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Abstract— Stroke is one of the leading causes of death worldwide, accounting for five of all deaths in Malaysia. It happens when an 

infarct from a blocked blood artery results in brain necrosis. Diagnoses involving brain diseases and injuries can be made with the help 

of CT scans, which create axial images by using exact X-ray measurements. These scans offer vital information on the anatomy and 

physiology of the brain. For an appropriate diagnosis, early infarct brain CT scan contrast can be improved. The two main types of 

histogram equalization (HE) approaches used for this purpose are Global Histogram Equalization (GHE) and Local Histogram 

Equalization (LHE), which is also referred to as adaptive histogram equalization (AHE). Locally, LHE uses the block overlapped 

method to improve photos. Additional sophisticated methods include Dualistic Sub Image Histogram Equalization (DSIHE), Contrast 

Limited Adaptive Histogram Equalization (CLAHE), Recursive Sub Image Histogram Equalization (RSIHE), Gamma Correction 

Adaptive Extreme Level Eliminating With Weighting Distribution (GCAELEWD), and Brightness Preserving Bi Histogram 

Equalization (BBHE). The contrast of brain images is greatly improved by these techniques. Nevertheless, a number of these methods 

have issues with blur, noise, and preserving local image brightness. According to our research, CLAHE and DSIHE are especially good 

to improve image contrast and yield better outcomes than other techniques. These methods lessen frequent problems, which makes 

them better suited to create precise and comprehensive brain images—an essential component of successful stroke diagnosis and 

treatment. 
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I. INTRODUCTION

The brain has 100 billion neurons and 100 trillion 

connections, which weighs around 1300 grams. The left and 

right sections each have distinct purposes. The central 

nervous system (CNS), which controls routine movements, 

comprises the brain and spinal column. Brain issues can 

impact these crucial processes. Knowing the basic structure of 

the brain—which is made up of the brain stem, cerebellum, 

and cerebrum [1]—is essential to comprehending its anatomy 

[3], as shown in Fig. 1.  

Fig. 1  Main components of brain [1] 

The parietal lobe is in charge of touch, visual orientation, 

speech, hearing, and vision, whereas the frontal lobe controls 

emotions, speech, and bodily movements. Besides, the 
cerebellum, which is situated underneath the cerebrum, 

regulates bodily processes such as balance and coordination. 

The brain stem, which is connected to the cerebellum and 

spinal cord, controls vital functions including breathing and 

heart rate. The brain stem also sends signals to the body. Fig. 

2 shows the brain images capture from MRI. 

Fig. 2  Brain images captured from MRI [2] 
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In addition, the term "meninges" refers to the membranes 

around the brain and spinal cord. The meninges are composed 

of three layers: the dura mater, arachnoid mater, and pia mater. 

These covers accomplish two main goals. They protect the 

central nervous system (CNS) from mechanical damage and 

serve as a supporting structure for the cerebral and cranial 

arteries, along with cerebro-spinal fluid. Two major 

meningeal disorders that are frequently associated with 

meningitis are intracranial haemorrhages and meningitis. Fig. 

3 depicts the relationships to the skull and brain. 

 
Fig. 3  The relationship between skull and brain [1] 

A. Stroke Type 

Internal brain damage is known as a stroke [11]. It indicates 

that there is a pause in or blockage in the blood supply. There 

are two primary causes of stroke. First, there is an abrupt 

stoppage or obstruction of the blood flow. It results in an 

irregular blood flow that does not nourish every portion of the 

brain. Second, there is an internal haemorrhage due to a 

damaged blood vessel. The internal bleeding will obstruct and 

impact the surrounding areas as well. Hemorrhagic is a type 

of stroke [4]. Our brains begin to malfunction when the blood 

supply is cut off and bursts, causing brain cells to die. We 

need to give this critical topic full attention. In addition, stroke 
is divided into other categories. The two most common types 

of strokes are hemorrhagic and ischemic, as seen in Fig. 4 and 

Fig. 5. 

 

 
Fig. 4  Hemorrhagic stroke [5] 

 

 
Fig. 5  Ischemic stroke [5],  [7] 

 

A blood vessel rupture or brain bleed may cause 

hemorrhagic stroke. Brain hemorrhages, also known as 

internal bleeding in the brain, can result from some diseases 

connected to blood vessels. Risk factors for hemorrhagic 

stroke are included in Table I. 

TABLE I  

RISK FACTORS AND PERCENTAGES [6],[7], [74] 

Effect Size Strength of Available Evidence 

Strong Moderate Weak 

 

Substantial 

(>100% 

Risk 

Modificati

on) 

 Family History 

 Race / Ethnicity 

 APOE Gene 

 Age 

 Hypertension 

 Alcohol 

Consumption 

 Oral Anti-

coagulation 

 Sympathomime

tic Drugs 

 

Modest 

(50-99% 

Risk 

Modificati

on) 

 Body Mass 

Index (BMI) 

 Anti-platelet 

Agents 

 Cholesterol 

Levels 

 Sleep Apnoea 

 Statin Use 

 Chronic Kidney 

Disease 

 Migraine 

Headache 

 Lifestyle / 

Activity 

Minimal 

(<50% 

Risk 

Modificati

on) 

 SSRI 

Antidepressants 

 1q22 Locus 

 COL4A1 Gene 

 COL4A2 Gene 

 Sex / Gender 

 

One less frequent cause of bleeding in the brain is rupture 

of an arteriovenous malformation (AVM). An AVM is a 

randomly distributed, weakly-walled network of blood 

vessels. The most prevalent kind of strokes are ischemic 

strokes. It occurs when the blood arteries in the brain is 
blocked or narrowed. This leads to ischemia. Blood vessels 

may become narrowed or clogged due to fatty deposits 

building up in the arteries. On the other hand, they might be 

caused by material or blood clots that travel through the blood 

vessels, generally from the heart. An ischemic stroke may 

result from debris, blood clots, or fat deposits being lodged in 

the brain's blood vessels. A blood clot commonly happens 

when plaque builds up in the arteries, a disease known as 

atherosclerosis. In addition to the carotid artery in the neck, it 

can occur in other arteries [5],[8]. Table II shows the 

characteristics of ischemic stroke and hemorrhagic stroke. 

TABLE II 

CHARACTERISTICS OF ISCHEMIC STROKE AND HEMORRHAGIC STROKE [6],[7] 

 Ischemic Stroke Hemorrhagic Stroke 

Pathogen 

 Blood flow is cut off, 

which leads to 

Ischemia 

 BLOCKAGE 

 The collection of blood in 

the brain leads to Ischemia 

& increased ICP 

 BLEEDING 

Causes 

 Thrombosis: 
A blood clot has 
formed on the wall of 
the vessel 

 Embolism: 
Piece of a blood clot, 
foreign body, or air/ 
bodily fluid occludes 
a vessel 

 Ruptured artery 

 Aneurysm (weakening of 

the vessel) 

 Uncontrolled hypertension 

Treatment  Fibrinolytic therapy 
(CLOT BUSTERS) 

 Stop the bleeding 

 Prevent Increased ICP 

B. Signs and Symptoms 

Since ischemic strokes are the most prevalent, we shall 

concentrate more on them in this paper. Additionally, stroke 
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is not precluded from having its symptoms, particularly in the 

case of a transient ischemic attack (TIA) [9]. Unlike other 

strokes, the blood clot develops and stops the blood flow 

relatively quickly, sometimes lasting only a few minutes. 

Therefore, the indicators are the most crucial. 

To raise public awareness of stroke warning signs, the 

American Heart Association, the National Stroke Association, 

and other organizations have adopted the acronym FAST, 

which stands for facial drooping, arm weakness, speech 

difficulty, and time. In 1998, FAST was initially made 
accessible in the UK. However, two more critical stroke 

symptom signals are now included in the new acronym 

FASTER, created by Beaumont Health's stroke specialists. 

The new meaning of the term is shown in Fig.  6 [10]. 

 

 
Fig. 6  Acronym “FASTER” descriptions [10]  

 

According to Rebbeca Grysiewicz, D.O., head of the 

Comprehensive Stroke Centre at Beaumont Hospital in Royal 

Oak, a new concept called FASTER highlights the importance 
of recognizing stroke symptoms and calling 911 as soon as 

possible [10]. When we designed FASTER, Beaumont 

included "eyes" and "stability" since sudden imbalance and 

loss of vision are also significant and distinct symptoms of a 

stroke. To evaluate potential stroke therapies, timely hospital 

admission requires timely symptom diagnosis and fast 

response. 

C. Diagnosis Method of Brain Lesion 

As seen in Fig. 7, the computed tomography scan (CT scan) 
creates a succession of two-dimensional cross-sectional brain 

images using an x-ray bean and a computer interface. It is a 

non-invasive, safe procedure. A CT scan can identify strokes 

as well as tumors. Ischemia and infarction may not be 

readily seen on a CT scan during the first 24 hours. Certain 

infarcts are also difficult to observe on CT scan imaging, 

even 48 hours later. It is an effective technique for 

identifying internal brain hemorrhage. Because it scans, it is 

very frequently used in emergencies. Thus, the paper makes 

use of a CT scan [16], [46], [72]. 

 
Fig. 7  CT brain image [12] 

 

 
Fig. 8  MRI brain image [13] 

A safe, non-invasive method for studying the brain, 

magnetic resonance imaging (MRI) uses radio frequency 

radiation and a magnetic field. Although it is a costly 
procedure, it provides various brain image dimensions. Fig. 8 

shows the example of MRI Brain Image [16], [37], [61], [72]. 

 

 
Fig. 9  fMRI brain image [14] 

 

As shown in Fig. 9, functional magnetic resonance 

imaging (fMRI) provides a functional image of the brain and 
can identify variations in blood flow. 

 

 
Fig. 10  PET brain image [15]  

 

Peptide-tron emission tomography (PET) creates brain 

images by detecting radioactive materials injected into the 

brain. The costly procedure entails gamma ray recording. 

Figure 10 shows an example of a PET Brain Image [66]. 
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Fig. 11  Angiography brain image [17] 

 

A technique called angiography involves injecting dye into 

the blood, waiting for it to pass through the brain, and then 

using X-rays to identify images of blood vessels. As shown in 

Fig.11, Table III shows the advantages and limitations of CT, 

MRI, and PET. 

TABLE III 

ADVANTAGES AND LIMITATIONS OF CT, MRI, AND PET 

 Advantages Limitations 

CT  Anatomy 

 Spatial resolution 

(1mm) 

 Fast acquisition 

 Irradiating 

 Contrast 

 Artifacts (metal, teeth, etc) 

MRI  Anatomy and function 

 Spatial resolution 

(1mm) 

 Contrast (soft tissue) 

 Non-irradiating 

 Long acquisition 

 Compatible MRI equipment 

with high-performance 

dedicated coils 

 Contraindications 

 Artifacts (Distortions, no 

uniformity, etc) 

PET  Function 

 Tumor/Background 

Contrast 

 Acquisition field 

 Irradiating 

 Spatial resolution (>3/4mm) 

 Partial volume (blurred edges) 

D. Non-contrast computed tomography (NCCT) 

Typically, radiologists utilize NCCT to identify early signs 

of infarction and notify the physician. It can assist the patient 

in making the most of the infarction treatment window [32]. 

However, because of the subtlety of the stroke and the image 

quality, it is challenging to locate the stroke. [18] The medical 
community now struggles with consensus and precision when 

identifying early CT scan changes. As a result, radiologist and 

physician experiences are crucial. Rather than providing them 

with training, the NCCT image's contrast enhancement 

techniques are essential in assisting physicians and 

radiologists in quickly identifying the infarction [67], [71]. 

E. Hounsfield Unit and Windowing 

This paper addresses the CT brain scan, emphasizing its 
fundamental components and interpretation, proposing that 

the scanned image's left side corresponds to the right side. 

Using the Hounsfield Unit (HU) scale, CT scans display grey 

levels depending on radiation attenuation that are separated 

into tissue densities (air and bone). The grey-level display gets 

darker as the HU decreases [29]. Fig. 12 shows the range of 

HU. Fig. 13 shows an example of CT Brain ranges in HU. 

 

  
Fig. 12 Brain Hemorrhage segmentation based on HU values [19] 

 

 
Fig. 13  Example of CT brain ranges in HU [19] 

 

Furthermore, windowing in a CT brain image is important. 

The window setting aids in the detection of pathologies 

involving the skull, brain tissue, and other materials. It is 

separated into window level (WL) and window width (WW). 

While the HU in the middle of the WW is WL, the range of 

HU that shown is WW. As a result, various window settings 
will show different brain regions. Fig. 14 and Table IV are the 

sample for default window setting [45]. 

TABLE IV 

SAMPLE OF DEFAULT WINDOW SETTING 

 
Window Width 

(WW) 

Window Level 

(WL) 

Brain 80 40 

Bone 2500 480 
Subdural 350 90 

 

 
Fig. 14  Window example [20] 

F. Medical Image File Format 

Two categories can be used to categorize medical image 

file formats. The first is a format called DICOM [4] that aims 

to standardize the images produced by diagnostic modalities. 

The secondary collection of formats aims to enhance and 

streamline post-processing analysis. Among these formats are 

Analyse [5], Nifti [6], and Minc [7]. DICOM format is 

frequently used to store medical image files. The metadata 

and image data are combined into a single file and stored at 

the start of the file. The DICOM, Minc, and Nifti file formats 
employ this paradigm. In the second setup, one file contains 
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the photo data, while another contains the information. The 

Analyse file format (.hdr and.img) uses the two-files 

paradigm. The table of descriptions for the various formats is 

displayed in Table V. 

TABLE V 

SAMPLE DIFFERENT FILE FORMAT CHARACTERISTICS 

Summary of file formats characteristics 

Format Header Extension Data Types 

Analyze Fixed-length: 

binary format 

with 348 bytes 

.img 

and .hdr 

Eight-bit unsigned 

integers, 16- and 32-bit 

signed integers, 32- and 

64-bit floats, and 64-bit 

complexes 

Nifti Fixed-length: 352 

bytes in binary 

format (or 34 

bytes for data 

saved in.img 

and.hdr formats). 

.nii Float (from 32 to 128 

bits), signed and 

unsigned integer (from 

8 to 64 bits), and 

complex (from 64 to 

256 bits) 

Minc Broad binary 

format 

.mnc Float (32, 64 bits), 

complex (32, 64 bits), 

signed and unsigned 

integer (from 8 to 32 

bits) 

DICOM Variable length 

binary format 

.dcm Integer (8-, 16-bit; 32-

bit only permitted for 

radiation dosage) that is 

signed and unsigned; 

float not supported 

II. MATERIALS AND METHODS 

These days, contrast enhancement is crucial and helpful for 

medical imaging, particularly brain images [73]. We cannot 
comprehensively analyze the CT Scan image because of the 

obtained image's low contrast and noise. Therefore, we need 

to use contrast enhancement techniques to solve the issue that 

radiologists and doctors face [29], [30]. It may aid in 

accelerating and improving the accuracy of the stroke 

diagnosis. The methods now used to enhance the contrast of 

CT brain images are HE, AHE, BBHE, DIHE, GCAELEWD, 

and others. 

A. Histogram Equalization (HE) 

Histogram equalization techniques (HE) are widely used in 

image processing to improve contrast. Adjusting the image's 

pixel value distributes the grayscale values as uniformly as 

possible [5]. Stated differently, the HE method aims to 

generate better contrast by spreading out the input intensity 

levels throughout the whole range of values. The results of the 

histogram both before and after the HE approach is used are 

displayed in Fig. 15. Global Histogram Equalization (GHE) 

and Local Histogram Equalization (LHE) are the two basic 

approaches that make up HE techniques [4]. 

 
Fig. 15  Histogram before and after equalization  

To estimate the gray level intensity of an inserted image, 

the GHE approach employs global histogram information to 

produce a complete histogram. This image is then modified 

using the Probability Density Function (PDF) �p�I�� �
���	�


�� �� ����
�  and Cumulative Density Function 

(CDF) �c�I�� � ∑ p�I���
��� � . When employing lower-

frequency gray levels, the GHE approach improves contrast 

in images but may lose contrast in high-frequency regions. 

Due to this restriction, it is best suited for general 
improvement; it can make embedded images more contrasty. 

B. Adaptive Histogram Equalization (AHE) 

Adaptive Histogram Equalization (AHE) is also known as 

Local Histogram Equalization (LHE).  [14] [15]. Both 

standard and medical images exhibit substantial contrast 

enhancement when using this approach. AHE is superior in 

window setting compared with other image class methods; it 

improves images automatically and consistently [16]. The 

application of the AHE approach helps to get over GHE's 
limitations. This method does the local augmentation using 

the block-overlapped approach. The stages involved in the 

AHE method are shown in Fig. 16 [5]. 

 
Fig. 16  Proposed algorithm on AHE [5] 

 

As the research paper is summarized, the GHE approach 

can resolve the AHE restriction. However, certain areas of the 
image will have too many details. In addition, it struggles with 

increasing noise, and the computational process is expensive 

and sluggish [17]. 

C. Brightness Preserving Bi Histogram Equalization (BBHE) 

The brightness of the embedded image may be controlled 

using the brightness-preserving histogram Equalization 

(BBHE) approach, which is based on histogram equalization 

[5]. The imported image is divided into two areas. One zone 
is separated where it is greater than the mean value, while 

another part is separated neither over nor equal to the mean 

value of the inserted image. The two zones are divided based 

on the inserted image's mean value. The PDF and CDF are 

then used as transfer functions to equalize the histograms of 

the two areas independently. Then, the two equalized 

histograms are integrated to obtain a brightness-preserving 

outcome. The entire BBHE method procedure is shown in Fig. 

17. Depending on the mean value, the BBHE approach can 

maintain the brightness of the inserted image. However, this 

procedure has another issue that would impact the histogram's 

grayscale distribution level. 
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Fig. 17  Block diagram of BBHE technique procedures 

D. Dualistic Sub Image Histogram Equalization (DSIHE) 

Dualistic Sub Image Histogram Equalization (DSHE) is 

another histogram equalization-based approach that shares 
similarities with the BBHE technique [5]. It keeps the input 

brightness constant [56] and divides the inserted image into 

two areas. However, the median value is used to divide the 

two zones. One area is divided not more than or equal to the 

inserted image's median value, while another part is divided 

more than the median value [68]. 

 
Fig. 18  Block diagram of DSIHE technique procedures 

 

The PDF and CDF are then used as transform functions to 

equalize the histograms of the two areas independently. 

������� ��� �!�"#� �
$

%
∑ &'#

 �� � and ��(%%�� ��� �!�"#� �
$

%)$
∑ &'�����)$

 �* � display the two transform functions, 

respectively (where k is the intensity value; m is the median 

value, and lower is the lower region value). Then, the two 

equalized histograms are integrated to obtain a brightness-

preserving outcome. Fig. 18 illustrates the DSIHE technique's 

process flow. Like the BBHE method, DSIHE can preserve 

image brightness only by the median. Additionally, it creates 

an issue that will influence the histogram's degree of grey 

distribution. 

E. Contrast Limited Adaptive Histogram Equalization 

(CLAHE) 

The Contrast Limited Adaptive Histogram Equalization 

(CLAHE) methodology is a spatial domain method that is 
explored [70]. This approach helps to boost contrast when 

there is a vital necessity for brightness in the image. The 

highest entropy will be employed to get the best histogram 

equalization, and the contrast of the input image will be 

restricted. The image is divided into similar regions using the 

CLAHE approach, and each area is then equalized [18]. As 

a result, the gray level distribution will become more 

uniform. The input image's invisible portion will be more 

visible [31], [60].  

The following are the CLAHE method steps. Initially, the 

inserted image is divided into a square section eight times 8. 
The non-overlapping contextual sections are all these eight 

times eight square areas. Secondly, each part's intensity 

histogram is computed individually. Third, the histogram's 

clipping limit is established. The local image region's contrast 

will decrease when the clipping limit is lowered. Therefore, 

we must adjust it to the most favorable minimal value. Fourth, 

each histogram's transform function is chosen for 

modification. Fifth, �G � [g��. − g��0] × p�f� + g��0�  is 

applied to each histogram where G is the computed pixel 

value, gmin = minimum value of pixel, gmax = maximum 

value of pixel and p(f) is the Cumulative Probability 

Distribution (CPD). Sixth, all the components are combined 
using bi-linear interpolation. 

F. Recursive Sub Image Histogram Equalization (RSIHE) 

The input image is segmented recursively using maximum 

entropy separation using the Recursive Sub image Histogram 

Equalization (RSIHE) approach [19]. The imported image is 

divided into several sub-images [57]. 

�Number of sub images � 2@�  is applied to divide the 

embedded image into subimages [20], where l is the iteration 

number. 

 
Fig. 19  Segmentation of RSIHE approach with an iteration of two 

 

Fig. 19 shows the segmentation of this approach with an 

iteration of two. The sub-images A and B from Fig. 19 are 

separated from the histogram. The sub-histogram of sub-

image A is used to determine the threshold value XT(A). The 

threshold value has also been discovered for sub-image B. 

The maximal entropy computation is then used to determine 

the XT. The iteration's value of 2 will produce four sub-

images: C, D, E, and F. 
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This approach uses sub-image processing based on the 

GHE technique to help alleviate the weakness in the 

histogram equalization. RSIHE can lessen the undesired 

artifacts. Additionally, it makes the violation more contrasted 

and somewhat brighter than the brain's normal tissue. 

However, this method will muddy the outcome. 

G. Gamma Correction, Adaptive Extreme Level, Eliminating 

with Weighting Distribution (GCAELEWD) 

The Gamma Correction Adaptive Extreme Level 

Eliminating with Weighting Distribution (GCAELEWD) 

approach is covered in this study. This technique involves 

altering the histogram. It has been altered under the GHE 

method. To address these drawbacks with the previous 

approaches, GCAELEWD was developed. Fig. 20 shows how 

this strategy works [21], [25]: 

Equation �PDF�I@D
� �

0ED

0
, for l
 � 0,1, . . . , L − 2�  is used 

to eliminate two extreme levels in order to execute the first 

subtitle. Equation �PDFLMN�I@D
� �

PDF��.D
�

OMN�PED�)OMNQRSD

OMNQRSD)OMNQTUD
�V� is created as the new PDF. 

Equation �CDFLMN�M@D
� � ∑ PDFLMN�I@D

��@R
@D�$  is used to 

calculate CDF, which is then normalized into [0, 1]. Equation 

�YZ[\]^_^`a�"�b
� �

\acdef�ghb�ighb
jklefm�nhb

�

o
�  is used to 

calculate the transfer function, and the resultant value is stored 

in the array Nil. 

The resulting image is then blended using the bilinear 

interpolation technique. This technique combines the image 

to roughly represent each pixel's ideal value. When all of the 

tiles are combined, it might lessen the irregular line. Each split 

tile, for instance, is further divided into four tiny square tiles. 

Fig. 21 shows how the transform function of the first subtitle 
is transferred using dark gray pixels at the borders. Next, the 

pixels in the border section with a lighter color are subjected 

to linear interpolation. However, the white pixels in the center 

are used for the bi-linear interpolation approach. 

Consequently, the GCAELEWD approach can preserve the 

added image's brightness change and improve the brain 

image's quality. 

H. Extraction Method 

Extracting a brain lesion from a CT scan image was 
explained. It begins with the identification. The lesion will be 

automatically detected by measuring the volume. Due to 

differences in tissue densities in the input image, the 

histogram's intensity of color analysis is used to assess the 

lesion's level [22]. This evaluation is recommended using the 

segmentation level in the image processing stage. A mask will 

be applied to the captured image after the pre-processing stage. 

We will retrieve the divided level. The area of the lesion will 

be automatically calculated when the mask has been placed. 

It is crucial because the second step quantifies and computes 

the lesion's volume. As seen in Fig. 22, the area versus length 

graph is displayed. Equation  �S � q f�x� dx
t

�
� is used to get 

the lesion's volume. The area under the graph, S is calculated 

using this equation�S � q f�x� dx
t

�
�. 

 

 
Fig. 20  GCAELEWD technique procedure 

 

 
Fig. 21  Bi-linear interpolation technique 

 

 
Fig. 22  Predicted graph 

 

A clever strategy is applied to fragment the lesion. The 

most popular and practical edge detector for segmentation is 

the Canny approach. The intelligent detection approach 

consists of three easy stages. First, noise is removed using the 
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median approach. The gradient computation comes next. Last 

but not least is following the edge. 

The lesion is then extracted using the sub-matrix operation 

in the cropping procedure. Two edges are chosen to create a 

rectangle around the lesion area, then cropped out. A binary 

image with an appropriate threshold value is made from the 

cropped image. Thus, the lesion has been effectively removed. 

Fig.  23 depicts the extraction procedure in its entirety. 
 

 
Fig. 23  Brain lesion extraction process 

 

This segmentation approach has the benefit of 
automatically calculating the lesion's volume, eliminating the 

need to measure each lesion individually. Nonetheless, this 

segmentation method still has weaknesses. Measuring and 

computing are just the estimated areas for the associated 

masking level. As stated otherwise, the masking level should 

be virtually marked in the image while calculating the area. 

The entire procedure will be correct if the lesion is located 

correctly. 

This approach is significantly more straightforward for a 

brain CT scan image. Since the MRI brain image is the focus 

of other lesion extraction. Additionally, compared to a CT 
scan, an MRI brain image has a far higher resolution. 

Therefore, the lesion may be extracted from a CT brain image 

using the described extraction approach. Related work in early 

infarct brain detection covers imaging techniques, biomarker 

and blood tests, artificial intelligence and machine learning, 

mobile health and telemedicine, EEG, EMG and ECG, and 

cancer. We can address based on imaging techniques, 

biomarker blood tests, artificial intelligence and machine 

learning, mobile health and telemedicine, EEG, EMG and 

ECG, and cancer. 

Image techniques cover Computed Tomography (CT scans) 

and a) Magnetic Resonance Imaging (MRI). Non-contrast 
CT is frequently the first imaging modality to detect early 

indications of ischemia and Hemorrhagic stroke. CT 

Angiography enables the identification of blockages to 

provide comprehensive views of blood vessels. Magnetic 

resonance imaging (MRI) is extremely sensitive in identifying 

regions of limited water diffusion following ischemia injury. 

This is a sign of early brain infarcts [37]. Perfusion MRI 

evaluates cerebral blood flow to detect areas that are at risk, 

but this approach has yet to experience an infarction. 

The quest remains for particular blood biomarkers that may 

signal an early brain infarct. These biomarkers offer a rapid 
and noninvasive way to detect them. Artificial intelligence (AI) 

and machine learning algorithms are being developed to 

evaluate imaging data and clinical information and detect brain 

infarcts early on. The goal of these technologies is to improve 

diagnosis speed and accuracy. For image analysis, AI systems 

can identify minute alterations in brain imaging that may be 

suggestive of early infarcts [23], [24], [28],[36], [42], [62]. 

Predictive Modeling is based on patient data and machine 

learning models. It can forecast the risk of stroke, which could 

notify medical professionals to take preventive action. Image 

colorization is another technique to highlight the area of early 

infarction [27], [49]. Patients at risk of stroke are being 

monitored using mobile health apps and telemedicine 

platforms. These platforms give healthcare professionals 

access to real-time data and facilitate quick action in the event 

of an early stroke indication. 

Early infarct detection is crucial for effective treatment and 
improved outcomes. Electroencephalogram (EEG), 

Electromyogram (EMG), and Electrocardiogram (ECG) are 

three tools that can provide valuable information in different 

medical scenarios [26], [33]. We can also develop augmented 

and virtual rehabilitation and attentive learning with EEG, 

EMG, and ECG [35], [43], [44], [55], [64]. Cancer may not 

directly cause an infarct, but the associated risk factors, such 

as hypercoagulable states, treatment effects, and 

paraneoplastic syndromes, can cause the risk of strokes and 

myocardial infarctions [63]. Understanding these 

relationships, comprehensive management strategies can help 
reduce and improve cancer patient outcomes [65], [75]. 

III. RESULTS AND DISCUSSION 

The GCELEWD approach was compared with BBHE, 

CLAHE, RSIHE, and DSIHE procedures to assess the 

performance of enhanced CT brain images. A dataset of 300 

non-contrast CT brain images gathered from hospitals was 

used to evaluate the methods. Figs. 24 to 27 display enhanced 

CT brain images created using different techniques. The two 
primary areas of performance evaluation are qualitative and 

quantitative testing. 

During the qualitative assessment, the complete augmented 

image is observed and perceived. It is stated differently to 

assess clarity and distinguish between normal and diseased 

tissue using our unaided sight. However, quantitative testing 

uses metrics like Mean-Square Error (MSE), [50], [54], Peak 

Signal-to-Noise Ratio (PSNR), and Structural Similarity 

Index (SSIM) [51]. Table VI compares MSE, PSNR [55], and 

SSIM with different categories of stroke. 

TABLE VI 

COMPARISON OF MSE, PSNR, AND SSIM WITH DIFFERENT CATEGORIES OF 

STROKE 

 BBHE RSIHE GCELEWD CLAHE DSIHE 

Average MSE 

Isch. 2400.95 698.75 528.17 349.25 629.01 

Hemor. 1846.85 593.07 565.21 206.31 485.57 

Average PSNR 

Isch. 13.33 19.70 21.75 22.75 20.16 

Hemor. 15.44 20.41 20.69 24.98 21.41 

Average SSIM 

Isch. 0.4660 0.9027 0.8258 0.6573 0.9043 

Hemor. 0.3806 0.8800 0.5165 0.5870 0.9041 

 

From Fig. 24 - 27, it is evident that the original background 
brightness was not preserved by the BBHE method. Images 

improved with the BBHE techniques have a brighter backdrop. 

Additionally, the contrast of the CLAHE approach is nearly 

identical to that of the original image. In certain instances, it 

cannot distinguish significantly between the usual brain soft 

tissue and ROI. The DSIHE technique brightens the normal 

brain tissue while intensifying the infarction's contrast. It has 
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the potential to lessen the production of undesired artifacts. 

On the other hand, the chosen NCCT brain image is blurred.  

 
Fig. 24  Comparison of different histogram techniques of Ischemic stroke 

image 1 

 
Fig. 25  Comparison of different histogram techniques of ischemic stroke 

image 2 

 
Fig. 26  Comparison of different histogram techniques of hemorrhagic stroke 

image 1 

 
Fig. 27  Comparison of different histogram techniques of hemorrhagic stroke 

image 2 

From Table VI, the CLAHE technique has the lowest Mean 

Square Error (MSE), followed by GCELEWD, DSIHE, 

RSIHE, and BBHE. Moreover, the CLAHE technique has the 

highest Peak Signal Noise Ratio (PSNR), followed by DSIHE, 

GCELEWD, RSIHE, and BBHE. While for the Structural 

Similarity Index (SSIM), DSIHE has the highest value, 

followed by RSIHE, CLAHE, GCELEWD, and BBHE. MSE 

is employed to evaluate how estimates or projections 

correspond with actual values. The closer the forecast is to 

reality, the lower the MSE. The ratio of the strongest signal to 
the noise level, expressed in decibels, is called PSNR. A low 

PSNR score suggests more noise or distortion in the processed 

image than in the original. However, there is a way to gauge 

how similar two images are: the Structural Similarity (SSIM) 

index. The SSIM values are 0 to 1, where 1 denotes a perfect 

match between the original and rebuilt images. Generally 

speaking, promising quantity reconstruction approaches have 

SSIM values of 0.97, 0.98, and 0.99. Thus, CLAHE and 

DSIHE are better at image enhancement [69]. 

In summary, the Histogram Equalization (HE) approach is 

well-liked due to its simplicity of use and quick processing 
time [38],[39]. Nevertheless, this method has some 

disadvantages, including noise addition, increased 

background contrast, and signal distortion [74]. Because the 

gray levels are stretched throughout the whole gray level 

range, the HE may result in saturation artifacts and over-

enhancement results. Furthermore, many HE kinds rely on the 

global approach. Nevertheless, it is discovered that these 

global image processing strategies are inadequate to combat 

variations brought on by changes in light, such as 

morphologic and image clustering [47], [48]. Handling 

variance in non-uniform illumination with these global 
processing algorithms is still challenging.  

A popular method for enhancing contrast in medical 

imaging, such as brain scans for early infarct diagnosis, is 

histogram equalization, or HE [40]. Nevertheless, there are 

some difficulties in applying HE in this situation and possible 

solutions to these difficulties. We can divide them into 

challenges and improvements. 

A. Challenges 

The challenges cover noise amplification, loss of details, 
the global nature of HE, artifact introduction, and non-

uniform illumination. All these challenges have their issues 

and impacts, and they are discussed as noise amplification, 

loss of details, and the global nature of HE. For noise 

amplification, the noise is introduced by histogram 

equalization, which can exacerbate the problem of 

distinguishing true infarct zones from noise. This may 

obfuscate crucial information or result in false positives. 

About the loss of detail, HE can occasionally result in over-

enhancement, which erases little but significant information 

from the image. Diagnostic accuracy may suffer from the loss 
of minute features essential for the early identification of 

infarcts [76]. 

For the global nature of HE, standard HE may not be 

appropriate for medical images with variable local contrast 

because it applies the same alteration to the entire image. Low 

contrast areas might need to be adequately enhanced while 

other areas might be too improved. In artifacts, photos are 

with huge uniform areas or areas with varied intensity 
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distributions. HE might introduce artifacts. Artifacts can 

complicate diagnosis and increase the difficulty of 

interpretation. In medical imaging, particularly brain images, 

non-uniform lighting is a common problem that HE can 

worsen. This may cause some imaging regions to be 

incorrectly interpreted as healthy or infarcted. 

B. Possible Improvements 

Improvements cover adaptive histogram equalization, 

contrast-limited adaptive histogram equalization, multi-scale 

histogram equalization, histogram matching, hybrid models, 

machine learning, and AI technologies. We can divide 

improvements into solutions, benefits, and considerations. 

Adaptive histogram equalization (AHE) applies histogram 

equalization to the full image, focusing more on specific areas 

(tiles) of the image. In terms of benefits, it can minimize the 

possibility of noise amplification and detail loss while 

enhancing local contrast. For consideration, the borders of 

these areas need to be blended carefully to prevent the 
introduction of artifacts. 

For contrast-limited adaptive histogram equalization 

(CLAHE), noise amplification can be reduced by restricting 

contrast amplification. For the benefit, it can retain visual 

information and avoid over-enhancement. For the 

implementation, we can improve local contrast while 

preserving overall image quality [51], [52] in medical 

imaging software. For the multi-scale histogram equalization 

[58], we can use histogram equalization across a range of 

resolutions or scales. In terms of benefit, it enhances balance 

by improving small details and more considerable contrast 

differences. We can integrate outcomes from many scales to 
enhance the approach's image. Histogram matching helps 

with the equalization process and uses a reference histogram 

created using sharply contrasted images of infarct regions 

known to be healthy [34]. In terms of benefit, it gives the 

image the contrast that is helpful for diagnosis. The 

application aids in harmonizing contrast enhancement 

procedures across various scanners and photographs.  

The hybrid method combines HE with other image 

enhancement techniques [53], such as those based on ML, 

edge detection, and smoothing filters. In terms of benefits, it 

preserves significant diagnostic qualities while addressing the 
constraints of HE. Combining Gaussian smoothing with 

CLAHE can then boost contrast and minimize noise. In 

machine learning and AI techniques, we can learn the best 

contrast enhancement parameters using deep learning models 

based on vast datasets of labeled brain images [59]. In terms 

of benefit, it can offer context-aware improvement tailored to 

the unique characteristics of early infarcts. For the 

implementation, we can ensure good generalization across 

various patient groups and imaging settings; models are 

trained on multiple datasets. 

Histogram equalization is a helpful method for improving 
the contrast of brain images, particularly for the early 

diagnosis of infarcts. However, this technique has a few 

drawbacks, including noise amplification, loss of clarity, and 

its universal use. These difficulties can be overcome using 

adaptive strategies like CLAHE, multi-scale approaches, 

histogram matching, hybrid methods, and cutting-edge AI 

algorithms [41]. This will improve diagnostic results and 

increase the precision of early brain infarct identification. 

IV.   CONCLUSION 

This overview examines the history of brain lesions known 

as strokes, focusing on the use of computed tomography (CT) 

scans for diagnosis. CT scans are employed due to their ability 

to quickly and accurately identify internal brain hemorrhages. 

The Digital Imaging and Communications in Medicine 
(DICOM) format stores CT brain images. Non-contrast CT 

brain imaging has lower diagnostic accuracy, necessitating 

contrast enhancement techniques to improve image quality. 

The Hounsfield unit scale is crucial for analyzing CT brain 

images, as it enables the visibility of internal brain tissue. 

Windowing techniques are used to observe various tissue 

densities in the brain image. Image enhancement, a key sub-

field of digital image processing, aims to improve image 

quality by highlighting desired elements and reducing 

obscuration.  

This study provides an overview of the history and relevant 
research on Histogram Equalization (HE)-based image 

enhancement. HE is a simple method, and numerous 

adjustments have been published to optimize the 

normalization process. Future research on the mathematical 

algorithms in HE is warranted. Additionally, the study 

reviews current approaches, including HE, Global Histogram 

Equalization (GHE), Local Histogram Equalization (LHE), 

Adaptive Histogram Equalization (AHE), Brightness 

Preserving Bi-Histogram Equalization (BBHE), Dualistic 

Sub-Image Histogram Equalization (DSIHE), Contrast 

Limited Adaptive Histogram Equalization (CLAHE), 

Recursive Sub-Image Histogram Equalization (RSIHE), and 
Gamma Correction Adaptive Extreme Level Eliminating with 

Weighting Distribution (GCAELEWD). While these methods 

improve contrast and clarity, some have drawbacks, such as 

noise enhancement, blur, and lengthy processing times. 
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