International Journal on Advanced Science, Engineering and Information Technology, Vol. 7 (2017) No. 4, pages: 1428-1433, DOI:10.18517/ijaseit.7.4.1662

Multimodal Approach to Emotion Recognition for Enhancing Human Machine Interaction - A Survey

Veni S, Thushara S

Abstract

Emotions are defined as a mental state that occurs instinctively rather than through voluntary effort. They are strong feelings triggered by experiencing the joy, hate, fear, love and is followed by some physiological changes. Emotions play a vital role in social interactions and facilitate the decision making and perception in human being. Emotions are conveyed through speech, facial expression or by physiological signals. There are 6 emotions which are treated as universal emotions: anger, happiness, sadness, disgust, surprise and fear. This paper projects different emotion recognition systems which aim at enhancing the Human-Machine interaction. The techniques and systems used in emotion detection may vary depending on the features inspected. This paper explores them in a descriptive and comparative manner. Further the various applications that adopt these systems to reduce the difficulties in implementing the models in real-time are contemplated. Also, A multimodal system with both speech and facial features is proposed for emotion recognition through which it is possible to obtain an enhanced accuracy compare with the existing systems.

Keywords:

emotion recognition; human-machine interaction; multimodal; speech features; facial features

Viewed: 36 times (since Sept 4, 2017)

cite this paper     download