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Abstract— Differential Evolution (DE), the well-known optimization algorithm, is a tool under the roof of Evolutionary Algorithms
(EAs) for solving non-linear and non-differential optimization problems.DE has many qualities in its hand, which are attributing to

its popularity. DE also known for its simplicity in solving the given problem with few control parameters: the population size (NP),
the mutation rate (F) and the crossover rate (Q. To avoid the difficulty involved in setting of suitable values foNP, F and C, many
parameter adaptation strategies are proposed in the literature. This paper is to present the working principle of the parameter
adaptation strategies ofF and C,. The adaptation strategies are categorized based on the logic used by the authors, and clear insights
about all the categories are presented.
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proposed folNP, F and C, in DE literature. Subsequently,
I. INTRODUCTION this has become a challenge to the practitioners, researchers

Differential Evolution DE) (proposed by Storn and Price and users oDE to choose right adaptation strategies for
each of the control parameter to solve the problem at their

[1],[2], a population based stochastic search method, is ah d i his chall : K he aim of thi
very powerful algorithm in the repository of Evolutionary pgge.r Resolving this challenge is taken as the aim of this

Algorith A9. Th f ffi DE
gorithms - EA9 ©  perormancs eticacy oL, The objective of this paper is to provide the readers with

comparing with otherEAs for solving real time and brief insiaht ab ) 4 . ; db
benchmarking problems which are non-linear, complex and rief insight about various adaptation strategies proposed by

high dimensional over continuous domain has been well"€S€archers for adaptig and C. It is obvious that the

proved in its literature [3]. The algorithmic structuredf number of resear(_:hers w_orl_<ing DE' particularly in the
is similar to otheiEAs However, unlike otheEAs DE uses parameter adaptation BE, is increasing day after the other.

very few control parameters: the population sib®)( the This paper is intended to provide them with summary of

mutation rate E) and the crossover rat€]. The efficiency various adaptation strategies exisDR literature for tuning
and accuracy oDE algorithm is more sensitive to the values F andC..
chosen for these few parameters.

The successful convergencel to the global optimum
solution, in its evolutionary search for solving the given  For a search method to be efficient and reliable, it has to
problem, is largely depend on suitable selection of values forcover the entire search space. Differential Evolution starts its
these control parameters. Finding the suitable values forsearch of global solution for the given optimization problem,
these control parameters, before starting the search, is avith randomly selectePD-dimensional population vectors
difficult task as it will differ from problem to problem. A (individuals/candidates). The initial population is chosen in
poor choice of these values will result in the poor accuracysuch a way that the individuals are initialized randomly in
of the algorithm which is not acceptable. There is no single order to cover the entire search space. The population vector
perfect method or standard available for selecting values foris represented a$§ = {xli,G, xzi,G,. .. >Pi,G}, i ranges frondl
these control parameters. Hence, the process of tuning thes® NP, G represents the generation abBdrepresents the
control parameters along with the search became anmnumber of parameters for each individual (ie, dimension of
attractive area of research for the researchers’ communitythe problem).
working in DE. This results numerous adaptation strategies

II. DIFFERENTIAL EVOLUTION ALGORITHM
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The three evolutionary processes involved DiE are obtained at the end of the run is the solution obtainedby
mutation, crossover and selection. Among these the mutatiorfor the given problem, at that particular run. Since all the
and crossover are called variation operators, which bringsstages of evolutionary process IDE (in fact any EA)
changes in the population by altering the values of theinvolves randomness, the average performanceDE&f
components of the individuals in the population. The algorithm in its many runs is used for reporting its
changes made by these operators create new candidates performance.
the population, thus increasing the diversity of the
population. Hence they attributed to exploration phase of the I1l. CONTROL PARAMETERS OFDE
search. On the other hand, the selection process selects the

b did ¢ ¢ did Thus it is for th Understanding the influence of the parametersD&f
est candidate from a set of candidates. Thus it Is for t e(mutation rate(F), crossover ratgC;) and population size
exploitation phase of the search.

. . . ... . (NP)) is essential to know the adaptation strategies available
At first the mutation process takes place. From the mltlalJor them. This section presents the rol&o€, andNP
; ! . s .
populat!on th? mutation process generates a mutated tpe  mytation process is to alter the values of the
populauon. This Process Is termed Gigferential Mutation components of each of the candidate in the population. The
n Igi The mutguon dpcr:OC(afss chhooses tlhrge rar‘gommutation of DE is called asdifferential mutation since it
candidates (saf, C, aTM g) from the population, an uses weighted differences of candidates to perform mutation
generates a mutant vectty) as for the current candidate. One among the unique feature of
DE is its differential mutation. The mutation process can be

MV =0+ Fe(l-0C4) @ understood from the Figure 1.
where F- mutation rate or scaling factor. In Equ (1), the A
scaled difference df, andC; is added taC; (also known as = L) M
base vector). There exist many ways to choose the base Cy /D/v
vector and the other pair of vectors for mutation. Based on e
that, there are many mutation strategies availableDter Ta
The critical parameter in the mutation process is the scaling D =l @
factor F. One mutant vector is generated for each vector ./C3
population (also known as target vectofay)) in the C,
current, which results mutated population WP mutant —>
vectors. Fig. 1.The Differential Mutation of DE.
Secondly, therossovemprocess generates the trial vector
(TrV) population. This process recombines each ofTéié The Mutation rate ) (also known asscaling factor
in the current generation with its correspondikty to amplification factor, mutation step sinemutation constant
produce thdrV. The values from the parametersTaiV and is to scale the distance between the pair of ve@pendCs.

MV are used to generatélaV. The crossover process results This scaled difference is added to the base veéZtomhus,

one TrV for eachTaV. The crossoverprocess determines the mutation rate is used to control the amplification of the
how much information the trial vector (child) inherits from difference vector. Hence, a small value Ffwill lead to

its parents (target and mutant vectors).This is determined bypremature convergence whereas a larger value will result in
the control parameter called tlheossover rate (. The a slower convergence. It controls the range of space where
most common two crossover strategiesD& are binomial the mutant vectors are generated. Thus, it plays an important
crossover and exponential crossoverThe equation for  role in changing diversity in the population.

binomial crossover is given in equation (2). The crossover In classicalDE algorithm the value foF is taken as any
process also repeated for all the pair of target and thereal value in the range of 0 to 1. Keeping the valuE af
corresponding mutant vector, which results a population of constant will deteriorate the diversity of the population

NP trial vectors. during the search, because all the vectors will be created by
same difference vector components. So in order to avoid this,
TV [ﬂﬂ’s if € = Rand () @ many classicalDE implementations follow a different
" \Tal; Otherwise strategy where= will be considered as a random number

within the range of [0.2, 0.8]. This ensures that the diversity

Next, a selection process is carried out between each loss during the search is avoided.
target vector in the current population and their In natural evolution, the crossover process is to create
corresponding trial vectorfE uses one-to-one tournament children by inheriting genetic properties from parents. It
selection based on the fithess values of the candidatediolds good forDE search also. In this process of genetic
(vectors). The better candidate out of the two will have the inheritance, to get diversified candidate from the parent, the
privilege to move to the next generation. parameter crossover rag) is used. As similar t&, C also

Each generation oDE’s search process include these a real valued parameter in the range of 0 tol. It is used to
three evolutionary processes (Mutation, Crossover andidentify the parameters to be inherited from the parents.
Selection). The whole process is repeatedGfmaximum Crossover rated) controls the number of elements that the
number of generations) number of generations, which istrial vector will inherit from mutant vector and target vector.
considered as one run DE experiment. The best solution Thus it defines how different the child vector is from the

614



parent vectors. In other words, it ensures diversity in the . Category 2: Encoding of control parameters

newly created population. Finding the right value of this  Another way of adapting control parameter is to encode

control parameter is a difficult task as a slight change in thethe control parameters along with the parametric values of

C, value will affect the efficiency of the algorithm. Wheén the candidates of the population. Hence, the control

value is approximately equals to @MQE makes small parameters also evolve as similar to other parameters. The

explorative moves with higher probability of making adaptation strategies following this methodology are

improvement. When Cr 0.9, DE makes large explorative  grouped under this category.

moves which helps to perform a more fine-grained search in - Category 3: Deriving from History or Pool

the solution space and yield large improvements in solution The strategies which use previous information about the

quality. performance of the algorithm in the evolutionary search are
The third control parameteNP also has significant  grouped under this category. The algorithms which maintain

impact on performance @E. If NP is small, the search may pool of values for the control parameters also grouped in this

end in premature convergence, and if it is large the searctcategory.

will take long time to converge. Hence a moderate value for . Category 4: With added logic

NP, to avoid the premature convergence and stagnation, is The strategies which use some additional technique or

acceptable for successiDE search. algorithm to adapt the parameters are discussed under this
There are many methods proposed for adagfiagpdC,, category.

many of them were found to be performing better when

compared with classicaDE. However, less works are A Classical Approaches

reported in the literature for adaptifP. Hence this paper With the understanding of role BfandC; in the mutation
considers, hereafter, to discuss the existing adaptationrand crossover processes, the works considered in this
strategies foF andC.. category uses mathematical equations derived by the authors
to update the values &fandC..
IV. ADAPTATION STRATEGIES FORF AND CR In SaDE[5], proposed by A.K Qin and P.N.Suganthan, an

adaptive logic for mutation strategy is presented. The

To plan for a suitable adaptation strategy of the control pwutation strategy is decided based on the success rate

parameters, it is necessary to understand the influence Of iculated for them in the learning period. THeand C
each of the parameters in the performance of the algorithm. values also calculated differentl f%rpeach 'of the mutration
There are many works reported in literature to discuss the ea crerently .
strategy. For every individualin the population thé and

influences of the control parameters. It was in the year 2001, . .
. . 'C, values for the chosen mutation stratégg calculated as
Zaharie [4] was one among the few who started analyzmgfoIIOWS

the possible effect of these control parameter valueBBn

and their critical values. The approach was both a theoretical

and empirical study on how the control parameter values are A

related with population variance ®E. An equation to Criz

measure the critical values of control parameters was derived.

The equation derived by Zaharie waF’p-2p/m + wherec, .;; is calculated from a success rule as the mean of

p?/m+1=0, whereF is the scaling factom is the population  C,. This is followed by many researchers for different

size, andp is the crossover rate. The value &nd P) that applications oDE [6].

satisfies this equation was considered critical values. The JADE [71[8][9] proposed by Jinggiao Zhang and

Tremendous efforts have been put by the researcher tozrthyr C. Sanderson in the year 2007, introduced a new

analyze the role of each of tHeE control parameters. mytation strategy based on the information obtained about

Presenting about them is not in the scope of this paper. the search progress direction. The valued aind C, are
Since the impact of the control parametihstationRate  generated newly for each generation with Cauchy and

(F) and CrossoverRate(C;) on the performance of the normal distribution. With the initial values of 0.5, the new

algorithm is very high, many control parameter adaptation yajyes at generations are computed as follows.
techniques has been put forwarded over the years. All of

= rand (0.5,0.3) ?3)
= uniform_rand (C; . 0.1) @)

them have been proved as effective and improving the , _— 1 _ ., 4+ c s Mean, (5;) ®)
performance of Differential Evolution algorithm in both - 1_e) o i g

: Her = el * g + ¢ = Mean, (5¢,) (6)
converge speed and solution accuracy, compared to the
classicaDE.

I . . . .. . .. where & (0.1}, is a constant.
The objective of this chapter is to present a brief insight (1)

about various adaptation strategies exist in literature. To S andS
increase the readability of the paper, the existing adaptationcrossover r;t

strategies of andG, are categorized in to four groups with modified DE were introduced which borrowed this concept
respect to the a_Igorithmic meth(_)dology followed by the [10]. In the year 2008, Wu Zhi-Feng proposed a new version
authors. The details of the categories [57] are of DE called AdaptDE[11]. The fitness values of the trial
vector and the target vector are used to find the valuds for
and C,. Also, the control parameter values for Ba1"
eneration is calculated by using their values Gif

represent the mean of successful values for
e and scaling factor, respectively. Many other

- Category 1. Classical Approach

The strategies in this category use mathematical equation
to update the values of the control parameters. This updatio
is done for every generation or at required time.
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generation. The fitness values of the trial vecfow) and
target vectorftav) are compared.

/* F andC, for i candidate aG+1" generation*/
If ((ftrv<ftav) and ¢1 <rand,) and ¢2<rand,))

'FI:_G = Fi_g

c. c

@)
@)

iG+1 . “TiG

Endif

If ((ftrv>ftav) and ¢1 >rand,) and ¢2>rand,)
Fger = rand,

Crigey = rondy

(©)
(10)

End if

where rand,, rand,, rand. andrand; are random numbers
within the range [0.1] andl andt2 are probabilities for
adjustingF andC,. The authors preferred a value of 0.1 for
both.

In 2009, RadhaThangaraj et al. introdu@ggDE [12]. In

fitness value then the control parameter valbesnd C, at
G" is taken for their@+1)" generation. Otherwise,

Fic+1 = uniform rand(0.1,1.0)
C: i+ = uniform_rand(0.0, 1.0)

an
(18)

In 2012, PengGuo et al. proposé&kIfDE-F [15]. In
SelfDE-F, a secondary population is created with the
individuals that were discarded during the selection process
of the DE algorithm. The adaptive method for finding
control parameter values for each generation was framed as
follows

wi* o o + (1 —w) srand,, ifCl

Figs1= (1 —w) = Fyogr ¢ +w; =rand;, ifC2 (19)
Fi otherwise
_ Crming + (CRmaxs— CRming) = wy  if€3
Crigea= C.. otherwisa (20)
LG =
_Lfirmesspy o[- Fitnessic)
Where,-,-l- =g fitness(E)

ACDE, the whole adaptation process is based on few simple

rules. Scaling factor for an individuiis defined as

Fooy = {P'; + rondys brand; + Grand g, if Fr < rond, (1)

F, otherwise

And Crossover rate is found using the rule,

Crr+ randy, ifPog < rand,
c,..=1{" _ (12)
G+1 Crg otherwise

€1 = fitness, (G + 1) < fitness; (7)) andrand, = T,
€2 = fitness;(G + 1) = fitness; (G )andrand, < T,
3 = fitmezs G + 1) = fitness, (G + Vlandrand, = 1,

Frestc = Scaling factor of the candidate with best fitness
value. CR_mayx and CR_mi, are the maximum and
minimum crossover rate of generati@ Thet,,1, are two
fixed values (Similar tgDE) andrand,, rand,andrand; are
uniform random numbers in the range (0,1).

In the same year, Ali W. Mohammed et al. proposBit

where,Grand, and Grand , refer to random numbers that are [16]. This paper introduces an alternative differential
Gaussian distributed which has mean and standard deviatiogvolution ADE) algorithm. INADE a new mutation scheme

of 0 and 1, respectively. Theand,.rand,,vand,; and
rand, are random numbers within the range [0,1]. The
F.. andFPzrepresent the probabilities for adjusti@gandF,
respectively.
The lADE [13] algorithm, introduced by Wenjing Jin et al.

in 2010 followed the following adaptation strategy:

e Initially, the values of andC, will be fixed as 0.6

and 0.1, respectively.
e Itis changed adaptively over the generations.

is proposed and control parameters are adapted using a
defined equation for botk and C,. Two values ofF are
defined, one for the local mutation scheme and the other one
for global mutation scheme. Keeping in mind the fact @at
must start with a small value and must extend to a larger
value as the generations increases, the authors framed an
equation taC, as follows,

(21)

.k
EE.‘.'J :

Cr = Chings + {CTR‘Y.I:?! - Crmcx:] =(1—
whereG is the current generation and

The mean fitness value of a generation is calculated. ToGENis the maximum number of generations.

find the F and C, values forG+1" generation, the mean
fitness value of previous generatic®"j is compared with
the mean fitness value @+1"generation, and

If Meanfitnesg,>Meanfitnesg.,) then

Figs1 = E g (13)

Criger = Crig 14
Else

Figy1=Fg+rand 01) = (Frax — Fmin) (15)

Criges = Crip +rand(0.1) = (C, . — Cr ) (16)

The authors also mentioned the optimum value<faf,
CrmaxandK as 0.1, 0.8, and 0.4 respectively.

Ali W. Mohammed et al. also propos&DE (Effective
Differential Evolution) [17]. A simple method for choosing
the values for the control parameters is used. The values for
C, andF are chosen empirically from the range of [0.5, 0.9]
and [0.2, 0.8], respectively. This range ensured that there
will sufficient exploitation and exploration during the search.

In 2013TLBSaDEwas introduced by SubhodipBiswas et
al. [18]. TLBSaDEborrows the basic concept frofaDE It
is based on concept of how learners gain knowledge in class

NasimulNoman, in [14], introduced an approach to use thefrom a teacher. The strategy for adapting control parameters
fitness value of the child and the average fitness value of theis used as follows: The value Bfis taken from a normal
population to update the control parameters values. It is donalistribution with mean and standard deviation of 0.5 and 0.3,
as follows, If fitness values of child is less than average respectively. The value @, similar toSaDE is taken from
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a normal distributiomN(C;,,0.1). The value fo€,,, (mean) is ZEPDE They have defined their own methods to identify

kept as 0.5 and the standard deviation is 0.1. the best possible mutation strategies for e algorithm.
SAMDE[19] was also introduced in the year 2013 by Xu The parameter adaptation is done as follows. The total

Wang et al. Th6&6AMDE:is similar toJADE. Scaling factor is region ofF andC, are divided into similar sized four areas.

found using Cauchy’s Distribution with meap p Then at each region the count of control parameter

F; =rande;(pr.0.1) (22) combinations are noted. If the offspring in each zone has a
Ue is initialized to 0.5 and then it is changed as, better fitness function value, then it is taken into account that
up =01 — ) = up + ¢ = mean, (5, (23) the control parameter combination which gave the best
where mean(S:) is the Lehmer mean fithess value is the elite one or can be called as Elite Control

Parameter CombinationEPC). Assume at theh™ the
Crossover rate is found from a normal distribution of weighted value of eadBPCis computed as follows,
mean |¢r and standard deviation 0.1.

—C=1 |

g A5 )
CR; = randn; {teg. 0.1) (24) w f,_r: _— he - Vhel (26)
g = {1 _ |'_',':] H-I.'_,Im + c?‘mem—n&{.gm:] (25) Yhee Enlz.nl.l.refllr;z—i.:l_ f|,1’§.g .:I
wheremean (Scr) is the arithmetic mean. Ra=t v oRe T

Rammohan Mallipeddi and Minho Lee in the same year whereNg, = 1.2, .. Nf e
proposedESMDE [20], an evolving surrogate (substitute)
model-based DE. In ESMDE based on the current Now the weighted average of control parameters ifhthe
population a surrogate model is created and this is used foregion is calculated as
selecting appropriate parameter setting so as to creating
better off springs during further stages of evolution. Similar  gs  _ Z-"ﬁeim( R J . (F“ J @
to other approaches, the mutation strategies are selected " “¥ie=s \ ¥ie Nie
according the concept of pooled values. HErdscaling and

factor) is selected randomly within the range of [0.5, 1.0] . _ E-‘*’E_g:m(wu )x (Cr“ 1 28)
which ensures that there will be adequate exploration b NE o=t \ VRe Nigh

alongside with exploitation. SimilarlyC, value is also

generated randomly from a range of [0,1]. Once the weighted average is calculated the control

Quizhen Lin et al. proposed an adaptive algorithm [21], in parameters for then'™ generation is calculated using a
which C; is found using a framed equation which ensures cauchy’s distribution with meaf? ,ancCx¢, and standard
that theC, value will be very large (approximately equal to deviation(0.55-0.3 *(1-G/Gmax)).

0.9) initially and as the generations increases the value Xijaowei Zhang and Sanyang Liu proposed APFDE [24]
decreases and will be stagnant in the range of 0.1 to 0.2. Thisn 2011, drawing inspiration from the theory of electro
ensures that the explorative steps taken are very large duringnagnetism_ They calculated the chafjefor candidate Xi

the initial phase of the algorithm to favour the global search. pased on its objective function value and the objective

As the generations goes the explorative steps will be reducedunction value of the best candidate in the current generation
and the search will be done near local. This ensured goodsing the equation given below

performance of the algorithm. THgcalingFactoris found

using a Cauchy's Distributions within the range of (0.5, 0.1). Q;=e? = fxi)-flXpose)

The value forF is selected from a set of successful values ' I (F (x)- £ (%pese))

collected for.

Miguel Leon et.al proposed a greedy adaptation of control Later, the equation was modified as shown below:-
parameters ofDE [22]. Here a greedy search will be _
performed in learning periods that are successive so as to 0 = £lri)—£ ()
favour continuous and dynamic adjustments of the control 1 e sed—F (Xpase)
parameterd= and C.. The whole procedure is as follows, ) ) ) ) )
initially the F value is set to 0.5 and two neighbours are WhereD is the problem dimension amtP is the population
defined in such a way that a differendgis added and  SiZe. The Mutant Vector generation in nornit can be
subtracted to the initiaF, i.e.,(F—dand F +d). The written as follows
initial Crossover rate is set to a Cauchy’s Distribution with
its centre at 0.5, ) and scale of 0.2. Two neighbours of Vi= Xy £ FUy — X)

C, are Cr—d, and Cr +d,. During the predetermined = -rt +F(X,— X, ) +FlX%, — X2)

learning period, every candidate and it's neighbouring = <t + F(Xpy — Xy —FlX — Xy) (31)
candidate will have a probability of 1/3 in order to get ) o ]

sufficient number of usages. At the end of the learning USing the above derivationB, is replaced by, andQus

(29)

(30)

period, the best will replace the worst. respectively. Taguchichi method along with 2-level
Qingin Fan and Xuefeng Yan proposed another adaptation@'thogonal Array is used to set the valu€Cof
method [23] to their self-adaptiBE strategy (named as Islam et al. [25] proposedDE_pBX that introduced

SDE) This is an algorithm with zoning evolution of control Current-to-g_bestmutation scheme and p-best crossover
parameters and adaptive mutation strategies, called a$cheme, along with schemes for updatthgndC; in each
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generation. The Scale Factor fBicandidater; is randomly To avoid inclusion of additional parameters in adapting
picked from a Cauchy distribution with location Parameter the required parameters, the idea of encoding the control
F. and scale parameter 0.1. The list of Rllvalues that parameters with the individual candidates in the population

generated better trial vectors are stored in & ggless Fim IS arose. This encoding let the control parameters also to

updated using the following equation evolve along with other parts of the candidates. At the
e In required stages thE and C, values are selected suitably

Fn = Fn* W + (EIEFm=:m|;mm,,|) *(1-W) @2 from the evolved values of them. Hence, these strategies

include efficient selection mechanism to consider the
Where W = 0.8+ 0.2+ random(0.1) . C is selected evolved values of andC, available at the parent candidates

randomly from a Gaussian distribution with me@g, and of mu_tation an(_JI crossover. The works similar to this strategy

Standard deviation 0.1. Th&,, value is updated in each are discussed in this chapter. _

generation in a similar way as that Bfaccording to the Mahamed G. H. Omran et al. introduced self-

equation given below adaptiveDE [27] in 2005. This algorithm uses the
e differential mutation mechanism to find the new value§ of

Crpm = Crm= Wy +(Exswmwmf =(1—-Wz) @33 and C,. Each individuai in the population is encoded with

where, W, = 0.9 + 0.1 = random (0.1). CrgyccesdS the set of F, andC,;, and these values are calculated as follows
all successfuC, values.
F() = E,(£) + N(0.1) = (E2 () — Fa () (36)

Yet another scheme for adaptiRgand C, was proposed
in [26], in which the candidates are put into two sorted lists - whereiy, i, andiz are random and distinct candidates chosen
the first one in descending order based on objectivewith a uniform distributiorJ(,...,NP)
functions and the second one in ascending order based on Another self adaptiveDE named SADE_ALM (Self
each candidate’s distance from the best candidate. Then thédaptive Differential Evolution with Augmented Lagrange
sum of absolute differences between these two ranks forMultiplier) [28][29] was proposed by C. Thitithamrongchai
each candidate is calculated, which is called as Indicator ofand B. Eua-Arporn in 2006. In tt®ADE_ALMtheF andC,
Optimization StatelQS). Also 10Sy, is set to 0 andiOSyax are encoded in the first two positions of the candidates. The

is calculated using the following equation F andC; values are initialized as follows
e NP is even By = Fow * oo * (B — Btow (37)
105max = ) tyewstepwe—ny (34) CR; = CRyjpw + o * (CH;py — OBy g ) (38)
———— NPis odd

Then theF andC, values are undergoing the mutation and

ThenlOSis normalized and this normalized value is used crossover operations. The mutation process is done as
to decide whether to explore or exploit. If exploration is to follows:
be done,Fy, is increased by 1/f0of AF and CRy1 is
decreased by 1/YACR respectively; otherwiseFy; is F,_-' =Fa+ Fp# {F._-ﬂ - F._-_r:} (39)
decreased by 1/f0of 4F andCR,, is increased by 1/10 CR' = CR.o+ €R.* (CR. s — CR: .2} (40)
ACR respectively4F and4CR are computed based ¢@S, : ) '

0Sax @NdIOSyin based on the equation wherery 7, and » are non-equal indices between 1 Al

105105 The crossover process is done as follows:
ﬁ,fﬂ?" explovation step
AF.ACR =4 Jos  mn 35 ) .
M,fur exploi tation step = El= {El » if ¥py; < CRy07j = jirgng 1)
I 05 pm =1 Oy L F otherwise
| . e
The mathematical equations used in the studies reporteccr!! = {CR! » 9Py < CRiOT) = Jrand (42)
; CR; otherwise

in this section are derived / defined by the authors, based on
their understanding about the control parameters and their
influences inDE algorithm. It is worth noting that such Finally, at required points, the andC, values are chosen
equations also adds few new terms to it, which are again toffom the best candidate of the population. Amin Nobakhti
be studied further to set proper value for them. This and Hong Wang,in 2006, proposed an adapite{30][31]
indirectly increases the complexity of parameter adaptations.With control parameter adaptation, mainly for the mutation
To avoid this there exist many parameter adaptationrate €). Each population vector is assigned with their own
strategies foDE control parameters in literature. They allow Value of F, which is initialized by a uniform distribution
the values of control parameters also to evolve, as similar tobounded by#; andF,,.During the process of evolution, once
parameters of the candidates, to be better for next generatiothe trial vector has been created and is found to be better
Those adaptation strategies encode the control parameters ithan the target, the trial vector will inherit the valueFof

the parametric representation of the candidates in thefrom the target. After every fixek" generations, the entire
population. The next section discusses the strategies withpopulation is analyzed for accumulated improvements and is
such encoding scheme. sorted accordingly. From this sorted population, a threshold

. value is identified which represents the accumulated
B. Control Parameter Encoding
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improvements of at least half the population. For all the control parameters of the current generati@y. ¢ and C,
individuals, whoseF; value is greater than this threshcfd,  are updated as follows
values are retained and for others nénvalues are
randomly generated

In the year 2007, J.Brest et al. put forwarded jbig Fig41 = Fge™@n (47)
algorithm [27][32][33][34][35]. In JDE also, the control C.: = C,;.gtNOL) (48)
parameters andC, are encoded with the population along PREHL T ETLE
with its genes. These values are adapted during every
generation according to two other fixed valugsdnd t,'.
The value ofF in the(G+1)" generation will be same as the
value inG" generation if a randomly created number within
the range (0,1) is greater thanelseF value is found as

here,t represents the learning period which i1/

In 2008, Omar S. Soliman and Lam T. Bui came up with a
self-adaptive strategy to use Cauchy distribution [41]. The
control parameters for each individual are encoded along
with them. For an individual scaling factor is found by

Figyy = Rt rand = (Fyg) (43)
Suffix I' and U' stands for lower and upper valuesFof Fiops = {C_{u’ai- cva). ifrand, E_nl (49)
Similarly, for C, if ‘15’ is less than randomly generated value ' ":{.ﬂs &; r+1} otherwise

then the previous generation value is retained, else
where, ;.4 = &+ §, = rand;and 5;and &, are the lower
CR; g,y = rand(0,1) (44) and upper limit of possible values for scaling factor.
Crossover rate is found as follows:

An enhanced versiorjDE, named jDE-2 [36], was )
introduced later with an added concept for keeping the - _ [mmi! Jifrand, =1
bound-constraints problem feasible. But the parameter =+t Crip otherwise
control part was kept same as thajft.

Brest also introduced a different variant of the above ygnd, =[0,1], k = 0, 1,2,3,4 are uniform random numbers.

parameter adaptation, population size reduction mechanism

(50)

is also implemented. Th& and C; adaptation of the Grant Dick [42] in 2010 define®aNSDE(self-adaptive

proposed algorithm remain the same as that of its previousyeighbourhood search differential evolution) which uses the
version. Similar adaptation mechanism férand G, is neighbourhood search which is one of the core concepts of
followed by Zhong-bo Hu et al. [38]. Evolutionary Computing. Control Parameters are added to

Also in the same year Chukiat Worasucheep, proposedeach individual. It works as follows, the first step is to
WDE [39]. In wDE, a separate strategy adaptation and jnjtialise the CR, value to 0.5 .Then similar to above it is
parameter adaptation is introduced. In parameter adaptationgound during each generation using a normal distribution

each individual i* is extended with correspondir@; andF; with mean valueR,, and standard deviation 0.1 for each of
which are uniformly initialised within the range [0,1] and the individual.F value is found as follows,

[0,2], respectively, at the beginning. A fixed number of
generation period (learning period) is considered and N (0.5.0.3).if U.(0.1) < £,
adaptation of these control parameters happen after thesé& = [ r:- (0.0,1.0) 'ﬂ Fherwise
fixed number of generations. Also two variallgl and nfi P ’
are introduced which indicates the number of success an
failure for a particular individual for entering into the next
generation with respect to the learning period. The
probability of passRPi) for a particular individual and the
average of pass probabilitieBRavg are calculated. Now,
for all those individuals, whose probability of pass is below
the probability pass average, the control parameters ar
updated as follows

(51)

QNhereUg (0.1} is a uniform random number in range [0,1).

The SaFDE [43] proposed by Teng NgaSing et al.
encodes scale factor inside each candidate. Initial population
hasF randomly initialized for each candidate. During trial
vector generation, if the random number generated is less
Shan cross over probability, trial vector's scale factor is also
updated in the same way as the other genes using the

. differential mutation as given below
E  =unifrom_rand(0,2) (45)

CR; = uniform_rand(0.1) (46) TrialVector.F = X1.F 4oz » (X2.F — X3.F)  (52)
AlesZzamuda and BorkoBoskovic in 2007 came up

witDEwSAcc [40], Differential Evolution With Self- Here Gipe is a randomly chosen value between 0 and 1. If

adaptation and Cooperative Co-evolutionDIEwSAccalso, the calculated value &f goes beyond the limits [0,1], then it

as similar to other works in this category, all the individuals is randomly re-initialized. Authors have self adapted dnly

in the population are extended to include their own control andCr and they are selected randomly from [0.1, 1.0].

parametersF; and C,. The control parameter value of the In the year 2013, Ming Yang et al. proposed a variation of

next generation(G+1) depends on the values of these JDE called PA-DE [44] that does a population adaptation
along with adaptation df andC,. F andC, is encoded with
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each individual.F; and C,; are updated in each generation
based on two thresholdd andT2 as follows: The EPSDE proposed by R Mallipeddi et al used the
concept of pooled values [48]. It consists of a pool of

E _ IF +rn=fRLp=T1 (53) mutation strategies and pools for corresponding parameters

LE+L T | F g otherwise for those strategies. THe and C, values are taken from a

CR. _[ Tty < T2 (54) pool which has values within the range [0.1, 0.9] and [0.4,
L+l T O g, otherwise 0.9], respectively. Every step changes the values by 0.1. In

wherery, I, I'g, andrc;are random numbers; is set to EPSDE each individual in the population is associated with
0.1 andF, is set to 0.9T1 andT2 were set to 0.1. a random mutation strategy taken from the pool. Along with
The above discussed adaptation strategidsaiidC, are ~ the matched mutation strategy, the corresponéirgndC,
proven to be working better than classical adaptation valu_es are _also chosen. These values and strategies will
strategies. They add only little complexity to the algorithm, Survive until the target vector performs poorer when
because it does the changes only in the parametriccompared with the trial vector. Once this condition is failed,

representation. a new mutation strategy will be associated with the target
N _ vector. These strategies could be selected from the pool or
C. Deriving from History or Pool from the successful combination stored before.

It is also interesting that the future values for the control ~ The CoDE[49] algorithm was also introduced in 2011 by
parameters of any algorithm is decided based on theY Wang et al. The parameter values are predefined here.
performance of the algorithm with the past values of the Based on the carefully selected three mutation strategies, the
control parameters. There are number of research workgarameter values will be changed. During each generation a
reported irDE literature too, in this direction. As well as, all set of three trial vectors are generated. On comparison with
the possible values for each of the control parameters ardhe target vector, the best of the four (3 trial and 1 target)
pooled and the algorithm is allowed to choose the requiredwill go to the next generation. Three combinations are made
values based on the present performance of the algorithmfor F andC; based on the mutation strategies. It will follow
All such works are considered for discussion in this section. either of the three defined af<1.0, C=0.1], [F=1.0, C

This section is to discuss the adaptation strategies=0.9] and F =0.8,Cr=0.2].
deriving values for the control parameter from the Wenyin Gong et al. presented a variantJ8DE, called
performance history of the algorithm or from corresponding Re~JADE in [50], that repair<, based on Success history of
pool of values. C; values.C; and F; are selected from Normal Distribution

The adaptiveDE proposed by Hui-rongetal [45], used N (..0.1)and Cauchy Distributiot (u . 0.1)respectively
previous learning experiences to choose the values for thdor i" candidate. Ther€R is repaired as per the equation
control parameters. The valuesfoindC, are found at each ~ given below
generation. A random number) with uniform distribution

is generated and n=" (59)
Ifr,<0.2 where m is the number of genes that were copied from
Ei: = R+ rand = (F, — F)(42) mutant vector an® is the problem dimension. If trial vector
CRigey = CRy + wand = (CR, — CRy) (55) U; is better than target vectdy, thenCr; andF; are added to
Else lists of successful Crossover and Mutation Parameggs (
Fipu = F g(44) andS:). Theng - is updated as the arithmetic mean of all the
CRiges = CHip (56) C, values in&,. Similarly u is updated as the Lehmer mean
End if of all theF values inS-.

Comparing to other three categories, this category covers
In SHADEproposed by Ryoji Tanabe and Alex Fukunaga very less works in the literature. This is because of the
[46], the history information about the successful parametercomplexity involved in remembering required information
values are maintained to guiE search. It has a memory from sufficient past time and choosing the values to be
to storeH values ofF andC,. Then the values fdf; andC;; achieved in the pool.
are selected form the range [1,H] with a random irrdex . . :
Another success history based model knowrD&SPA D. Parameter Adaptation with Added Logic
was proposed by Noor Awad et al, in 2015 [47]. Along with ~ Another commonly used strategy foDE control
F and C, the NP value also adapted iDESPA Every parameter adaptation is to insert an additional component (or
individual i in the population is assigned with its own @algorithm or logic) to the structure dDE. This added
greediness factgs. A 2-D memory structure stored with the component will monitorDE's performance in solving the
mean values of (ur)and Cr (ug) is used for control  given problem and suitably adapt the reql_ur_ed parameters.
parameter adaptation. The size of memfy i6 set as half The researchers have used some other existing algorithm as
of NP. A random index; € (0,1) is chosen and is used for the component or have designed their own algorithm. The

find F andC,. former one is termed in other words as hybridizatioBEf
with other algorithms.
E = randc,(4F,:, 0.1) 57) An algorithm hybri_dizing_DE anq Fuzzy ngic, named as
Cpy = mnd:.rl:-{ur;’,.,..-,ﬂ.lj (58) FADE (Fuzzy Adaptive Differential Evolution) [51], was

proposed by Lampinen and Liu in the year 200EADE, a
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distribution and later th&P will alter the values based on
the predetermined fitness value. Also a counter is kept for

fuzzy logic controller was used to find the values Foand

C, for the candidaté (F; andC;). The FLC-MODE (Fuzzy

Logic Controlled Multi-objective Differential Evolution) [52] the number of times the alteration has performed.

was introduced by FengXue et al in the year 2005, as similar The adaptation strategies discussed in this section have

to FADE. used additional components to tune the values for the control
An lterative Function System Based Adaptid& was parameters.

proposed by Ya-Liang Li, et. al. [53]. In this algorithm the

control parameters are adapted using an iterative function

system. TheF;s and CR values are adapted using the

following equations

V. FAND CR ADAPTATION STRATEGIES- INSIGHT

The research works focusing on control parameter
adaptation oDE algorithm are grouped in to four categories
and presented in Table 1. Due to large number of reports

Fioos = {““Ff-: +::1 _xﬁ“’ iff () ‘;f':x_%:} (60) available in the literature, this paper aimed to consider the
Fa Fip TR orhenvise research works for adapting the paramefeasdC,.
I N B T iff':‘“i::l = flxic) 61
CRizes = [34_ Fy +(1—o)w otherwise (61) TABLE |

LIST OF PAPERS UNDER EACH CATEGORY

Here, o, o, oczand o are uniformly generated within the

- - Categories
range(0,1). The parameter, is setto 0.5 ang, is setto 1. | I M v
Patricia Ochoa et.al proposdtDE (Fuzzy Differential Classical Encoding of | Deriving |With Added

Evolution), which uses concept of fuzzy system for Approaches | Parameters from Logic
parameter adaptation [54]. The fuzzy system adddoBo History/Pool

will give the best possible values for the control parameters.igy re1 177 [27],[28],129], [[45],[46][47]|[51],[52]
The fuzzy system has 3 meml_aershlp funct|0lﬁts|1( FN, [8LI91,[10],  [301,[31],[32], [[48].,[49],[50]|[53],[54],
and FNg) to mean the low, medium and high values of the 1],[12],[13], |[33],[34],[35] [55],[56]

parameters. It also used 3 fuzzy rules to update the values g
the control parameters.
In 2009, M.G. Epitropakis et al. introduced an

14],[15],[16],
[17],[18],[19] [
20],[21],[22],[

[36],[37],[38].[3
9],[40],[41],[42],
[43],[44].

evolutionary approach towards self-adaptibg, known as
ESADE[55]. In ESADE a unique strategy was followed in
finding the values of the control parameters. It usesi&o
algorithms, one is to find the mutation rakg,(and the other
for optimizing the given objective function. In the fiBE
algorithm to findF value, a one-dimensional population is
initialized as follows,

23],[24],[25],
[26].

The research works in Category | use author defined
equations to calculate the values for the parameters. Many
authors also have considered using statistical distribution to
select the values for the control parameters. In category I,
the algorithms which encode the control parameters along
with other parameters of the candidates are considered.
. Evolution of those parameters is done by norD&lprocess
where Fg corresponds to possible valuesFofRather than or by some other newly added algorithm. Recording the

initializing it with values in the range (0.1, 1.0 ], based on nsiory of behaviour ofDE in previous generations and
their study they have initialized the population with values qeriving necessary information from them to decide the
from a normal distribution with mean 0.5 and standard o,qyo1 parameter values for the forthcoming generations is

devia_tion 0.3. Once, the population has been initia_tlized.in another strategy for parameter adaptation. Research works
the first DE, one generation of the second algorithm is using this strategy are grouped under this category Il.

performed. Here the fitness value of the best candidateFina”y’ in Category IV the works which consider to add

(f(Xgbes)) s taken and it is considered as the fitness value of _yqitional component t®E for parameter adaptation are
corresponding individual of the first algorithm. For adapting grouped.

C., a normal distribution with mean 0.6 and standard
deviation 0.1 is considered, and values are taken from this
normal distribution at every generation. ThusERSADE N )
the first algorithm gives the Scaling factor value and using  The critical parameters &fE algorithm areF, C; andNP.
this value the secon®E algorithm optimizes the given Selectmg suitable values for them_arg very important as well
objective function. as crumgl for successful ap_pllcatlon @E for any
Pravakar Roy et.al proposed Differential Evolution that is OPtimization problem. There exists no standard method for
Genetically Programmed [56] which ensures a seIf—adaptiveChOOS'ng values for these parameters. However, to alleviate
mechanism in theDE algorithm. Here, the initial  this many parameter adaptation strategies are proposed in the
preparations are made in such a way that the neédief literature. The existing adaptation strategies are .|dent|f|ed
null. The system finds out the best crossover rate as followsand are categorized in to four groups, and brief insight about
for each individual in the population &P, a C, value is each of the |.dent|f|ed strategies are prgsented in this Ppaper.
also associated with it and it is updated during the naturalThe categories of adaptation strategies presented in this
evolution process dBP. Initially it is taken from a Gaussian ~ Paper are strategies with classical approaches, strategies with

Xg =1{Fg!} (62)

VI. CONCLUSIONS
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encoding of parameters, strategies using history/pool and?21]
strategies adding new components.
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