions. Zadeh uses the fuzzy set theory to deal with human 

uncertainties and vagueness in concepts, methods, and 
decisions [3]. The linguistic representation of variables, thus 
generating linguistic terms related to applications, creates a 
method to improve human comprehensibility [4]. In many 
applications, it was noted that the precise numerical values 
alone could not be considered as a means of accurate 
assessment.  

When qualitative aspects can be added to a certain 
phenomenon, the assessment can be made more effective. 
The Computing with Word (CWW) approach was used in 
many such decision-making applications by introducing 
different granularities of uncertainties [4]-[7]. Reasoning by 
human beings use local information rather than global 
information. This kind of approach gives rise to some degree 
of consistency. The use of consistency indexes in decision-
making applications is adopted in many areas [8]-[11]. 

The use of aggregation operators based on priority and 
generalization of the mean for both triangular and 
trapezoidal fuzzy information can be seen in many models 
[12]-[14]. In the intuitionistic fuzzy numbers approach, the 
numbers are used to represent all the pairwise comparison 
judgment information over the objects [15], [16]. 
Multiattribute group decision-making methods also use 
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various aggregation operators, intuitionistic fuzzy values, 
and intuitionistic 2-tuple linguistic information [17]–[21]. 

 In various application areas such as information retrieval 
and accessing systems, supply chain risk analysis, 
engineering systems, credit analysis, and medical diagnosis, 
the computing with word approach is used to deal with 
vagueness and uncertainty issues [22]–[25]. A conservative 
fuzzy logic extension of Naive Bayes Classifier used for 
incremental learning was proposed by Storrs [26]. It was fast, 
capable of dealing with missing attributes and the approach 
behaves exactly as a Naive Bayesian Classifier when the 
membership function assumes values in [0, 1]. Xi proposed a 
Fuzzy Naive Bayesian classifier with weights and without 
restriction for regulated relations [27]. Various versions of 
the Fuzzy Naive Bayes method using rules and member 
functions are used in different applications. Tang et al. 
proposed a Fuzzy Naive Bayes method with a fuzzy 
clustering algorithm that determines partitions in the space of 
decision, and these partitions were used as parameters for 
linguistic variables [28]. This method reduces the learning 
complexity of the Naive Bayes Method and makes possible 
the use of continuous variables.  In another approach, a 
method to identify a fuzzy model from data is presented by 
using the Fuzzy Naive Bayes and a real-valued genetic 
algorithm. The real-valued genetic algorithm is incorporated 
to improve the accuracy of the model. The membership 
functions occurring in the rules are optimized in this model 
[29]. In another approach, an Aggregated Fuzzy Naive Bayes 
Data Classifier was proposed as an improved version of the 
Fuzzy Naive Bayes Classifier and simple NBC. The 
theoretical part of the proposed classifier in this method is 
based on arithmetic operations using Chen’s Function 
principle [25].  

Doctors make use of various signs and symptoms and 
other tests for the diagnosis of heart problems in patients. An 
expert doctor can always provide a better insight into the 
critical factors that contribute to heart disease prediction. 
With the help of relevant data and the associated studies 
conducted on it, prediction can be made on a newly admitted 
patient. With the help of expert doctors, one can define 
member functions for the medical factors relevant to heart 
diseases. Many papers use various data mining techniques for 
predicting heart diseases.  

Many papers conducted studies on Naive Bayes and its 
variations for improving performance using the Stat log Heart 
Dataset in UCI Machine Learning Repository [UCI]. A 
prototype Intelligent Heart Disease Prediction System 
(IHDPS) was developed using data mining techniques, 
namely, Decision Trees, Naïve Bayes, and Neural Network. 
Analysis of results shows that each technique is unique and 
has enough strength to achieve the objectives of the defined 
mining goals [30]. 

An efficient approach for the extraction of significant 
patterns using the MAFIA algorithm was proposed by Patil. 
Here K-means clustering algorithm is used to extract the data 
relevant to a heart attack before frequent pattern mining [31]. 
Yet another probabilistic approach with Naive Bayes and 
improvement with supervised equal frequency discretization 
of numerical data is proposed by Bonaick [32]. Many other 
techniques using neural networks, fuzzy logic, and genetic 

engineering are also used in the prediction of heart failure 
disease [33]–[35]. 

In this paper, a novel Fuzzy Linguistic Fusion approach to 
Naive Bayes Classifier in decision-making applications is 
proposed. The selected numerical attributes are fuzzified with 
associated multi granular linguistic information, defined 
member functions, and the fusion operators. The fuzzified 
values are expressed in the real value domain to incorporate 
various classifier implementation techniques. Stat log Heart 
Dataset from UCI Machine Learning Repository is used for 
the experimental analysis. Python and WEKA tool is used for 
the computation and prediction of the experimented data. The 
proposed approach performs computations in two phases. 
The basic concepts of Linguistic Fuzzy Set, membership 
functions, and linguistic descriptors are discussed in section I. 
Section II describes the Linguistic Computational Models, 
the definitions of the basic operations and functions used in 
the Fusion approach and the Fuzzy Naive Bayes Classifier. 
The computational framework of the proposed Linguistic 
Fuzzy Naïve Bayes Classifier (LFNBC) is explained in 
section IV. Section V describes the experimental setup, 
including dataset description, implementation logic and the 
analysis of the results.  Section VI covers the conclusion and 
the future scope of the work done. 

II. MATERIALS AND METHOD 

The basic concepts and definitions used in the proposed 
framework and approach are explained in this section. This 
section also covers the different steps involved in the 
proposed method adopted for the study of the Fuzzy 
Linguistic Naive Bayes Classifier. The concepts of fuzzy 
linguistic set, the different linguistic computational models, 
definitions, and Fuzzy Naive Bayes Classifiers are explained 
before proposing the computational framework. 

A. Linguistic Fuzzy Set 

Linguistic variables are words described in natural 
language. These variables serve the purpose of describing a 
concept that cannot be fully defined in quantitative terms. 
The vague thoughts and decisions are represented using the 
fuzzy theory [3]. A pair (F, μ) defines a fuzzy set where F is a 
set and μ: F→ [0, 1] is a function. For each x ∈ F, μ(x) is 
called a membership function of x in (F, μ). A triangular 
membership function defined with parameters (a, b, c) is as 
shown in Fig.1. 

 
Fig. 1. Triangular membership function μ with parameters (a, b, c) 
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The triangular fuzzy membership function µF (x) is defined as 
in the following equation (1) and the parameters are defined 
by a 3-tuple (a,b,c). 
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Fuzzy linguistic model is a good choice in decision-

making applications where the quantitative values can be 
represented and manipulated by computations involving 
qualitative concepts. The approach of using membership 
function along with linguistic variables, is used in many 
applications. This approach has the advantage of 
approximately characterizing the concept in place of a crisp 
definition. The concept of vagueness and uncertainties are 
explained using linguistic terms such as “very low,” 
“medium,” “and very high” and so on. These linguistic 
descriptors are human-understandable and easily 
interpretable. Typically, linguistic descriptors are odd number 
terms ranging from values 3, 5, 7, 9 and so on. For a set of 7 
terms, the midterm value is 0.5, and other values are placed 
symmetrically around it. Such a set can be defined, as shown 
in (2). LT denotes the linguistic term set. 
 

LT = {LT0 = Nothing, LT1 = Very Low, LT2 = Low, 
LT3 = Medium, LT4 = High, LT5 = Very High, LT6 = 

Perfect} 
(2) 

 
Let four different alternatives of an attribute be represented 

by X = {x1, x2, x3, x4} in which each of the value is defined 
using the linguistic term set as defined in 2. A linguistic term 
set of 7 labels is represented in Fig. 2. The representations of 
these alternatives using different computational models are 
mentioned in the next section.  

 
Fig.2. Linguistic term set of 7 labels.  

B. Linguistic Computational Models 

There are different approaches in the literature to compute 
the linguistic information [5], [6]. The semantic model is a 
model in which the computation of fuzzy numbers is based 
on the fuzzy extension principle. In a symbolic model, the 
computations are based on the index of the labels. The third 
model is an extension to the second model, which is a 2-tuple 
linguistic fuzzy model [36]. 

1)  Semantic Model: The first computational model is 
based on the semantics and the defined membership 

functions of linguistic terms. The use of the extension 
principle in the computation increases the vagueness of the 
results. The approximation function leads to a lack of 
accuracy in results. The output can be either fuzzy numbers 
or linguistic labels. The results of such computations are as 
expressed in Fig. 3. 

 
Fig. 3. Results from computational models based on the membership 
function. 

2)  Symbolic Model: The second computational model 
that involves symbolic computations uses the ordered 
structure of the linguistic term set. Computations are 
performed on the labels. The classical operators such as Max, 
Min and Neg are used for aggregating the information. 
Another variation of the same model uses the convex 
combination of labels. This model assumes odd cardinality 
of linguistic terms and the labels are arranged symmetrically 
on either side of the middle term in the term set. This model 
is like the representation in Fig. 2. Here the results are also 
fuzzy numbers. In all these models, the results after 
computations do not match with the labels in the initial 
linguistic term set. Hence an approximation process is 
required. This approach results in a loss of information to a 
large extend [37].  

3)  Tuple Linguistic Computational Model: In order to 
avoid the computational limitations in semantic and 
symbolic models, the 2-tuple fuzzy linguistic representation 
model was introduced with extended symbolic computations 
[36]. The model extends the use of the index of the labels. 
The accuracy is improved by the addition of a parameter to 
the basic linguistic representation. The results obtained in 
this model are as shown in Fig. 4. 

 
Fig. 4. Results from computational models based on 2-tuple linguistic 
representation. 

The extended model solves the problem of loss of 
information that exists with the other two classic models. In 
this approach the computations performed are based on the 
extended model. This model can address a continuous 
valued attribute. It can easily make use of the computing 
with word approach thereby reducing the loss of information 
in other models. Finally, the result can always be expressed 
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in the initial expression domain [36]. Since this model is 
followed in the fusion approach, the computations used in 
the representation of the model are mentioned with the 
following definitions. 

4)  Definitions: The linguistic information in the linguistic 
computational model is represented as a 2-tuple, (lt, I), 
where ‘lt’ is a linguistic term and ‘I’  is a numerical value. 
The numerical value represents the symbolic translational 
value. Let a  ∈ A be the set of numerical attributes listed in 
the dataset A and LT = {lt0, ltg} be the linguistic term set 
with ‘g’ linguistic terms defined by the experts. The real 
values can be transformed into fuzzy set by means of a 
function T, as given in Eq. 3: 

 
T(a) = ��lt�, u��, . , �lt�, u��� , lt�  ∈ LT and U� ∈ [0, 1], 

Such that u� �  �&'( ,���  
(3) 

 
where T(a) = ��lt�, u��, . , �lt�, u��� represents the 
transformation function given by set of 2-tuple pairs {(lt0, u0), 
(ltg, ug)}. Here ‘g’ number of linguistic terms given by ‘lt’, is 
paired with symbolic translation value ‘u’. �&'(  is the fuzzy 
membership function defined for linguistic term ‘i’ [3]. The 
membership function defined in the proposed approach is a 
triangular member function as defined in Eq 1. Definitions 
and functions used in this approach to compute the 2-tuple 
linguistic terms and the characteristic value associated with 
the real valued attribute are mentioned below [5]. The 
triangular fuzzy membership function µlt is defined as per 
the definition in Eq. 1 and the parameters are defined by the 
3-tuple (a,b,c). From the fuzzy set a numerical value 
assessed in the interval [0, g] is obtained by a function χ as 
given by Eq. 4. β represents the numerical aggregated value. 
 

= β χ(T(a)) = χ ((ltj,uj) j= 0,...,g) = β 

χ(T(a)) = 
∑ *+�*�,-./∑ +�*�,-./      (4) 

 

Σ represents the summation operation. β is obtained by 
dividing the value obtained by the summation of the product 
of index j and the j th symbolic value (u(j) or uj ) by the value 
obtained by the summation of the j th symbolic value (u(j) or 
uj ). An approximate function is used to obtain the index of 
the result. From the obtained information,  the linguistic 2-
tuple values are generated using the following function Δ as 
shown in Eq. 5. This function is used to avoid any 
approximation process that may lead to loss of information. 
Here round (.) is the usual round operation. Linguistic term 
LT i has the closest index label to β, and α is the value of the 
symbolic translation. 
 ∆ ∶ 20, g4 → LT x 2�0.5, 0.5�                                            
∆ �8� �  �LT', 9� where : LT�,                 ; � <=>?@ �8� 9 �  8 � ;, 9   ∈ 2�0.5, 0.54 

  

(5) 

After the numerical values and linguistic terms are 
aggregated, the information corresponding to each of the 
linguistic terms need to be generated [6]. The operation that 
is used for this purpose is the arithmetic mean value �̅  given 
by Eq. 6. �̅ �  ∑ BC  ∑ 8DCDEB   (6) 

During the re-computation phase of the real value, the 
functions ρ and η are used. The function ρ is used to 
compute, two 2-tuple information from the initial linguistic 
2-tuple. For the linguistic term set with term LT, ρ is defined 
as  given by Eq. 7. 

ρ:[0, k] → {LT× [0, 1]} × {LT × [0, 1]} 
ρ (β) = {(lt k, 1 − γ), (ltk+1, γ)} 

(7) 

where k = trunc (β) and γ = β – k, trunc represents the usual 
truncation operation. β value is same as the value obtained in  
Eq.4. Let (ltk, 1 − γ) and (ltk+1, γ) be the computed two 2-
tuples. The following function η is then used to compute the 
equivalent numerical value assessed in A as given by Eq. 8. 
A canonical characteristic value is computed using a 
function defined and it returns a characteristic value, CV 
(.).The function can be average, mean of max or as selected 
from the set of selected fuzzy operations [6]. 

 

η ((ltk, 1 − γ) , (ltk+1, γ)) = CV (ltk) (1 − γ ) + CV (ltk+1) 
γ 

(8) 

where CV (.) is a function providing a characteristic value. 

5)  Fuzzy Naive Bayes Classifier: A Naive Bayes 
Classifier is a widely used efficient classifier that applies 
Bayes' theorem with strong (naive) independence 
assumptions. It is a simple probabilistic classifier that 
handles both real and discrete data. The computation process 
is very easy and provides better speed and accuracy in 
classifier performance [38]. Storr proposed a fuzzy logic 
extension to the Naive Bayes Classifier with membership 
functions in applications with variables having continuous 
domain [26]. Membership function and fuzzy theory without 
loss of information were used in this approach. An aggregate 
fuzzy naive bayes classifier was proposed by Kayalp where 
the membership function was obtained using previous 
knowledge and 2-tuple linguistic knowledge approach and 
the function procedure followed the Chen’s function 
principle [25]. 

C. Proposed Computational Framework 

The three phases in the proposed approach are (i) The 
computation of real to fuzzified real value (ii) Re-computing 
the fuzzified real value in the initial expression domain (iii) 
Linguistic Fuzzy Naive Bayes Classifier (LFNBC) Model. A 
framework representing the process involved in the 
computations is shown in Fig. 5. 

1)  Computation of real to fuzzified real value: The first 
phase in the proposed approach was to select the numerical 
and categorical attributes. These attributes can be combined 
to generate linguistic terms with associated member function 
definitions. The support of the expert knowledge is sought to 
define the membership functions for the selected numerical 
features during this phase. This definition is based on the 
linguistic term set associated with the categorical feature. 
With expert knowledge, the features that contribute 
significantly to the outcome of the prediction are analyzed 
and defined. The defined member functions are used in the 
first phase of computing model to generate the fuzzified 
values. Major steps in computation of fuzzified real values 
are Unification, Transformation, and Fusion. 
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Fig. 5 Computational Framework of Linguistic Fuzzy Naive Bayes Classifier. 

Unification into Fuzzy Sets (Normalization)–The 
information must be uniform in order to apply the fusion 
approach. The input information is unified using the 
concepts of fuzzy sets and linguistic approach. The usage of 
basic linguistic terms to normalize the information is 
processed during the first step. The linguistic terms should 
maintain the uncertainty degree and discriminate the 
expressions involving the performance values. The linguistic 
terms can be semantically same or different. Also, the 
number of terms varies largely with the attribute features and 
takes odd values ranging from 3 to 15 terms. Terms are 
defined in this step as shown in Eq. 2. Using the membership 
function definition in Eq. 1 the terms are defined and unified 
into fuzzy sets.  

Transformation into 2-tuples–Due to complexity in 
computations with fuzzy sets, the information is transformed 
to 2-tuple linguistic fuzzy representation model. A function 
Xi that supports the information in the fuzzy set is defined. 
The computations result in generation of Beta value which 
can be easily transformed to 2–tuple linguistic value using 
another function Delta. Therefore, input information is 
unified and transformed to 2-tuple linguistic model after 
definitions of member function, Xi, Beta and Delta values. 
The computations to generate 2-tuples are performed in 
same order as given in Eq. 3, Eq. 4 and Eq. 5. The output 
obtained here is far away from the initial domain of 
expression. To maintain the comprehensibility of the data, a 
reconversion process is highly appreciated. 

Fusion by 2-tuple fusion operator–A collective value of 
performance for each of the alternatives is generated by the 
fusion process. The value generated after the transformation 
step is in the form of 2-tuple linguistic representation. This 
information is aggregated to obtain the collective 
performance values of the alternatives, with a suitable fusion 
operator. The arithmetic means the operation is used to 
compute the collective information as given in Eq. 6. 

2)  Re-computing the fuzzified real value in the initial 
expression domain: The 2-tuple linguistic information is 
different from the information expressed in the initial 
domain of expression. In order to enhance the 
comprehensiveness of the information and the strategic 
decisions applied, the re-computational methods adopted are 
critical in the decision making an application. The fuzzified 
real values computed need to be converted back to the real 
domain of the expression to apply the standard classification 
techniques. Eq. 7 and Eq. 8 are used for the recomputation of 

real values which is also known as the “backward step” used 
in the computational step. The dataset after this phase of 
computation will have the selected numerical attributes, 
recomputed with the linguistic fuzzified values incorporated.  

3)  Linguistic fuzzy naive bayes classifier model: The 
Naive Bayes Classifier calculates the posterior probability 
by multiplying the probabilities determined along each 
attribute. In fuzzy classifiers we obtain a mapping from the 
attributes to the term sets. As mentioned in the above steps, 
these terms stand for fuzzy sets. The decision score again 
projects the belongingness of the data points to the 
membership functions defined. Integrating the fuzzy results 
with Naive Bayes Classifier yields better classifier results. 

In the third phase of computation, the Linguistic Fuzzy 
Naïve Bayes Classifier is run on the real valued data set. The 
selected numerical attributes are defined using categorical 
terms of linguistic nature. The fusion approach is applied to 
these numerical-linguistic combination terms in the 2-tuple 
representation. Linguistic Fuzzy Naïve Bayes Classifier is 
run on the real values from the dataset, which also contain 
the recomputed fuzzified real values. 

 The numerical values obtained contain prior information. 
Fuzzy membership function segments the numeric data as per 
the function definition. In order to obtain a normalized 
distribution, the segmentation procedure is linked with the 
defined linguistic terms. The Naive Bayes Classifier is run 
using Eq. 9 for the real valued attributes. 

 

FGHIJCKL�J∗� � �<NO��    �D ∈ � PQ RS Q��*| �D�C
*EB UV 

 

(9) 

where C* is the new class to be determined. Argmax is a 
function that returns the index of the maximum value, Ci 

represents all possible classes and aj represents the attributes 
of the class. 

III.  RESULTS AND DISCUSSION 

The computations involving fuzzy sets, linguistic models 
and Naïve Bayes Classifier are done using ipython and weka 
tool. The heart disease dataset used for the experiments was 
obtained from UCI Machine Learning Repository [39]. The 
detailed description of the dataset, implementation details 
about the linguistic terms used the member function 
definitions, the computed aggregate performance values are 
given in the following subsections. 

Real values from dataset 

Linguistic 2-tuple 

Categoric Features 

Numeric Features Unification 
Transformation Fusion 

Re-computation 
(Initial Expression Domain) 

Naive Bayes Classifier 

Fuzzified Real values 

Classifier outcome 
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A. Dataset  

The Statlog Heart Dataset is used for experimentation in 
the proposed approach. The information about the variables 
and the type and range of the values of the variables used in 
the experiment are provided in Table I. The dataset contains 
270 instances with 13 features and one class attribute. For 
linguistic fuzzy approach method, 6 attributes [3 numeric and 
3 linguistic] are selected from the listed features. The selected 
features from Table I are used for modelling. 

B. Implementation Details 

With expert knowledge advice the features contributing to 
the prediction of heart disease in patients and those applicable 
to the proposed model were selected for further experimental 
analysis. The parameters like blood pressure, cholesterol, 
chest pain, maximum heart rate show significant impact on 
the prediction of the heart disease. These parameters were 
selected for the linguistic fusion approach modelling. The 
study was conducted on 6 attributes, which include 3 
categorical features and 3 numerical features that are defined 
using membership functions. The numerical features were 
aggregated to the linguistic terms for generating the 2-tuple 
linguistic model using fusion operators. The 3 numerical 
features selected were serum cholesterol (chol), resting blood 
pressure (rbp) and maximum heart rate (mhr). Each of them 
was aggregated by the linguistic terms resting electro 
cardiograph (recg), chest pain type (cpt) and slope (slp), 
respectively. 

TABLE I 
STATLOG HEART DATASET 

Variable 
Variable 

Definition 
Type of 
Value 

Range/Category 
of Values 

AGE Age of patient Numeric [29-77] 

SEX Gender of patient  Categorical 1-male; 0-female 

CPT Chest Pain Type Categorical 

1-typical angina; 
 2-atypical angina;  
3-non-anginal pain;  
4-asymptomatic 

RBP 
Resting Blood 
Pressure 

Numeric [94-200] 

SC Serum Cholesterol Numeric [126,564] 

FBS 
Fasting Blood 
Sugar 
Value>120mg/dl 

Categorical [True, False] 

RECG 
Resting Electro 
Cardiograph 

Categorical 

0-normal; 
1-ST-Twave 
abnormality;  
2-LeftVentricular 
Hypertrophy 

MHRA 
Maximum Heart 
Rate Achieved 

Numeric [71-202] 

EIA 
Exercise Induced 
Angina 

Categorical [Yes, No] 

STDep 

ST Depression 
induced 
 by exercise 
relative to rest 

Numeric [0-6.2] 

Slope Slope of peak Categorical [Upslope; 

Variable Variable 
Definition 

Type of 
Value 

Range/Category 
of Values 

exercise ST 
segment 

Flat; 
Downslope] 

NFCMV 
 

Number of 
fluoroscopies 
 colored major 
vessels 
 

Categorical 
 

[0;1;2;3] 

Thal-HSS Heart Scan Status Categorical 

[Normal; 
Fixed defect; 
Reversible defect; 
Absent] 

CVP 
Class variable 
Prediction 
 of Heart Disease 

Categorical 
Absence-0;  
Presence-1 

 
The membership functions are defined for each of the 

Linguistic Terms (LT) in the term set. The term set for each 
of the linguistic term, LT1, LT2, LT3 is defined as given in 
Eq.10. Term sets and their notations are explained in Table 
II. The definitions are based on the range or category of 
values mentioned in the dataset. 

 
LT1  =  {lt 0=NORM, lt1=ST-TWA, lt2=LVH} 

LT2 = {lt 0=TYPANG, lt1=ATYPANG, lt2=NONANG, 
lt3=ASYMPT} 

 

(10) 

The upper and lower bounds of the member functions 
defined for the selected fuzzified attributes; the characteristic 
function value returned for each member function are also 
specified in Table II. 

TABLE II 
RANGE OF MEMBERSHIP FUNCTION VALUES AND CHARACTERISTIC VALUES 

Term  
Sets  

M
em

be
rs

hi
p 

F
un

ct
io

n 
[µ

lt(
x)

] 

S
ym

bo
lic

 
N

ot
at

io
n 

In
de

x 
V

al
ue

 

Lo
w

er
 

B
ou

nd
[a

] 

C
ha

ra
ct

er
is

tic
 

V
al

ue
[b

] 

U
pp

er
 

B
ou

nd
[c

] 

Normal NORM Nm 0 126 290 354 

ST-Twave 
abnormality 

ST-TWA Stw 1 197 269 327 

Left Ventricular 
Hypertrophy 

LVH Lvh 2 149 390 564 

Typical angina TYPANG Tya 0 94 175 180 

Atypical 
angina 
 

ATYPANG Atya 1 94 174 192 

Non-anginal 
pain 
 

NONANG Nap 2 100 173 200 

Asymptomatic ASYMPT Asy 3 108 148 165 

Upslope USLOPE Usl 0 96 149 202 

Flat FLAT Fl 1 71 133 190 

Downslope DSLOPE Dsl 2 96 145 194 
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The member functions are defined with the help of 
experts in the medical field. The characteristic values are 
computed using the average of the values representing the 
terms that fully belong to the member function. Setting the 
values for each category function is a crucial task that can 
only be accomplished with expert medical advice. Collective 
performance values are obtained using the paired features. 
The attribute preference values of all the selected attributes 
are given in Table III. The 2-tuple values obtained in 
symbolic translation is converted to values that represent 
information as membership degree. The values are generated 
for the first 20 instances in the dataset.  

TABLE III 
ATTRIBUTE PREFERENCE VALUES IN 2-TUPLES 

Rbp Cpt Chol Recg Mhr Slope 

(Asy,-0.2) (Asy,0) (Lvh,1) (Lvh,0) (Fl,1) (Fl,0) 

(Tya,0.5) (Nap,0) (Lvh,2) (Lvh,0) (Fl,1) (Fl,0) 

(Tya,-0.3) (Atya,0) (Nm,1) (Nm,0) (Usl,1) (Usl,0) 

(Atya,-0.2) (Asy,0) (Nm,1) (Nm,0) (Fl,1) (Fl,0) 

(Atya,-0.3) (Atya,0) (Lvh,1) (Lvh,0) (Usl,1) (Usl,0) 

(Tya,-0.3) (Asy,0) (Nm,1) (Nm,0) (Usl,1) (Usl,0) 

(Atya,-0.2) (Nap,0) (Lvh,1) (Lvh,0) (Fl,1) (Fl,0) 

(Atya,-0.4) (Asy,0) (Lvh,1) (Lvh,0) (Fl,1) (Fl,0) 

(Nap,-0.3) (Asy,0) (Lvh,1) (Lvh,0) (Fl,1) (Fl,0) 

(Asy,-0.3) (Asy,0) (Lvh,2) (Lvh,0) (Fl,1) (Fl,0) 

(Tya,-0.3) (Asy,0) (Nm,1) (Nm,0) (Fl,1) (Fl,0) 

(Tya,-0.2) (Asy,0) (Lvh,1) (Lvh,0) (Usl,1) (Usl,0) 

(Tya,-0.2) (Nap,0) (Lvh,1) (Lvh,0) (Usl,1) (Usl,0) 

(Nap,0.4) (Tya,0) (Nm,1) (Nm,0) (Fl,1) (Fl,0) 

(Atya,-0.3) (Asy,0) (Lvh,1) (Lvh,0) (Usl,1) (Usl,0) 

(Tya,-0.3) (Asy,0) (Nm,0) (Nm,0) (Fl,1) (Fl,0) 

(Nap,0.2) (Asy,0) (Nm,1) (Nm,0) (Fl,1) (Fl,0) 

(Tya,-0.3) (Asy,0) (Lvh,1) (Lvh,0) (Dsl,1) (Dsl,0) 

(Tya,-0.3) (Tya,0) (Lvh,1) (Lvh,0) (Fl,1) (Fl,0) 

(Tya,-0.2 (Tya,0) (Nm,1 (Nm,0) (Usl,1) (Usl,0) 

 
The arithmetic mean values are computed from the 2-

tuple values by symbolic translation. It represents the 
information as membership degree. The membership degree 
obtained by this method represents a more accurate value 
that combines the numeric and linguistic feature values. The 
arithmetic mean value for each of the three paired linguistic 
term set for the 20 instances in the dataset is as given in 
Table IV.  The LFNBC uses this value and produces a more 
accurate performance compared to the SNBC. 

C. Result Analysis 

From the Statlog Heart dataset 243 instances are 
randomly chosen to form the training set and 27 instances 
are used as test set. The results obtained showed 77.7% 
accuracy for Simple Naïve Bayes Classifier (SNBC) and 

91.3% accuracy for the proposed Linguistic Fuzzy Naïve 
Bayes Classifier (LFNBC).  

TABLE IV 
ARITHMETIC MEAN VALUES 

Rbp Cpt 

Me-
an β 

(rbp 
-cpt) 

Chol Recg 

Me-
an β 

(chol-
ecg) 

Mhr Slp 

Me-
an β 

(mhr 
-slp) 

130 Asympt 2.4 322 Lvh .5 109 Flat 1 

115 Nonang 1.8 564 Lvh 2 160 Flat 1 

124 Atypang 1.4 261 Norm 0.5 141 Uslope 0.5 

128 Asympt 2.4 263 Norm 1 105 Flat 1 

120 Atypang 1.3 269 Lvh 0.5 121 Uslope 0.5 

120 Asympt 2.3 177 Norm 0.5 140 Uslope 0.5 

130 Nonang 1.9 256 Lvh 1 142 Flat 1 

110 Asympt 2.1 239 Lvh 1 142 Flat 1 

140 Asympt 2.4 293 Lvh 1 170 Flat 1 

150 Asympt 2.3 407 Lvh 1 154 Flat 1 

135 Asympt 2.4 234 Norm 1 161 Flat 1 

142 Asympt 2.3 226 Lvh 0.5 111 Uslope 0.5 

140 Nonang 1.9 235 Lvh 0.5 180 Uslope 0.5 

134 Typang 0.9 234 Norm 1 145 Flat 1 

128 Asympt 2.4 303 Lvh 0.5 159 Uslope 0.5 

112 Asympt 2.2 149 Norm 1 125 Flat 1 

140 Asympt 2.4 311 Norm 1 120 Flat 1 

140 Asympt 2.4 203 Lvh 1.5 155 Dslope 1.5 

110 Typang 0.6 211 Lvh 1 144 Flat 1 

140 Typang 0.9 199 Norm 0.5 178 Uslope 0.5 

 
For each method the classification accuracy (ratio of 

correctly classified cases of presence and absence of heart 
disease), true positive rate (the proportion of actual diseased 
cases which are correctly identified as such), true negative 
rate (proportion of cases of no heart disease that are correctly 
identified as absence of disease) are analysed. Classification 
accuracy refers to the ratio of the number of correctly 
classified cases and is equal to the sum of True Positive (TP) 
and True Negative (TN) divided by the total number of cases 
N. Sensitivity refers to the rate of correctly classified positive 
(True Positive Rate) and is equal to the ratio of patients with 
presence of heart disease who are accurately considered as 
the ones with the disease and is computed as TP to the sum of 
TP and False Negative (FN). Specificity refers to the ratio of 
patients who have no heart disease and who are accurately 
considered as patients without heart disease. It is the rate of 
correctly classified negative (True Negative Rate) and is 
equal to TN divided by sum of TN and False Positive (FP). 
The performance obtained by the Simple Naïve Bayes 
Classifier and the proposed Linguistic Fuzzy Naïve Bayes 
Classifier are summarized in Table V.  
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TABLE V 
PERFORMANCE COMPARISON OF CLASSIFIERS (SNBC-LFNBC) 

Classifier Accuracy (%) Sensitivity (%) Specificity (%) 

LFNBC 91.3 92.68 90.19 

SNBC 83.6 88.63 79.1 

 
The three statistical measures, classification accuracy, 

sensitivity and specificity are used to evaluate the 
performance of each of the classification model under study. 
The graphical representation of the performance comparison 
is shown in Fig.6. 

 

 
Fig. 6. Performance comparison of classifiers SNBC-LFNBC 

IV.  CONCLUSIONS 

The proposed Linguistic Fuzzy Naive Bayes Classifier is 
an extended version of Simple Naive Bayes Classifier and 
Fuzzy Naive Bayes Classifier. The approach of fuzzifying 
and re-computing the real numerical values in the initial 
expression domain, gives the classifier the flexibility of 
combining the real values in the dataset for classification 
purpose. The approach has the convenience of not using the 
fuzzy computations with extension principle. Using 
extension principle would give rise to computational 
complexities with loss of information. Another approach in 
literature uses Chens function principle for computations. 
This principle was based on selection of equal number of 
numeric and linguistic terms for combination into 2-tuple 
representation. The computations were performed on even 
number of attributes. The proposed approach overcomes 
these limitations by recomputing the real values from the 
fuzzified values. The approach enables the integration of 
fuzzy techniques with the classification algorithm. Apart 
from the recomputed fuzzified real values, the real values 
from the dataset are also included in the classifier execution. 
This inclusion removes the limitation of running only even 
number of attributes in the classifier. As an extension to the 
model proposed, the attribute preferences can be modified 
by adding weights to the selected attributes. The method can 
be applied to more attributes in the dataset after seeking 
advice from the experts in the knowledge domain. Various 
decision-making applications in the field of banking, 

information retrieval and supplier selection can make use of 
this approach to bring in more accurate predictions.  
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