International Journal on Advanced Science, Engineering and Information Technology, Vol. 11 (2021) No. 4, pages: 1360-1365, DOI:10.18517/ijaseit.11.4.12172

A Proposed Classification Method in Menu Engineering Using the K-Nearest Neighbors Algorithm

Nina Setiyawati


In the culinary business, the menu is crucial; therefore, the performance of each menu needs to be known to maintain business continuity. Menu engineering is a special technique used to see the performance comparison of each menu item. This research proposes modeling menu engineering with a new approach in classifying menu items using the k-Nearest Neighbors (k-NN) algorithm using the sales training data of sales data in 2019 belonging to one of the micro, small and medium-sized enterprises in the culinary sub-sector in Salatiga, Indonesia. In the modeling, the popularity index (menu mix) and item contribution margin are used as variables, while the menu item class is used as the label attribute of the classification. Determination of the k value in the k-NN algorithm was done by the experimental method so that it produces the most optimal k based on the highest accuracy value, while the distance calculation on k-NN was done using euclidean distance. Evaluation of the model was done using 10-fold cross-validation with four performance evaluation criteria, namely weighted mean recall, weighted mean precision, accuracy, classification error. Based on the evaluation results, an accuracy of 96.84% was obtained; thus, the proposed model is considered to have given good and accurate results. This proposed model has been implemented in MSME sales data to classify menu items. The results of this classification were used as a basis for recommending menu engineering strategies to MSMEs.


Menu engineering; k-NN; classification; 10-fold cross-validation.

Viewed: 1350 times (since abstract online)

cite this paper     download