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Abstract— The goal of this paper is twofold. Once to highlight some basic problematic properties of the KH Fuzzy Rule Interpolation 
through examples, secondly to set up a brief Benchmark set of Examples, which is suitable for testing other Fuzzy Rule Interpolation 
(FRI) methods against these ill conditions. Fuzzy Rule Interpolation methods were originally proposed to handle the situation of 
missing fuzzy rules (sparse rule-bases) and to reduce the decision complexity. Fuzzy Rule Interpolation is an important technique for 
implementing inference with sparse fuzzy rule-bases. Even if a given observation has no overlap with the antecedent of any rule from 
the rule-base, FRI may still conclude a conclusion. The first FRI method was the Koczy and Hirota proposed "Linear Interpolation", 
which was later renamed to "KH Fuzzy Interpolation" by the followers. There are several conditions and criteria have been 
suggested for unifying the common requirements an FRI methods have to satisfy. One of the most common one is the demand for a 
convex and normal fuzzy (CNF) conclusion, if all the rule antecedents and consequents are CNF sets. The KH FRI is the one, which 
cannot fulfill this condition. This paper is focusing on the conditions, where the KH FRI fails the demand for the CNF conclusion. By 
setting up some CNF rule examples, the paper also defines a Benchmark, in which other FRI methods can be tested if they can 
produce CNF conclusion where the KH FRI fails. 

Keywords— sparse fuzzy rule-bases; fuzzy interpolation techniques; KH FRI; CNF property; normality benchmark examples. 
 
 

I. INTRODUCTION 

Fuzzy inference systems that are based on classical fuzzy 
inference approaches have been widely applied for many 
real-world applications. These methods require dense rule-
bases, i.e. the universe of discourse demands to be fully 
covered by the rule antecedent fuzzy sets [1]-[4]. The size of 
a dense fuzzy rule-base is usually growing exponentially, as 
the number of input variables (antecedent dimension) 
increases. This behavior, the exponentially growing rule 
base size and the related computational time restricts the 
practical implementation of the classical fuzzy inference 
approaches in high dimensional applications [5]. 

One possible solution is the decrease of the rule-base size 
by permitting sparse fuzzy rule-bases. The sparse or 
incomplete rule-bases cannot fully cover the universe of 
discourse. Hence classical fuzzy inference approaches fail 
for some fuzzy observations. The sparse fuzzy rule-base, as 
a knowledge representation could be a result of an 
intentional designer decision, or simply a sign of insufficient 
knowledge during the rule-base generation. This situation 
can be easily handled by Fuzzy Rule Interpolating (FRI) 
methods, where the rule matching reasoning concept is 
replaced by FRI function. 

 

Fuzzy Rule Interpolation (FRI) concept was presented to 
provide reasonable and meaningful conclusion even if the 
available rules (in case of sparse rule-bases) do not match 
the current observation. Many FRI techniques suggested 
during the past two decades. The first one was proposed by 
Koczy and Hirota (KH FRI) [6]-[11] which was originally 
referred as "linear interpolation" by the authors. Then the 
KH FRI became the base for many other interpolation 
techniques. The KH FRI has many limitations. It is restricted 
to convex and normal antecedents and consequents fuzzy 
sets, having bounded support. It also demands at least a 
partial ordering between the fuzzy sets in the universes of 
discourse. A modification of the KH FRI is called VKK 
method which was proposed by Vass, Kalmar and Koczy 
[12], this method is based on α-cut technique, where the 
conclusion is computed based on the distance of the center 
points and the widths of the α-cuts, instead of lower and 
upper distances.  

The stabilized KH (KHstab) technique was proposed by 
Tikk et. [13] to handle and exclude the abnormality, where 
this method will be used by the inverse of the distance 
between antecedents and observation, where all flanking of 
the current observation will be used in computing the 
conclusion. Another modification of original KH method is 
the Modified α-Cut based Interpolation (MACI) method 
which was proposed by Tikk and Baranyi [14], MACI 
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converts fuzzy sets to vector description, then calculates the 
conclusion, and finally, it converts back to the initial space. 
Another fuzzy interpolation technique was proposed by 
Koczy et al. [10]. It is called conservation of relative 
fuzziness (CRF) method. This method was proposed to 
modify the fuzziness term and to improve α-cut levels, 
which follows fundamental equation (FEFRI) (Definition 3), 
where the conclusion can be obtained by determining the 
core and fuzziness of antecedents, consequents and 
observation fuzzy sets. 

The original KH FRI produces the output based on its α-
cuts. The most significant benefit of the KH FRI is its low 
computational complexity that guarantees reasoning speed 
required by real-time applications. Despite many 
advantages, in some antecedent fuzzy set configuration, the 
KH FRI suffers from abnormality of the conclusion (see 
more details in [15], [24]). The study in [16], [17] discuss 
the normality property and gives some boundary conditions 
for the observation, the antecedent and consequent fuzzy 
sets, where the normality of the conclusion necessarily 
holds. 

The main goal of this paper is to take these boundary 
conditions and construct some Benchmark Examples to 
highlight the problematic properties of the original KH 
Fuzzy Rule Interpolation. Besides, this Benchmark 
Examples could be used for testing other FRI methods 
against these ill conditions. All Benchmark Examples 
introduced in this paper are implemented by the MATLAB 
FRI Toolbox [18], [19] which provides an easy-to-use 
framework for FRI applications. 

The rest of the paper is organized as follows: Section (II) 
provides a brief review of the basic definitions of the fuzzy 
set and interpolative reasoning concept. Section (II.A) 
introduces a summary of the original KH FRI. Overview of 
the main equations and notations for the normality property 
of the KH FRI as shown in section (II.B) and the reference 
values (corollaries) of the CNF property in section (II.C). A 
CNF Benchmark Examples of implemented KH FRI 
presented in section (II.D). Section (III) presents the results 
discussion of the Benchmark Examples, and comparing 
selected FRI methods based on Benchmark Examples is 
presented in section (III.A). Finally, section (IV) is dedicated 
to the conclusion of the paper. 

II. MATERIAL AND METHOD 

This section a brief review of the basic definitions of the 
fuzzy set and interpolative reasoning concept. Typically, the 
fuzzy set theory is an extension of the classical set theory, it 
provides a general procedure for extending crisp domains of 
mathematical expressions to fuzzy domains, and generalizes 
a normal point-to-point mapping of a function to a mapping 
between fuzzy sets. Since can be considered specific cases 
of fuzzy sets, classical sets properties are extended. The 
degree of membership of an element of a fuzzy set evaluates 
by the unit interval [0, 1]. Then a fuzzy set A of the universe 
of discourse X is represented by its membership function 
μA(x) ∈ [0,1], x ∈ X. 

A fuzzy set defined on a universe of discourse which 
holds total ordering is a convex and normal fuzzy (CNF) set, 
if it has a height equal to one, and having membership grade 
of any elements between two other elements greater than, or 

equal to the minimum membership degree of these tow 
boundary elements. I.e a convex fuzzy set can be defined by 
∀x,y ∈ U, ∀λ∈[0,1] :μA (λx + (1−λy)) ≥ min (μA(x), μA(y)). 

Fig.1 describes some properties of the membership 
functions. The support of a fuzzy set is the set of all 
elements in the universe of discourse with membership 
degree is greater than zero. It can be defined by Supp (A): x 
∈ U, μA (x) > 0. The α-cut, and the strong α-cut of a fuzzy 
set is the crisp subset of the universe where the membership 
degrees are greater (strong α-cut), or greater, or equal (α-cut) 
than a specified α value. The α-cut can be represented by 
Aα : x∈U, μA (x) ≥ α, α∈[0,1] and Aα= x∈U, μA(x) > α, 
α∈[0,1]. The kernel of a fuzzy set is the crisp subset of the 
universe where the membership degrees are equal to 1. 
Kernel(A): x∈U, μA(x) =1. 

The width of a convex fuzzy set is the length of the 
support, which in the case of a convex fuzzy set is an 
interval. The width of a convex fuzzy set is defined by 
Width(A): max(Supp(A)) – min (Supp(A)). The height of a 
fuzzy set is the maximum membership degree of all the 
elements of the universe, and it can be defined by Height(A): 
max(x) ∈ U(μA(x)). A fuzzy set is said to be normal if at 
least one element of the universe has a membership degree 
equal to 1, ∃x ∈ U, μA(x): Height(A) = 1. 

 

 

Fig.1: Support And α-Cuts of Triangular And Trapezoidal Fuzzy Sets 
 
A typical example of KH FRI based reasoning in sparse 

rule-base systems is presented in [20]. It could be briefly 
described as follows. From the rule-base the two closest 
surrounding fuzzy rules to observation are taken into 
consideration only (see Fig.1 the observation and the two 
surrounding antecedent fuzzy sets): 

 
If X is A1 then Y is B1 
If X is A2 then Y is B2 

 
The two rules will be abbreviated as A1 ⇒ B1 and A2 ⇒ 

B2 respectively. Suppose that these two rules are adjacent as 
shown in Fig.2. Thus, we can see that when observation A* 
has no overlapping with fuzzy sets A1 or A2, therefore none 
of the rules are firing, no results could be obtained by 
classical fuzzy reasoning. 

 
If X is A1 then Y is B1 
If X is A2 then Y is B2 
Observation: X is A*  

---------------------------------- 
Conclusion: Y = (B*) 
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FRI reasoning methods could provide interpolated 
conclusion B* when the observation A* is not overlapping 
with any of the rule antecedents A1 and A2. According to the 
interpolation concept which was suggested by Koczy and 
Hirota in [6], [7] and [21], some definitions can be 
introduced as follows: 

Definition 1. Referring to all fuzzy sets that must be 
normal and convex in the universe Xi by P(Xi). The α-cuts 
are intervals. Then for A1, A1 ∈P(Xi), if ∀α ∈(0,1], A1 is 
precedes A2 (A1 < A2) if: 

 

inf(A1α) < inf(A2α), sup(A1α) < sup(A2α) (1) 
 
where A1α and A2α are α-cut sets of A1 and A2, 

respectively, inf (Aiα) is the infimum of Aiα and sup (Aiα) is 
the supremum of Aiα (i= 1,2). 

 

Definition 2. Given a fuzzy relation R≺: (A1, A2) | A1, A2 
∈P(X), A1≺A2, if fuzzy sets A1 and A2 satisfy R≺, the lower 
(dL) and the upper (dU) fuzzy distances between A1 and A2 

by using the resolution principles can be defined [6], [7], [8] 
as follows: 

 
dL (A1, A2): R≺ → P([0,1]) 

 

μdL(δ): ∑α∈[0,1]  α /d(inf(A1α), inf(A2α)) 
 

dU (A1, A2): R≺ → P([0,1]) 
 

μdU(δ): ∑α∈[01]  α /d(sup(A1α), sup(A2α)) 
 
where δ ∈ [0,1] and d is the Euclidean distance, or more 

generally the Minkowski distance. 
 

Definition  3. When A1 ⇒ B1, A2 ⇒ B2 be disjoint fuzzy 
rules on the universe of discourse X x Y, and A1, A2 and B1, 

B2 be fuzzy sets on X and Y, respectively. Assume that A* is 
the observation of the input universe X. If A1 < A* < A2 then 
the KH linear fuzzy rule interpolation between R1 and R2 is 
defined as follows: 

 

d(A1, A
*) : d(A*,A2) = d(B1, B

*) : d(B*,B2) (2) 
 

where d refers to the fuzzy distance according to 
Definition 2 that could be used between the fuzzy sets (A1, 
A*, A2) and (B1, B2). 

A. The Orginal KH Fuzzy Linear Interpolation  

The original Koczy and Hirota interpolation (later 
referred as KH FRI) [6]-[11] requires the antecedents and 
consequences fuzzy sets to be convex and normal (CNF) 
[22], [23]. This case the approximated conclusion can be 
generated by decomposing the fuzzy sets into α-cuts. The 
KH FRI is defined for a single dimensional antecedent 
space, for two rules, whose antecedents are surrounding the 
observation: 

 
A1≺ A∗≺ A2 

And 
B1≺ B2 

 
According to the concept of fuzzy distance [8] appearing 

in the KH FRI (see Definition 2), the fuzzy distance of two 
CNF sets can be defined as the distance of lower and upper 

endpoints of their α-cuts. The "linear interpolation" idea of 
the KH FRI is that the rate of the upper and lower fuzzy 
distances between observation and antecedents must be the 
same as the rate of the fuzzy distances between the two rule 
conclusions and the consequent. Therefore, regarding the 
previous definitions and resolution principles of fuzzy sets, 
the conclusion B* for the KH FRI method are produced 
directly based on α-cuts of the observation and the two 
surrounding fuzzy rules. 

 

According to equations that introduced in [6]-[8] the 
conclusion of the KH FRI could be calculated as follows: 

 

The right core of the conclusion: 
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The right end of the support of the conclusion: 
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For calculating the left-core (LCB*) and the left-support 

(LFB*) of the conclusion similar as Equations 3 and 4 could 
be constructed. 

 

A key advantage of the original KH approach is its low 
computational complexity for fuzzy rules since it deals with 
two rules only from the rule base during the determination of 
consequent, where the antecedents of those rules are the 
closest flanking to the observation, A1≺A*

≺A2 (See Fig.2).  
 

 

Fig.2: Fuzzy Interpolative Reasoning with an Invalid Conclusion for The 
KH FRI 
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On the other hand, for searching for these two rules could 
be a computationally demanding task. Despite the 
advantages, in some rule and observation configurations, the 
conclusion can be abnormal, or not always directly 
interpretable. Therefore, in the following section, the 
conditions of the normal, or abnormal conclusion will be 
studied in details. 

B. The Convexity And Normality of The KH FRI Conclusion 

Several FRI techniques followed the resolution principle 
which requires turning the problem of fuzzy interpolation 
into an infinite family of crisp interpolations according to the 
α-cuts of the rules and observation, then merging the results 
and conclude the fuzzy solution, as follows: 

 

[
U

]1,0

** .
∈

=
α

αα BB  

 
Moreover, several necessary conditions could hold. In 

case of the KH FRI, it is required, that all fuzzy sets must be 
convex and normal (CNF). This condition guarantees that all 
α-cuts are intervals and exists. 

 

The CNF property of the conclusion fuzzy set can be 
checked if all α-cuts are connected. The KH FRI cannot 
produce any results, if the α-cuts are not connected, which 
means the KH FRI must preserve the PWL for α ∈ [0, 1] 
(see cases in [25]). Hence, the conclusion is created as 
intervals by determining their lowest and highest endpoints. 
Then, the convexity condition is automatically satisfied. 
Fig.3.  represents a convex and a non-convex fuzzy set. 

 
 

 

Fig.3: A Convex (A) and a Non-Convex (B) Fuzzy Set 
 
In contrast, the normality of the conclusion is not always 

satisfied. The conclusion is normal, if the membership 
function assumes all values between 0 and 1. So, the 
condition will be satisfied if inf(B*α) ≤ sup(B*

α) for all α. 
Otherwise, if the condition is not satisfied, the membership 
function will suffer from an abnormality as shown in Fig.4. 

 

Now, we should collect which equations in [16], [17] 
have been used to determine and verify the normality of 
conclusion. In case if the shape of the antecedent and 
consequent fuzzy sets are restricted to triangular and 
trapezoidal, the membership functions can be described by 
three, or four points. In case of trapezoidal, it has four values 
(a1, a2, a3, a4) and in case of triangular, it could consider as a 
special trapezoidal a2 = a3 (see Fig.1).  

 

Fig.4: Forms of The Abnormal Conclusions 

 
Additionally, a singleton membership function is also a 

special trapezoidal membership function where all the values 
(a1, a2, a3, a4) are the same. Accordingly, the characteristic 
points of the KH FRI conclusion can be defined by the 
following equations in [17]. Where the conclusion B* is 
normal if and only if yinf1, yinf2, ysup1 and ysup2 are met the 
following conditions: 

 

 
 

According to Equations 5-7, the core and boundary 
lengths of the conclusion can be determined. For verifying 
the normality of the LefT Boundary (LTB) length of the 
conclusion, Equation 5 could be applied: 

 
Length.LT Bound1 ≤ Length.LT Bound2 (5) 

 
where 
 

Length.LT Bound1= dbLT B× 
(((Ka1LTB+da1LTB) ×  (Ka2LTB+da2LTB)) – 
((Ka∗LTB+da1LTB) ×  (Ka∗LTB+da2LTB))) 

 

Length.LT Bound2=((Ka1LTB+da1LTB) × 
 (da1LTB+Ka∗LTB) × Kb2LT B)+ 

((Ka2LTB+da2LTB)× 
(da2LTB+Ka∗LTB) × Kb1LTB) 

 

The core length of the conclusion can be determined by 
Equation 6 as follows: 

 
Length.Core1 ≤ Length.Core2 (6) 

 
where 
 

Length.Core1=dbcore × 
(((Ka1core+da1core) × (Ka2core+da2core))− 
((Ka∗core+da1core) × (Ka∗core+da2core))) 

 
Length.Core2=((Ka1core+da1core) × 

(da1core+Ka∗core) × Kb2core) + 
((Ka2core + da2core) × 

(da2core + Ka∗core) × Kb1core) 
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For RighT Boundary (RTB) length of the conclusion can 
be determined by the following Equation 7: 

 
Length.LT Bound1 ≤ Length.LT Bound2 (7) 

 
where 
 

Length.RT Bound1= dbRTB × 
(((Ka1RTB+da1RTB) × (Ka2RTB+da2RTB)) – 
((Ka∗RTB+da1RTB) ×  (Ka∗RTB+da2RTB))) 

 

Length.RT Bound2=((Ka1RTB+da1RTB) × 
(da1RTB+Ka∗RTB) × Kb2RT B)+ 

((Ka2RTB+da2RTB) × 
(da2RTB+Ka∗RTB) × Kb1RTB) 

 
Where the parameters of the core length for Equation 6 

can be defined as follows: 
  

Ka1core=a13−a12, Ka2core=a23−a22 
Kb1core=b13−b12, Kb2core=b23−b22 
Ka∗core=x3−x2, da1core=x2−a13 

 
Similarly to the core length parameters, the left and right 

equations of LTB and RTB can be constructed. 
 

Moreover, from another point of view, the length ratio of 
the distance between the fuzzy sets of the antecedent with 
observation (Kai, Ka*) and consequent (Kbi) Equations 8-10 
could also be used to check the normality (validity) of the 
conclusion, which can be defined as follows: 

 

For the length ratio of the left Boundary: 
 

RatioLT1= 
LTBound (Kb1,b2) / LTBound (Ka1,a2). 

 

RatioLT2= 
LTBound(Ka1,a2) / (LTBound (Ka∗Ka1) 
+ LTBound(Ka2Ka∗)). 

(8) 

 

where 
 

LTBound(Kb1,b2)= b21 - b12,  
LTBound(Ka1,a2)= a21 - a12, 
LTBound(Ka∗Ka1)= a∗1 - a12,  
LTBound(Ka2Ka∗)= a21 - a∗2. 

 
For the length ratio of the core: 
 
RatioC1= Core(Kb1,b2)/Core(Ka1,a2), 
 

RatioC2=Core(Ka1,a2)/(Core(Ka∗Ka1) 
+Core(Ka2Ka∗)). 

(9) 

 
where 
 

Core(Kb1,b2) = b22 – b13,  
Core(Ka1,a2) = a22 – a13, 
Core(Ka∗Ka1) = a∗2 - a13,  
Core(Ka2Ka∗) = a22 - a∗3. 

 
For the length ratio of the right Boundary: 

 

RatioRT1= 
RTBound (Kb1,b2) / RTBound (Ka1,a2). 

 

RatioLT2= 
   RTBound(Ka1,a2) / (RTBound (Ka∗Ka1) 

+ RTBound(Ka2Ka∗)). 

(10) 

 
where 
 

RTBound(Kb1,b2)= b23 – b14,  
RTBound(Ka1,a2)= a23 – a14, 
RTBound(Ka∗Ka1)= a∗3 – a14,  
RTBound(Ka2Ka∗)= a23 - a∗4. 

C. Reference Values For The CNF Property 

According to the main corollaries in [16], [17], the 
normality of the KH FRI conclusion can be deretermined as 
follows: 

 

1) Corollary 1: when (Kai = Kbi = Ka*). If rules A1 ⇒ B1,     
A2 ⇒ B2 and the observation A* have the same core and left-
right boundary lengths as the antecedent (Kai) and 
consequent (Kbi) fuzzy sets, the conclusion will always be 
normal. For this corollary, Equations 5-7 and Equations 8-10 
could be used to validate the normality. 

 

2) Corollary 2: when (Kai = KA, Kbi = KB). If the 
membership functions of the antecedent (Kai = KA), and the 
consequent (Kbi = KB) have uniform core and boundary 
lengths, then the conclusion fuzzy set is always normal if 
and only if the following conditions by Equations 11 and 12 
are hold: 

 

For the core length: 
 

•  If Ka∗ ≠ 0 
 

Length.Core1 ≤  Length.Core2 (11) 
 

where 
 

Length.Core1= dbcore × (Kacore−Ka∗core), 
Length.Core2= Kb × (da1core+da2core+2× Ka∗core) 

 

•  If Ka∗ = 0 
 

Length.Core1 ≤  Length.Core2 (12) 
 

where 
 

Length.Core1= dbcore × (Kacore−Ka∗core), 
Length.Core2= Kbcore ×  dacore 
 

and  
 

dacore=a22−a13 
 
For left and right boundary lengths, similar equations to 

the core length could be constructed. 
 

3) Corollary 3: when (Kai = Ka*, Kbi = KB). In this 
corollary, if the antecedent fuzzy sets and observation have 
the same core and support lengths, and the fuzzy sets of the 
consequent have the same length too, then the conclusion 
fuzzy set is always normal. To verify the normality 
condition, Equations 11 and 12 for the core and support 
lengths are used. 
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4) Corollary 4: this corollary discusses the antecedents 
and consequences that have uniform core length. The 
conclusion fuzzy set is always normal if the length ratio of 
the distance between the fuzzy sets of the antecedent and 
consequent (distance KB) / (distance KA) does not exceed 
the length ratio of themselves. Equations 8-10 can be used to 
verify the normality condition, in other words, the 
consequents have not shorter length, i.e. the consequents are 
not less than fuzzy the antecedents. 
 

Fig.5 illustrates all the notations of the core and boundary 
(Ka, Kb) that are used in Equations 5-10, as follows: 

 

 

Fig.5: Notations Related To Core And Boundary Lengths Of Trapezoidal 
Fuzzy Sets 

D. The CNF Benchmark of The KH FRI 

In the followings, Benchmark Examples will be 
constructed to highlight the validity of the normal property 
conditions of the KH FRI. Various corollaries introduced to 
check the normality of the KH FRI conclusion. The core and 
(left-right) boundary lengths have a primary role in 
determining the normality of the conclusion fuzzy set. 
According to the prerequisites of the KH FRI, one-
dimensional antecedents and consequents with trapezoidal, 
triangular and singleton fuzzy sets, and two rules of the rule-
bases could be considered. In the rest of the paper, all the 
calculations and figures were prepared by the fuzzy rule 
interpolation (FRI) toolbox. The current version of FRI 
toolbox is freely available to download at [18]. 
 

Now, we will discuss in details the special cases where 
the conclusion of the KH FRI is normal and abnormal 
according to the equations and corollaries that addressed 
previously. First of all, the normality condition is always 
satisfied with the KH FRI if any of the following cases are 
met: 

• Case 1: when the core and boundary lengths of the 
observation is greater, or equal than the antecedent 
fuzzy sets (KA* >= KA), if (Kai = KA), the normality 
of the KH FRI conclusion fuzzy set will always be 
satisfied with the normality condition. For this case, 
there is no restriction on the shape and size of the 

consequent (KB). Table I illustrates the Example 1 that 
demonstrates Case 1. 

TABLE I 
THE NORMAL CONCLUSION OF THE KH FRI WITH FUZZY SETS ACCORDING 

TO CASE1 

Example (1) 
Notations that prove case 1 (KA* >= KA), if (Kai = KA) 

The values of the fuzzy sets: 
A1=[1 2 2 3] A2=[7 8 8 9] 
B1=[2 2 2 2] B2=[8 8 8 8] 
A*=[4 5 5 6] B*=[5 5 5 5] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (NORMAL) 
The length (Core) is (NORMAL) 
The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka* and KB: 
LTBound:  

RatioLT1= (1.20), RatioLT2= (1.25) 
Core:  

RatioC1= (1), RatioC2= (1) 
RTBound:  

RatioRT1= (1.20), RatioRT2= (1.25) 

notations length to determine the normality: 
 
LTBound1 = (0), LTBound2 = (0) 
Core1 = (0), Core2 = (0) 
RTBound1 = (0), RTBound2 = (0) 

 

 
• Case 2: the core and boundary lengths fuzzy sets must 

be the same (KA = KB) if (Kai= KA) and (Kbi= KB), 
the normality of the KH FRI conclusion fuzzy set will 
always be satisfied. For this case, there is no restriction 
on the shape and size of the observation A*. Table II 
illustrates Examples 2 and 3 to demonstrate Case 2. 

 

• Case 3: If the core and boundary lengths of fuzzy sets 
(KB > KA), where (Kai = KA) and (Kbi= KB). The KH 
FRI conclusion fuzzy set will always be satisfied with 
normality property. Table III represents Examples 4 
and 5 that describes Case 3. 

TABLE II 
 THE NORMAL CONCLUSION OF THE KH FRI WITH FUZZY SETS ACCORDING 

TO CASE 2 

Example (2) 
Notations that prove case 2 when (KA = KB) 

The values of the fuzzy sets: 
A1=[1 2.5 2.5 4] A2=[6 7.5 7.5 9] 
B1=[1 2.5 2.5 4] B2=[6 7.5 7.5 9] 
A∗=[4.5 5 5 5.5] B∗=[4.5 5 5 5.5] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (NORMAL) 
The length (Core) is (NORMAL) 
The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ and KB: 
LTBound:  

RatioLT1= (1), RatioLT2= (1.16) 
Core:  

RatioC1= (1), RatioC2= (1) 
RTBound:  

RatioRT1= (1), RatioRT2= (1.16) 

Notations length to determine the 
normality: 
 
LTBound1 = (3.5), LTBound2 = (6) 
Core1 = (0), Core2 = (0) 
RTBound1 = (3.5), RTBound2 = (6) 

 

Example (3) 
The values of the fuzzy sets: 
A1=[1 2 3 4] A2=[6 7 8 9] 
B1=[1 2 3 4] B2=[6 7 8 9] 
A∗=[4 4.8 5.2 6] B∗=[4 4.8 5.2 6] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (NORMAL) 
The length (Core) is (NORMAL) 
The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ and KB: 
LTBound:  

RatioLT1= (1), RatioLT2= (1.25) 

Notations length to determine the 
normality: 
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Core: 
RatioC1= (1), RatioC2= (1.11) 

RTBound: 
RatioRT1= (1), RatioRT2= (1.25) 

LTBound1 = (0.8), LTBound2 = (4.8) 
Core1 = (2.4), Core2 = (4.4) 
RTBound1 = (0.8), RTBound2 = (4.8) 

 

TABLE III 
THE NORMAL CONCLUSION OF THE KH FRI WITH FUZZY SETS ACCORDING 

TO CASE 3 

Example (4) 
Notations that prove case 3 when (KB > KA) 

The values of the fuzzy sets: 
A1=[1.5 2 2 2.5] A2=[6.5 7 7 7.5] 
B1=[1 2 3 4] B2=[6 7 8 9] 
A∗=[4.5 4.5 4.5 4.5] B∗=[4 4.5 5.5 6] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (NORMAL) 
The length (Core) is (NORMAL) 
The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ and KB: 
LTBound: 

RatioLT1= (0.88), RatioLT2= (1) 
Core: 

RatioC1= (0.80), RatioC2= (1) 
RTBound: 

RatioRT1= (0.88), RatioRT2= (1) 

Notations length to determine the 
normality: 
 
LTBound1 = (2), LTBound2 = (4.5) 
Core1 = (0), Core2 = (5) 
RTBound1 = (2), RTBound2 = (4.5) 

 

Example (5) 
The values of the fuzzy sets: 
A1=[2 2 2 2] A2=[8 8 8 8] 
B1=[1 2 3 4] B2=[6 7 8 9] 
A∗=[4.5 5 5 5.5] B∗=[3.08 4.5 5.5 6.916] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (NORMAL) 
The length (Core) is (NORMAL) 
The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ and KB: 
LTBound:  

RatioLT1= (0.66), RatioLT2= (1.09) 
Core: 

RatioC1= (0.66), RatioC2= (1) 
RTBound:  

RatioRT1= (0.66), RatioRT2= (1.09) 

Notations length to determine the 
normality: 
 
LTBound1 = (-2), LTBound2 = (6.5) 
Core1 = (0), Core2 = (6) 
RTBound1 = (-2), RTBound2 = (6.5) 

 

 
In contrast, the abnormality of the conclusion can appear 

in case (KB < KA). So, to demonstrate the abnormality 
problem, we will consider the length ratio between Ka* and 
KB based on Equations 8-10. Therefore, we will address the 
problem with different lengths of core and boundary.  

 

Tables IV – VII describe the results of Equations 5-10 to 
prove that the normality of the KH FRI conclusion will not 
satisfied. The Example 6 on Table IV shows the problem 
with the core length. Examples 7 and 8 on Tables V and VI 
illustrate the problem of the left and right boundary. The 
Example 9 on Table VII shows the problem in both the core 
and boundary lengths. 

 
 

 Regarding Table IV describes the abnormality in the core 
length of the KH FRI conclusion. 

TABLE IV 
THE PROBLEM WITH CORE LENGTH, ABNORMAL CONCLUSION 

Example (6) 
The values of the fuzzy sets: 
A1=[1 2 3 4] A2=[6 7 8 9] 
B1=[1.5 2.5 2.5 3.8] B2=[6.5 7.5 7.5 9] 
A∗=[4.2 5.2 5.2 6.7] B∗=[4.7 5.7 4.7 6.6] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (NORMAL) 
The length (Core) is (PROBLEM) 
The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ and KB: 
LTBound:  
            RatioLT1= (1), RatioLT2= (1.33) 
Core:  
       RatioC1= (1.25), RatioC2= (1) 
RTBound:  
            RatioRT1= (0.92), RatioRT2= (1.6) 

Notations length to determine the 
normality: 
 
LTBound1 = (0), LTBound2 = (5) 
Core1 = (5), Core2 = (0) 
RTBound1 = (-9.25), RTBound2 = 
(17.28) 

 

 
An explanation of the abnormality of the left boundary 

length of the KH FRI conclusion is shown on Table V.  

TABLE V 
THE PROBLEM WITH LEFT LENGTH, ABNORMAL CONCLUSION 

Example (7) 
The values of the fuzzy sets: 
A1=[1 2.5 2.5 4] A2=[5.5 7.5 7.5 9] 
B1=[1 2 3 4.5] B2=[6.5 7 8 9.5] 
A∗=[4.5 4.9 5.1 5.5] B∗=[5.27 4.4 5.6 6.0] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (PROBLEM) 
The length (Core) is (NORMAL) 
The length (RFBound) is (NORMAL) 

The length ratio between KA, Ka∗ and 
KB: 
LTBound:  
           RatioLT1= (1.5), RatioLT2= (1.15) 
Core:  
        RatioC1= (0.8), RatioC2= (1.04) 
RTBound:  
        RatioRT1= (1), RatioRT2= (1.12) 

Notations length to determine the 
normality: 
 
LTBound1 = (30.15), LTBound2 = 
(6.80) 
Core1 = (-0.8), Core2 = (5.2) 
RTBound1 = (3.85), RTBound2 = 
(5.85) 

 

 
An illustration of the abnormality in the right boundary 

length of the KH FRI conclusion is displayed on Table VI. 

TABLE VI 
THE PROBLEM WITH RIGHT LENGTH, ABNORMAL CONCLUSION 

Example (8) 
The values of the fuzzy sets: 
A1=[1.5 2.5 2.5 4.3] A2=[6.5 7.5 7.5 8.8] 
B1=[1 2 3 3.5] B2=[6 7 8 8.9] 
A∗=[4.5 4.9 5.1 5.5] B∗=[4 4.4 5.6 4.94] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (NORMAL) 
The length (Core) is (NORMAL) 
The length (RFBound) is (PROBLEM) 

The length ratio between KA, Ka∗ and 
KB: 
LTBound:  
            RatioLT1= (1), RatioLT2= (1.11) 
Core:  
        RatioC1= (0.80), RatioC2= (1.04) 
RTBound: 
       RatioRT1= (1.40), RatioRT2= (1.14) 

Notations length to determine the 
normality: 
LTBound1 = (2.4), LTBound2 = (4.4) 
Core1 = (-0.8), Core2 = (5.2) 
RTBound1 = (25.65), RTBound2 = 
(6.76) 

1767



 

 
Table VII describes the abnormality in both core and 

boundary lengths of the KH FRI conclusion. 

TABLE VII 
THE PROBLEM WITH CORE AND BOUNDARY LENGTHS, ABNORMAL 

CONCLUSION 

Example (9) 
The values of the fuzzy sets: 
A1=[2 2 2.5 3] A2=[6 7.5 8 8] 
B1=[2 2 2 2] B2=[8 8 8 8] 
A∗=[5 5 5 5] B∗=[6.5 5.27 4.72 4.4] 

The case of the Core and (LF and RF) 
Boundary conclusion: 
The length (LFBound) is (PROBLEM) 
The length (Core) is (PROBLEM) 
The length (RFBound) is (PROBLEM) 

The length ratio between KA, Ka∗ and 
KB: 
LTBound:  
             RatioLT1= (1.5), RatioLT2= (1) 
Core:  
       RatioC1= (1.2), RatioC2= (1) 
RTBound:  
             RatioRT1= (1.2), RatioRT2= (1) 

Notations length to determine the 
normality: 
 
LTBound1 = (27), LTBound2 = (0) 
Core1 = (3), Core2 = (0) 
RTBound1 = (9), RTBound2 = (0) 

 

III.  RESULTS AND DISCUSSION 

This section introduces the results discussion of the CNF 
Benchmark Examples in details. The cases and equations 
discussed earlier have been used to construct the Benchmark 
Examples. The Benchmark classified into two groups, as 
shown on Tables I-VII, the first one contains Examples 1-5, 
which regards to a normal conclusion of the KH FRI. The 
second includes Examples 6-9 which regards to an abnormal 
conclusion. For the first group, corollaries 1-4 are met, the 
conclusion of the KH FRI is always normal.  

 

Referring to Example 1 on Table I, we can see that the 
conclusion is normal B*= [5 5 5 5] because the length of 
fuzzy sets (KA) and (Ka*) are the same, where Equations 11 
and 12 are satisfying the normality conclusion. I.e. the core 
length Core1=0 is less than or equal to Core2=0 and for the 
left length LTBound1=3.5 is also less than LTBound2=6. 
From another side, the length ratio according to Equations 8-
10 are also satisfied, i.e. for length ratio of left boundary, 
RatioLT1= 1.20 is less than RatioLT2= 1.25. 

 

In Example 3 on Table II, according to case 2 the 
conclusion is normal B*=[4 4.8 5.2 6] when fuzzy sets (Ka1 
= Ka2) and (Kb1 = Kb2) are the same, then Equation 11 is 
satisfying the normality conclusion. I.e. the right length 
RTBound1=0.8 is less than or equal to RTBound2=4.8. 
Also, according to Equations 8-10 are also satisfied for core 
and support, i.e. for the length ratio of the right boundary, 
RatioRT1= 1 is less than RatioRT2= 1.25. 

 

In another case, for Example 4 on Table III, the 
conclusion B*=[4 4.5 5.5 6] is normal as proved by Equation 

12, i.e. for left and right boundary lengths, LTBound1 = 2 is 
less than LTBound2 = 4.5, RTBound1 = 2 is less than 
RTBound2 = 4.5, the conclusion is normal. Also, for length 
ratio by Equations 8-10, LTBound: RatioLT1= 0.88 is less 
than RatioLT2= 1 and RTBound: RatioRT1= 0.88 is less 
than RatioRT2= 1, the conclusion is normal. 

 

Nevertheless, the second group, Examples 6-9 
demonstrate some of the corollaries which are not met, when 
the length (KB) is less than (KA) and the length ratio (Ka* < 
KA). Equations 8-10 are important to prove abnormality 
when ratio [Core(KA)/Core(KB))] does not exceed ratio 
[Core(KA)/(Core(Ka*KA1) + Core(KA2Ka*))]. In this case, 
the conclusion of the KH FRI still suffers from abnormality. 

 

In Example 6 on Table IV, the conclusion is B*=[4.7 5.7 
4.7 6.6], the abnormality shown in the core length which is 
not fulfils (Definition 1), because the value 5.7 is greater 
than 4.7, in addition, notation of the length ratio of core 
(Equation 9) is not satisfied, as RatioC1= 1.25 exceeds the 
RatioC2= 1. From another side, Equation 12 also 
demonstrates an issue with the core length values, because 
Core1= 5 is greater than Core2 = 0, and therefore, the 
conclusion is suffering from abnormality. 

 

For Example 7 on Table V, the conclusion is B*= [5.27 
4.4 5.6 6.0], the abnormality be seen in left boundary length, 
the value 5.27 is greater than 4.4, thus Equation 8 is not 
satisfied, as RatioLT1= 1.5 exceeds the RatioLT2= 1.15. 
Also Equation 5 demonstrates a problem with the left length 
values, where LTBound1= 30.15 is greater than LTBound2 
= 6.80, and therefore, the conclusion is suffering from 
abnormality. 

 

In Example 8 on Table VI, the conclusion is B*=[4 4.4 
5.6 4.94], the abnormality is shown in right boundary length 
because the value 5.6 is greater than 4.94 (see Definition 1). 
Additionally, Equation 10 of the length ratio of right 
boundary length is not satisfied, as RatioRT1= 1.40 exceeds 
the RatioRT2= 1.14. Also, Equation 7 is not fulfil, because 
RTBound1= 25.65 is greater than RTBound1= 6.76. 

For Example 9, the conclusion is B*=[6.5 5.27 4.72 4.4], 
where the problem found with core and boundary lengths. 
The characteristic points in the case are not matching with 
Definition 1, according to Equations 5-7 of the left and right 
boundary. Also, neither Equation 12 satisfies for the 
conclusion fuzzy set, as shown on Table VII: 

 
LTBound1=27 > LTBound2=0, 

Core1=3 > Core2=0, 
RTBound1=9>RTBound2=0. 

 
In addition, Equation 8-10 are also not satisfied because 

(Ratio1) is greater than (Ratio2) for the core and boundary 
of the conclusion: 

 
Left ratio: RatioLT1=1.5 > RatioLT2=1 

Core: RatioC1=1.2 > RatioC2=1 
Right ratio: RatioRT1=1.2 > RatioRT2=1 
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A. Comparing Between Of FRI Methods Based On 
Benchmark  

In this section, we compare between some of the FRI 
methods (KHstab [13], MACI [14], VKK [12] and CRF 
[10]) according to the constructed Benchmark Examples 6, 7 
and 9. To offer a simple way of comparison we focus on the 
cases that demonstrated the fails of normality of KH FRI 
method. This comparison shows the difference between the 
results of the selected methods according to the CNF 
property. Fig.6 introduces the antecedents part of the 
Examples 6, 7 and 9. 

 

 

 

Fig.6: The Antecedents and Observations for Examples (6, 7 And 9). 
 

 

 

 

 

Fig.7: The Approximated Conclusion Of The (KHstab [13], MACI [14], 
VKK [12] and CRF [10]) Methods for the Example 6. 

 

 

 

 

 

Fig.8: The Approximated Conclusion of the (KHstab [13], MACI [14], 
VKK [12] and CRF [10]) Methods for the Example 7. 

 

 

1769



 

 

Fig.9: The Approximated Conclusion of the (KHstab [13], MACI [14], 
VKK [12] and CRF [10]) Methods for the Example 9. 

 
The conclusions of the selected FRI methods (as shown in 

Figs.7, 8 and 9) can be discussed  according to Benchmark 
Examples 6, 7 and 9 as follows:  

• MACI [14] and CRF [10] methods are a suitable 
approach to be implemented as an inference system 
because its conclusions succeeded with CNF property 
to all Benchmark Examples.  

• VKK [12] method, the abnormality exceeded in 
Benchmark Example 6 only. But it failed with CNF 
property in Benchmark Examples 7 and 9.  

• KHstab [13] method suffered from abnormality 
according to all Benchmark Examples 6, 7 and 9. 

Table VIIII illustrates the results of the selected FRI 
methods as shown by values of the conclusions B*. 

TABLE IX 
THE APPROXIMATE VALUES OF THE SELECTED METHODS CONCLUSIONS 

FOR EXAMPLES 6, 7 AND 9 

Method 
Approximate conclusion B* 

For Example 6 For Example 7 For Example 9 
KH 

[6]–[11] 
Abnormality 

[4.7 5.7 4.7 6.6] 
Abnormality 

[5.27 4.4 5.6 6.0] 
Abnormality 

[6.5 5.27 4.72 4.4] 
KHstab 

[13] 
Abnormality 

[4.7 5.7 4.7 6.6] 
Abnormality 

[5.27 4.4 5.6 6.0] 
Abnormality 

[6.5 5.27 4.72 4.4] 
MACI 

[14] 
Normal 

[4.2 5.2 5.2 6.6] 
Normal 

[3.8 4.5 5.5 7] 
Normal 
[5 5 5 5] 

VKK 
[12] 

Normal 
[4.6 5.2 5.2 6.66] 

Abnormality 
[out range] 

Abnormality 
[5.3 5 5 5.3] 

CRF 
[10] 

Normal 
[3.9 5.25 5.25 6.75] 

Normal 
[4.5 4.9 5.0 5.1] 

Normal 
[5 5 5 5] 

IV.  CONCLUSIONS  

Since the introduction of the fuzzy rule interpolation 
methods, several conditions and criteria have been suggested 
for unifying the common requirements FRI methods have to 
satisfy. One of the most common ones is the demand for a 
convex and normal fuzzy (CNF) conclusion if all the rule 
antecedents, consequents and the observation are CNF sets. 
The goal of this paper was to collect some cardinal rule-base 
and observation examples according to the first FRI method, 
the “Koczy-Hirota linear interpolation” (KH FRI) satisfies 
and fails the requirements for the CNF conclusion. Some 
corollaries and Equations 5-12 have been also set up to 
examine the normality of the fuzzy conclusion. 

The suggested examples were constructed as a 
Benchmark, in which other FRI methods can be tested if 
they can produce CNF conclusion where the KH FRI fails.  

The suggested Benchmark Examples is made up of two 
groups. Examples 1-5 are forming the first group in which 
the conclusion of the KH FRI is always normal. In opposite, 
Examples 6-9 are forming the second group in which the 
conclusion of the KH FRI is always abnormal. Examples of 
the first group proved the normality of the conclusion, if all 
cases: Case 1: ((Kai >= Ka*, Case 2 ((Kai < Ka*), and Case 3 
(Kai = KA, Kbi = KB) are met. While examples of the 
second group demonstrated the abnormality of the 
conclusion according to the discussed cases, when the length 
of KB is less than KA and the length of Ka*  is less than KA. 
As a result, the selected FRI methods (KHstab, MACI, VKK 
and CRF) are compared with KH FRI based on Benchmark 
Examples 6, 7 and 9, which showed that the results of 
KHstab and VKK methods suffered from the preservation of 
CNF property, in contrast, MACI and CRF methods 
succeeded in preserving CNF property as illustrated in Table 
VIII. 
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