Formulation and Quality Study of Mocaf Substitute Noodles with the Addition of Multigrain

Sri Budi Wahjuningsih (1), Mita Nurul Azkia (2), Zulhaq Dahri Siqhny (3), Lutfi Purwitasari (4), Ridha Indri Oktaviani (5), Novizar Nazir (6)
(1) Department of Agricultural Products Technology, Faculty of Agricultural Technology, Semarang University, Semarang, Indonesia
(2) Department of Agricultural Products Technology, Faculty of Agricultural Technology, Semarang University, Semarang, Indonesia
(3) Department of Agricultural Products Technology, Faculty of Agricultural Technology, Semarang University, Semarang, Indonesia
(4) Department of Agriculture, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia
(5) Planning and Evaluation Subdivision, Semarang Agriculture Office, Semarang, Indonesia
(6) Faculty of Agricultural Technology, Universitas Andalas, Limau Manis, Padang, Indonesia
Fulltext View | Download
How to cite (IJASEIT) :
Wahjuningsih, Sri Budi, et al. “Formulation and Quality Study of Mocaf Substitute Noodles With the Addition of Multigrain”. International Journal on Advanced Science, Engineering and Information Technology, vol. 14, no. 3, June 2024, pp. 967-75, doi:10.18517/ijaseit.14.3.19599.
This study aimed to determine the optimum formula and the characteristics of mocaf and multigrain (sorghum, kidney beans, mung beans) based noodle products. A design expert determined the optimum formula for the noodles. The noodles were tested for their gelatinization profile and tensile elongation profiles, protein content, and sensory evaluation using descriptive and preference tests to determine the optimum formula. The optimum formula was then compared to the noodle with the highest protein content for its nutrient, color, cooking properties, energy, fiber, and mineral content. The different formulas of multigrain noodles significantly affected the gelatinization and tensile elongation profiles. The higher content of mung beans and kidney beans increased the protein content. Multigrain noodles were accepted by consumers. The optimum formula for the multigrain noodle was 0% sorghum, 6.14% kidney beans, and 8.86% mung beans. Noodles with the highest protein content contained carbohydrates (83-84%), protein (7-8%), moisture content (6-8%), fat (0.3-0.5%), and ash (1-1.2%). The total energy of the noodles was about 365-372 Kcal/100g, while the energy from fat was about 2.75-4.46 Kcal/100g. These noodles contained high dietary fiber, consisting of 1.33-4.09% of soluble dietary fiber and 7.1-9.78% of insoluble dietary fiber. They had color and cooking properties comparable to other noodles that existed. The major minerals found in the noodles were potassium and sodium, followed by magnesium, calcium, iron, and zinc, respectively.

F. Rozi et al., “Indonesian market demand patterns for food commodity sources of carbohydrates in facing the global food crisis,” Heliyon, vol. 9, no. 6, p. e16809, Jun. 2023, doi:10.1016/j.heliyon.2023.e16809.

F. C. Agustia, Y. P. Subardjo, and G. R. Ramadhan, “Development of Mocaf-Wheat Noodle Product with the Addition of Catfish and Egg-White Flours as an Alternative for High-Animal-Protein Noodles,” J. Apl. Teknol. Pang., vol. 8, no. 2, May 2019, doi: 10.17728/jatp.2714.

A. Sae-Eaw, S. Wongsaichia, D. Giacalone, P. Naruetharadhol, and C. Ketkaew, “Conceptualizing a Gluten-Free Instant Noodle Prototype Using Environmental Sustainability Aspects: A Cross-National Qualitative Study on Thai and Danish Consumers,” Foods, vol. 11, no. 16, p. 2437, Aug. 2022, doi: 10.3390/foods11162437.

M. Lei et al., “Effects of insoluble dietary fiber from wheat bran on noodle quality,” Grain & Oil Science and Technology, vol. 4, no. 1, pp. 1–9, Mar. 2021, doi: 10.1016/j.gaost.2020.11.002.

L.-T. Tong, “Gluten-free noodles,” in Asian Noodle Manufacturing, Elsevier, 2020, pp. 125–149. doi: 10.1016/B978-0-12-812873-2.00007-8.

M. N. Azkia, S. B. Wahjuningsih, and C. H. Wibowo, “The nutritional and functional properties of noodles prepared from sorghum, mung bean and sago flours,” Food Res., vol. 5, no. S2, pp. 65–69, Jun. 2021, doi: 10.26656/fr.2017.5(S2).002.

S. B. Wahjuningsih, S. Sudjatinah, M. N. Azkia, and D. Anggraeni, “The Study of Sorghum (Sorghum bicolor L.), Mung Bean (Vigna radiata) and Sago (Metroxylon sagu) Noodles: Formulation and Physical Characterization,” Curr Res Nutr Food Sci, vol. 8, no. 1, pp. 217–225, Apr. 2020, doi: 10.12944/crnfsj.8.1.20.

S. Wahjuningsih, H. Haslina, and M. Marsono, “Hypolipidaemic Effects of High Resistant Starch Sago and Red Bean Flour- based Analog Rice on Diabetic Rats,” Mater Sociomed, vol. 30, no. 4, p. 232, 2018, doi: 10.5455/msm.2018.30.232-239.

S. B. Wahjuningsih and S. Susanti, “Chemical, physical, and sensory characteristics of analog rice developed from the mocaf, arrowroof, and red bean flour,” IOP Conf. Ser.: Earth Environ. Sci., vol. 102, p. 012015, Jan. 2018, doi: 10.1088/1755-1315/102/1/012015.

S. B. Wahjuningsih, M. N. Azkia, and R. W. Kusumaningtyas, “Physicochemical, functional and sensory properties of wheat noodles substitutedby sorghum and mung bean flours,” Food Res., vol. 6, no. 5, pp. 84–90, Sep. 2022, doi: 10.26656/fr.2017.6(5).604.

Asmoro, Novian Wely, “Karakteristik dan Sifat Tepung Singkong Termodifikasi (Mocaf) dan Manfaatnya pada Produk Pangan,” Journal of Food and Agricultural Product, vol. 1, no. 1, pp. 34–43, 2021.

J. Xu, W. Wang, and Y. Zhao, “Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits,” Foods, vol. 10, no. 8, p. 1921, Aug. 2021, doi: 10.3390/foods10081921.

M. M. Tasie and B. G. Gebreyes, “Characterization of Nutritional, Antinutritional, and Mineral Contents of Thirty-Five Sorghum Varieties Grown in Ethiopia,” International Journal of Food Science, vol. 2020, pp. 1–11, Mar. 2020, doi: 10.1155/2020/8243617.

A. Mizawati, “The influence of giving Mung beans essence on postpartum mothers with breast milk production in Bengkulu City in 2018,” OGIJ, vol. 13, no. 3, pp. 151–155, May 2022, doi:10.15406/ogij.2022.13.00641.

R. Handayani and S. Yulaikah, “Relationship of Additional Nutritional Consumption Of Green Beans (Vigna Radiata) With Breast Milk Production.,”, vol. 5, no. 1, p. 50, Feb. 2021, doi:10.25077/jom.5.1.50-59.2020.

L. Kan et al., “Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars,” Food and Chemical Toxicology, vol. 108, pp. 467–477, Oct. 2017, doi: 10.1016/j.fct.2016.09.007.

Wahjuningsih, Sri Budi and Kunarto, Bambang, “Pembuatan Tepung Mokal Dengan Penambahan Biang Fermentasi Alami Untuk Beras Analog,” Jurnal Litbang Provinsi Jawa Tengah, vol. 11, no. 2, pp. 221–230, 2013.

AOAC, Official method of analysis, 13th ed. Association of Official Analytical Chemists, 2000.

S. B. Wahjuningsih et al., “Formulation, Nutritional and Sensory Evaluation of Mocaf (Modified Cassava Flour) Noodles with Latoh (Caulerpa lentillifera) Addition,” Curr Res Nutr Food Sci, vol. 11, no. 3, pp. 1008–1021, Dec. 2023, doi: 10.12944/crnfsj.11.3.08.

W. Y. Koh, P. Matanjun, X. X. Lim, and R. Kobun, “Sensory, Physicochemical, and Cooking Qualities of Instant Noodles Incorporated with Red Seaweed (Eucheuma denticulatum),” Foods, vol. 11, no. 17, p. 2669, Sep. 2022, doi: 10.3390/foods11172669.

N. G. Asp, C. G. Johansson, H. Hallmer, and M. Siljestroem, “Rapid enzymic assay of insoluble and soluble dietary fiber,” J. Agric. Food Chem., vol. 31, no. 3, pp. 476–482, May 1983, doi:10.1021/jf00117a003.

A. N. Ngigi and B. M. Muraguri, “ICP-OES determination of essential and non-essential elements in Moringa oleifera, Salvia hispanica and Linum usitatissimum,” Scientific African, vol. 6, p. e00165, Nov. 2019, doi: 10.1016/j.sciaf.2019.e00165.

M. D. Patty, E. S. Murtini, Universitas Brawijaya, W. D. R. Putri, and Universitas Brawijaya, “Physicochemical Characteristics of Starch Noodles Based on Sorghum Flour (Sorghum bicolor L. Moench) and Sago Flour (Metroxylon Sp),” JPA, vol. 11, no. 3, pp. 147–157, Jul. 2023, doi: 10.21776/ub.jpa.2023.011.03.5.

G. Hacisalihoglu, P. R. Armstrong, P. T. D. Mendoza, and B. W. Seabourn, “Compositional analysis in sorghum (Sorghum bicolor) NIR spectral techniques based on mean spectra from single seeds,” Front. Plant Sci., vol. 13, p. 995328, Oct. 2022, doi:10.3389/fpls.2022.995328.

A. Sarker, S. Chakraborty, and M. Roy, “Dark red kidney bean (Phaseolus vulgaris L.) protein hydrolysates inhibit the growth of oxidizing substances in plain yogurt,” Journal of Agriculture and Food Research, vol. 2, p. 100062, Dec. 2020, doi:10.1016/j.jafr.2020.100062.

S. H. Zafar, M. Umair, and M. Akhtar, “Nutritional evaluation, proximate and chemical composition of mungbean varieties/cultivars pertaining to food quality characterization,” Food Chemistry Advances, vol. 2, p. 100160, Oct. 2023, doi: 10.1016/j.focha.2022.100160.

F. Xu, N. M. Dube, Han, R. Zhao, Y. Wang, and J. Chen, “The effect of Zimbabwean tannin-free sorghum flour substitution on fine dried noodles quality characteristics,” Journal of Cereal Science, vol. 102, p. 103320, Nov. 2021, doi: 10.1016/j.jcs.2021.103320.

L. Wang et al., “Studies on Quality of Potato Flour Blends with Rice Flour for Making Extruded Noodles,” Cereal Chem, vol. 93, no. 6, pp. 593–598, Nov. 2016, doi: 10.1094/CCHEM-05-16-0147-R.

E. K. Parassih, E. Y. Purwani, and W. El Kiyat, “Optimization of cassava dried noodle using hydrocolloid and protein isolates: a tropical noodle,” Nov. 2020, doi: 10.17170/kobra-202010131943.

E. Lemmens, J. Waterschoot, E. Smolders, and J. A. Delcour, “Impact of Mineral Ions and Their Concentrations on Pasting and Gelation of Potato, Rice, and Maize Starches and Blends Thereof,” Starch Stärke, vol. 73, no. 1–2, p. 2000110, Jan. 2021, doi: 10.1002/star.202000110.

D. Stoin, L. I. Petrovich, B. Velciov, T. Trasca, A. Rivis, and C. Jianu, “Red kidney bean and rice flours: potential ingredients in the production of gluten-free bread with functional quality,” Journal of Agroalimentary Processes and Technologies, 2019.

K. Tao, C. Li, W. Yu, R. G. Gilbert, and E. Li, “How amylose molecular fine structure of rice starch affects functional properties,” Carbohydrate Polymers, vol. 204, pp. 24–31, Jan. 2019, doi:10.1016/j.carbpol.2018.09.078.

M. N. Soe Htet, H. Wang, L. Tian, V. Yadav, H. A. Samoon, and B. Feng, “Integrated Starches and Physicochemical Characterization of Sorghum Cultivars for an Efficient and Sustainable Intercropping Model,” Plants, vol. 11, no. 12, p. 1574, Jun. 2022, doi:10.3390/plants11121574.

S. M. Chisenga, T. S. Workneh, G. Bultosa, and M. Laing, “Characterization of physicochemical properties of starches from improved cassava varieties grown in Zambia,” AIMS Agriculture and Food, vol. 4, no. 4.

P. Wei et al., “Effects of composition, thermal, and theological properties of rice raw material on rice noodle quality,” Front. Nutr., vol. 9, p. 1003657, Sep. 2022, doi: 10.3389/fnut.2022.1003657.

M. Niu, G. G. Hou, L. Wang, and Z. Chen, “Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product,” Journal of Cereal Science, vol. 60, no. 2, pp. 382–388, Sep. 2014, doi: 10.1016/j.jcs.2014.05.007.

I. A. Wani, S. N. Andrabi, D. S. Sogi, and I. Hassan, “Comparative study of physicochemical and functional properties of flours from kidney bean ( PHASEOLUS VULGARIS L.) and green gram ( VIGNA RADIATA L.) cultivars grown in INDIAN temperate climate,” Legume Science, vol. 2, no. 1, p. e11, Mar. 2020, doi: 10.1002/leg3.11.

Miftakhussolikhah et al., “Cooking Characterization of Arrowroot (Maranta arundinaceae) Noodle in Various Arenga Starch Substitution,” vol. 15, no. 2, pp. 107–206, 2016.

H. Herawati, E. Kamsiati, and S. Sunarmani, “Formulation of Food Ingredients (Peanut Flour, Egg Yolks, Egg Whites, and Guar Gum) to the Characteristics of Gluten-Free Noodles,” IJTech, vol. 12, no. 3, p. 602, Jul. 2021, doi: 10.14716/ijtech.v12i3.4139.

A. B. Puspitasari, G. J. Manuhara, D. L. N. Fibri, and D. R. A. Muhammad, “Evaluating Arrowroot Starch Modification and Application in Wet Noodles,” JELS, vol. 12, no. 1, pp. 1–8, Feb. 2022, doi: 10.21776/ub.jels.2022.012.01.01.

F. Violalita, Evawati, S. Syahrul, H. F. Yanti, and K. Fahmy, “Characteristics of Gluten-Free Wet Noodles Substituted with Soy Flour,” IOP Conf. Ser.: Earth Environ. Sci., vol. 515, no. 1, p. 012047, Jun. 2020, doi: 10.1088/1755-1315/515/1/012047.

S. Punia, S. B. Dhull, K. S. Sandhu, M. Kaur, and S. S. Purewal, “Kidney bean (PHASEOLUS VULGARIS) starch: A review,” Legume Science, vol. 2, no. 3, p. e52, Sep. 2020, doi: 10.1002/leg3.52.

R. Chang, S. Liu, L. Zhu, and C. Zhou, “Morphological Structure, Physicochemical Properties Analysis and Application in Processing Vermicelli of the Kidney Bean Starch Grown in Qianjiang, China,” 2018.

A. G. Mezgebe, J. R. N. Taylor, and H. L. De Kock, “Influence of Waxy (High Amylopectin) and High Protein Digestibility Traits in Sorghum on Injera Sourdough-Type Flatbread Sensory Characteristics,” Foods, vol. 9, no. 12, p. 1749, Nov. 2020, doi:10.3390/foods9121749.

H. N. Jang, T. R. Kumayas, and A. Romulo, “Physicochemical and sensory evaluation of shirataki noodles prepared from porang and tapioca flours,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1169, no. 1, p. 012101, Apr. 2023, doi: 10.1088/1755-1315/1169/1/012101.

H. Davis et al., “Phenotypic Diversity of Colored Phytochemicals in Sorghum Accessions With Various Pericarp Pigments,” in Polyphenols in Plants, Elsevier, 2019, pp. 123–131. doi:10.1016/B978-0-12-813768-0.00008-6.

P.-H. Huang, Y.-T. Cheng, Y.-J. Chan, W.-C. Lu, and P.-H. Li, “Effect of Heat Treatment on Nutritional and Chromatic Properties of Mung Bean (Vigna radiata L.),” Agronomy, vol. 12, no. 6, p. 1365, Jun. 2022, doi: 10.3390/agronomy12061365.

I. E. Mbaeyi-Nwaoha, C. G. Mgbemere, and N. C. Okoronkwo, “Quality evaluation of formulated instant noodles from wheat, rice (Oryza sativa) and mushroom (Agaricus bisporus) flour blends,” Toros University JFNG, vol. 1, no. 1, pp. 55–76, Dec. 2022, doi:10.58625/jfng-1852.

H. Tan, T. Tan, and A. M. Easa, “The use of selected hydrocolloids to enhance cooking quality and hardness of zero‐salt noodles,” Int J of Food Sci Tech, vol. 53, no. 7, pp. 1603–1610, Jul. 2018, doi:10.1111/ijfs.13742.

Z. Ahmad et al., “The Influence of Fenugreek Seed Powder Addition on the Nutritional, Antioxidant, and Sensorial Properties of Value-Added Noodles,” Journal of Food Quality, vol. 2022, pp. 1–10, Sep. 2022, doi: 10.1155/2022/4940343.

S. Sumardiono, B. Jos, M. F. Z. Antoni, Y. Nadila, and N. A. Handayani, “Physicochemical properties of novel artificial rice produced from sago, arrowroot, and mung bean flour using hot extrusion technology,” Heliyon, vol. 8, no. 2, p. e08969, Feb. 2022, doi: 10.1016/j.heliyon.2022.e08969.

X. Ning et al., “Evaluation of passion fruit mesocarp flour on the paste, dough, and quality characteristics of dried noodles,” Food Science & Nutrition, vol. 10, no. 5, pp. 1657–1666, May 2022, doi:10.1002/fsn3.2788.

Y. Sahasakul et al., “Nutritional Compositions, Phenolic Contents, and Antioxidant Potentials of Ten Original Lineage Beans in Thailand,” Foods, vol. 11, no. 14, p. 2062, Jul. 2022, doi: 10.3390/foods11142062.

P. Pontieri et al., “Chemical Composition, Fatty Acid and Mineral Content of Food-Grade White, Red and Black Sorghum Varieties Grown in the Mediterranean Environment,” Foods, vol. 11, no. 3, p. 436, Feb. 2022, doi: 10.3390/foods11030436.

N. F. Sadek, R. S. Hamidah, and I. A. Murwani, “The nutritional content, omega fatty acids, and amino acids profiles of sorghum-moringa substituted tapioca noodles,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1169, no. 1, p. 012097, Apr. 2023, doi: 10.1088/1755-1315/1169/1/012097.

M. C. L. Lanorio, B. R. A. Lalap, P. A. Gonzales, M. C. P. Maneja, and A. B. Castaneda, “Proximate Composition, Mineral Content, Cooking Quality, and Sensory Properties of Kalinga Mix and Moringa Noodles,” Open Science Journal, 2022.

S. Yalcin, “Quality characteristics, mineral contents and phenolic compounds of gluten free buckwheat noodles,” J Food Sci Technol, vol. 58, no. 7, pp. 2661–2669, Jul. 2021, doi: 10.1007/s13197-020-04772-0.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).