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Abstract— This study explores an integration model combining convolutional neural networks (CNNs) and long short-term memory 

networks (LSTMs) for behavior feature recognition. Initially, a straightforward three-dimensional deep CNN structure was introduced 

for behavior recognition, capturing static and dynamic characteristics, and analyzing the network's convergence speed. Subsequent 

experiments utilize the VGG16 CNN model, substituting the fully connected layer with global average pooling. Then, a comparative 

experiment was conducted on the MSRC-12 behavior dataset between the models. Due to the complexity of LSTM, a simpler GRU 

model with similar effectiveness was used for comparison. The experimental results showed that the GRU-CNN model performed best, 

outperforming other algorithms in the literature on the same dataset. Under the same experimental parameters, the GRU-CNN model 

converges significantly faster than the LSTM-CNN model, with speedier training speed. In addition, the best accuracy is achieved by 

adjusting the dropout and epoch. Due to cross-validation in this study, the GRU-CNN models achieved good experimental results when 

the hidden node dropout rate was 0.5. The epoch size had negligible impact on the GRU-CNN model. Still, the accuracy of the CNN 

and CNN-GRU models increased significantly with more epochs, further validating the effectiveness of the GRU-CNN model. These 

experiments also indicate that convolutional neural networks based on deep learning are superior to traditional machine learning 

methods for human behavior recognition. Using depth images instead of conventional images allows for better extraction of spatial 

features, and the integration with long short-term memory networks enhances the extraction of temporal features from sequences. 
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I. INTRODUCTION

Behavior recognition is one of the hot topics in the field of 
computer vision [1], is widely applied in various areas such 
as intelligent security, autonomous driving, smart home, and 
patient monitoring. The main goal of behavior recognition is 
to identify the category of human actions in images, which 
involves preprocessing the data, detecting the moving human 
body, extracting features, performing recognition, and finally 
completing the classification [2]. Due to various challenges 
such as complex backgrounds, occlusions, lighting, intra-
class and inter-class variations, and temporal changes, 
behavior recognition is currently still in the laboratory testing 
phase. Addressing these issues, this paper studies human 
behavior recognition based on deep learning’s convolutional 
neural networks (CNN) and long short-term memory 
networks (LSTM) for solving time series problems [3], [4]. 

Manually crafted features often heavily rely on training 
data. In contrast, deep learning can autonomously learn 
features with high discriminative power from training 

samples, making classification more accurate [3], [5], [6]. 
Convolutional architectures can achieve stable latent 
representations at each layer, enable local interactions in 
space and time, and associate feature mappings with multiple 
consecutive frames of the previous layer, obtaining spatial 
structural information of internal frames and inter-frame-
related information [6]. 

A. Deep 3D CNN Feature Extraction Model

Based on prior research, we developed a new deep 3D
CNN model using an appropriate network size and topology. 
The designed 3D CNN model is built on the Keras framework 
as a general model, consisting of 4 convolutional layers, 2 
pooling layers, 2 fully connected layers, and a SoftMax 
classification layer. The first two convolutional layers have 
sixty-four kernels each, padded using the “VALID”. The 
latter two convolutional layers have 128 kernels each, padded 
using the “SAME”, with a kernel size of 3×3 for convolutional 
layers, and the pooling layers use max pooling with a kernel 
size of 2×2×2 and a stride of 1. We use a Flatten layer to 
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unfold multi-dimensional input into one-dimensional output, 
employ Bayesian methods for parameter optimization, use a 
dropout layer [7], [8]  to prevent overfitting, use the ‘ReLU’ 
function as the activation function, and use cross-entropy as 
the loss function, which has the advantage of using the 
Sigmoid function to avoid the learning rate reduction problem 
of mean squared error loss functions during gradient descent. 
The formula for the loss function 1 is as follows: 
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where 1 ∙"  is an indicative function with 1 #$�%� '(%�"  � 1 and1 #$�%� )$�*�"  �  0.  
The structure of the deep 3D convolutional network 

designed in this paper is shown in Figure 1. 
 

 
Fig. 1  Deep 3D Convolutional Network Structure 
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where B�  is the height and C�  is the width  of the 3D 
convolution kernel, ( is the size of the 3D convolution kernel 
in the time dimension, >���8;=  is the channel connecting the 
values of the � th feature map point �B，C，(�  of the 
previous layer, and 3��  is the bias of the feature map. The 
method is generic and can be applied to different behavioral 
classes.  

The “ReLU” function can speed up the convergence of 
network learning while making the output somewhat sparse 
and enhancing the classification ability of the network. The 
formula is as follows: 

 (��%�D, �, '� � F�0#�D, �, '� ⋯ -) ⋯ F�0#�D, �, '� H 0 (3) 

The first pooling layer is defined as shown in Equation 4. 

 I����D, �, '� � JK�LM�D, �, '�N (4) 

As the complexity of the network prediction model 
increases, the amount of training data required also increases 
sharply. We uniformly set the size of the convolution kernels 
to 3×3×3 across all layers. Choosing smaller filter sizes aims 
to reduce the parameter number for our model, making the 
training easier. Overfitting is a common issue, usually 
occurring when deep neural networks have too many 
parameters relative to the number of outcomes. If overfitting 
occurs, the predictive performance of the deep architecture 
will deteriorate. dropout is used to overcome overfitting, by 
generating numbers from 0 to 1 through a uniform function. 
From the experiment, the random dropout layers have 
significant achievement in many tasks related to recognizing 
human behavior. Bayesian optimization methods are used to 
select the hyperparameters of the proposed deep CNN 
architecture. During training the 3D CNNs model, we set the 
epoch as 1000, the weight decay rate as 0.0005, the 
momentum is 0.9, the batch size is 10, and the learning rate is 10?O. 

B. Performance Analysis based on the MSR-Action3D 

Dataset 
An established 3D convolutional neural network processes 

original image sequences as input and makes predictions 
regarding class labels. The size of all image sequences has 
been adjusted to 64×48. To reduce the training time, we 
extract non-overlapping 16-frame segments from the depth 
image sequences at regular time intervals, with an input size 
of 3×16×64×48. 

In the experiment, image sequences are divided into two 
groups of 8:2 ratio randomly, with 80% to be training and 
20% to be testing. The experimental results are shown in 
Table I, the network using only depth information 
outperforms the previous methods with the highest accuracy 
of 95.63%. The experimental results indicate that the 
proposed deep 3D CNN structure is effective for human 
behavior recognition and has good classification 
performance. This fully demonstrates the feasibility of the 
proposed 3D convolutional neural network model for human 
behavior recognition. Furthermore, to demonstrate the 
effectiveness of the deep 3D CNN model proposed, we utilize 
a human interaction dataset for human behavior recognition. 

TABLE I 
CLASSIFICATION ACCURACY FOR DIFFERENT FEATURES 

Method Feature Accuracy (%) 

Wang [9] Actionlet 88.20 
Oreifej [10] HON4D+Ddisc 88.90 
Hossein [11] LCSS+MIJA 91.20 
Yang [12] SNV 93.09 
Lu [13] Range Sample 95.63 
Yong [14] HBRNN 94.49 
Shi [15] PRNN 94.90 
Our method 3D-CNN 96.88 

II. MATERIALS AND METHOD 

A. CNN Network Structure 
Comparison experiments were first conducted under the 

VGG16 model, as shown in Figure 2. VGG16 consists of 13 
convolutional layers and three fully connected layers, with the 
last layer being a SoftMax classification layer. All the 
activation functions of this network are using the ReLU 
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function [16]. The skeletal data is first fed into the conv2D 
convolutional layer and padding operation is performed to 
complement the zero operation on the image. VGG16 
network is first convolved by two layers of 64 3×3×3 
convolutional kernels, and after using the maximum pooling 
layer the length and width of the matrix are changed to half of 
its original width, which is then fed into the two convolutional 
layers. After convolution with 128 convolutional kernels, it is 
maximally pooled, with the 13 layers of convolutional layer 
and pooling layer after using the fully connected layer to 
unfold the data, and finally fed into the SoftMax layer to 
classify the features. 

The fully connected layer is converted to global average 
pooling (GAP) based on the VGG16 network [17]. The global 
average pooling layer averages all the values of the feature 
maps by summing them up, i.e., one feature map corresponds 
to one output, which avoids the black box operation of the 
fully connected layer and prevents the network from 
overfitting. Figure 2 shows the CNN network structure. 
Figure 3 shows the global average pooling schematic. Figure 
4 shows the convolutional network structure. 

 
Fig. 2  VGG16 model diagram 

 
Fig. 3  Schematic of global average pooling 

 

 
Fig. 4  CNN network structure 

B. CNN-LSTM and LSTM-CNN Network Structures 
In 2015, Donahue et al Error! Reference source not 

found. proposed adding an LSTM network model on top of 
the CNN network structure, referred to as the Long-term 
Recurrent Convolutional Network (LRCN). For comparative 
experiments, this paper adds a Long Short-Term Memory 
network to the original CNN network architecture, here using 
a Bidirectional Long Short-Term Memory network 
(BiLSTM) [19], [20] instead of LSTM [21], [22]. The 

bidirectional long and short-term memory network is shown 
in Fig. 5. The part in the box is the same as the unidirectional 
LSTM, the difference is that BiLSTM consists of forward 
LSTM and backward LSTM together, and the bidirectional 
LSTM can better capture the bidirectional motion feature 
relationship thus making full use of the information in the 
video sequences and understanding the human body behavior 
recognition from different perspectives. 

 
Fig. 5  Bidirectional long- and short-term memory network 

 
The CNN-LSTM network model with the addition of a 

bidirectional LSTM is shown in Figure 6. The model consists 
of a convolutional neural network model as the initial layer, 
which is used to receive the sequence of skeletal frames to 
extract the local features of the image, and then after the 
convolutional network is input to the LSTM layer to extract 
the temporal information in the sequence. 

 

 
Fig. 6  CNN-LSTM network model 

 
The model combines CNN and LSTM [23], [24]. CNN-

LSTM model is compared with an LSTM-CNN model. The 
LSTM-CNN model is shown in Fig. 7. In a model for 
processing text first input the data to the long short-term 
memory network to extract the sequence information of the 
sentence, and then input to the convolutional neural network 
to capture some key information in the sentence, the model 
obtained good results in text processing. Therefore, this paper 
draws an idea of text classification to take the LSTM layer as 
the initial layer, and the skeletal sequence is input to the 
LSTM layer. Then the input from the LSTM layer is 
immediately followed by the input to the CNN model to 
extract local features. In the CNN-LSTM model, the LSTM 
layer only acts as a fully connected layer, which does not 
show the advantages of LSTM for this model. Whereas for the 
LSTM-CNN model, the initial layer LSTM acts like an editor 
to label each sequence of the input, which contains not only 
the information of the original labeling but also the output 
labeling of all other previous information. Subsequently the 
convolutional neural network will come in further to find the 
local features for better accuracy. 
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Fig. 7  LSTM-CNN network model 

C. GRU-CNN Network Structure 
Although LSTM networks have strong processing ability 

for data with long-time correlation changes, compared with 
GRU networks, GRU networks [25], [26] have fewer network 
parameters and shorter convergence time, which can better 
meet the real-time demand of human-computer interaction. 
Therefore, this paper proposes a GRU-CNN fusion network 
model, which first uses a GRU network to label the input time 
series, which contains not only the information of the original 
labeling, but also the historical information of the output 
labeling, and then carries out the feature extraction through a 
CNN network. The structure is richer than the features 
extracted by using CNN directly, which is helpful for us to get 
better recognition rate and robustness, and finally output to 
SoftMax by global pooling before classification. 

The GRU-CNN model is shown in Figure 8. Distance 
features are suitable for input to GRU due to the abundance 
of spatial information, but the distance features lose a large 
amount of directional information. CNN is used to capture 
directional information. Due to the huge parameters of the 
vgg16 model, which consumes lots of time, Experiments have 

shown that the vgg16 models is easily overfitted due to the 
small size of the dataset. After multiple experiments, it was 
found that a three-layer convolution can achieve the optimal 
state. Therefore, this paper uses a three-layer convolutional 
layer to extract local information from the data. The model 
uses a framework of 3 bidirectional GRU layers. The first 
GRU layer takes the data of 20 skeletal key point frame 
sequences for gesture behavior recognition as input, which is 
the position vector of each skeletal key point. For the GRU, 
the output of the first layer is the input to the second layer, and 
the last layer's output is fed into the convolutional layer. Since 
the convolution kernel size affects the final feature extraction 
and ultimately the accuracy of behavior recognition, we adopt 
the idea of text classification here and set B P C  is the 
convolution kernel, the number of skeletal key points in the 
convolution window is B.  

By extracting the connections between adjacent skeletal 
key points, B captures the key information of human behavior 
and determines the category of the entire behavior, while C is 
the vector dimension of the image. Finally, the output of the 
convolutional layer is globally average pooled and then input 
into the fully connected layer. The dropout layer prevents 
overfitting and improves the generalization ability of the 
model. The results are then input into the SoftMax layer for 
classification. In this model, the GRU framework extracts the 
temporal sequence features of skeleton sequence, while the 
output of the GRU is the input for the CNN to obtain the 
spatial features of the skeleton.  

 
Fig. 8  GRU-CNN network model 

 

III. RESULTS AND DISCUSSION 

A. MSRC-12 Dataset 

The MSRC-12 [27] action dataset consists of various static 
images, retrieved from the Microsoft Research Institute’s 
Cambridge University Computer Laboratory through Kinect 
motion-sensing devices. 

B. Experimental Results 
The GRU layer is the initial layer, with the sequence input. 

Then, the GRU output is input into the CNN model to extract 
local features. This paper applies 80% for the training and 
20% for the testing. To confirm the feasibility of the model, 
we conducted several sets of comparative experiments. To 
illustrate the significant role of the GRU model, this paper 
also designs a CNN-GRU model and conducts experimental 
comparisons. 

1) Conducting experiment on the TensorFlow and Keras 

deep learning platforms with an NVIDIA v100 graphics card 

on an Ubuntu system:  

The Dropout rate was 0.5, the learning rate 0.001, and the 
epochs set to 10. The results are shown as follows: 

TABLE II 
COMPARISON EXPERIMENTS ON THE DATASET MSRC-12 

Method Year Accuracy (%) 

Cov3DJ [27] 2013 91.76 
ConvNets[28] 2015 84.46 
JTM [29] 2016 93.12 
ASM-3[30] 2017 97.60 
RF(N=23) +SW [31] 2017 98.37 
hd-CNN [32] 2018 94.59 
TPSMMs [33] 2019 96.53 
CNN Ours 98.5 
CNN-LSTM Ours 98.32 
LSTM-CNN Ours 99.6 
CNN-GRU Ours 98.3 
GRU-CNN Ours 99.8 
 
The method we proposed is compared with previous 

methods in recent years, the results show that the model has 
achieved the highest recognition rate, which validates the 
feasibility and effectiveness of the model. In the CNN-GRU 

1796



model, the GRU only acts as a fully connected layer, which 
for this model does not bring out the advantages of GRU for 
processing time series. For the GRU-CNN model, the initial 
layer of GRU acts as an editor to label each input sequence. It 
captures not only the current labeling information but all 
previous output labeling information. After that, the CNN 
layer will use a richer representation of the original input to 
find local features, resulting in better accuracy. 

2) Verifying the advantages of the GRU model over the 

LSTM model:  

We conducted a comparison experiment between the GRU-
CNN and the LSTM-CNN. In Figure 9, under the same 
experimental parameters, the convergence speed of the GRU-
CNN model is significantly better than that of the LSTM-
CNN model. In terms of the final training accuracy, there is 
not much difference. However, since the structure of GRU is 
simpler than LSTM, the parameters are less and easier to 
converge, and the training speed is faster. 

 
Fig. 9  Training accuracy of LSTM-CNN and GRU-CNN models  

 
This experiment analyzes the impact of dropout and epoch 

settings on the model. The effects of different dropout 
parameter settings on the model experiment are shown in 
Figure 10. The role of the dropout is to keep the weights of 
the certain implicit layer nodes of the network temporarily 
inactive during model training to prevent model overfitting. 
Due to the cross-validation used in this paper, when the 
implied node discard rate is 0.5, all comparative models 
achieved better experimental results since the most randomly 
generated network structures are available when the discard 
rate is 0.5. When the dropout is 0.3, it will have the greatest 
impact on the CNN-GRU, reducing it by almost 50%. 
However, the accuracy of the CNN and GRU models 
improves. When the dropout is 0.9, all three models are 
reduced by 5-21%.  

 

 
Fig. 10  Comparative experiments on the impact of dropout parameters on 
the model 

From the experimental results, it has been proven that the 
GRU-CNN model proposed in this paper achieves 
satisfactory results with strong robustness under different 
dropout parameters. The effect of epoch on the model’s 
recognition accuracy is shown in Figure 11, from the results 
we can see the epoch size has little effect on our model, but 
the accuracy of CNN and CNN-GRU models will greatly 
increase with the increase of epoch, verifying the 
effectiveness of the model. 
 

 
Fig. 11  Comparative tests of epoch on model accuracy  

IV. CONCLUSION 
First, a 3D convolutional neural network (CNN) 

architecture is designed, which can autonomously learn 
behavior recognition features from deep image sequences. 
The initial stage of the process involves the extraction of 
image features through the application of two convolutional 
layers. A maximum pooling layer then downscales these 
features. Subsequent inputs to another set of convolutional 
layers serve to refine the feature extraction. To prevent 
overfitting, these features are then processed by a pooling 
layer. The architecture includes two fully connected layers, 
which increase the model’s complexity and improve its 
learning capability by enhancing non-linear representation. 
These layers are of significant importance in capturing static 
features and dynamic features. The objective is to extend the 
deep image sequence model to encompass structural 
interdependencies, utilizing deep hierarchical feature 
learning. The experimental results demonstrate the efficacy of 
the proposed 3D CNN structure in accurately identifying 
behavioral features. The next model to be explored is the 
combined model of CNNs and LSTMs. Initially, the 
established VGG16 CNN model is enhanced by 
implementing global average pooling to replace fully 
connected layers, which reduces the parameter count and 
mitigates overfitting. Subsequently, the LSTM network is 
integrated with CNN to facilitate spatiotemporal feature 
extraction. Comparative analysis of the CNN, CNN-LSTM, 
and LSTM-CNN models indicates that the LSTM-CNN 
model exhibits superior recognition accuracy. However, due 
to the extensive parameters and complexity of LSTM, we 
refine the LSTM-CNN model by substituting LSTM with its 
simplified variant, the Gated Recurrent Unit (GRU), which 
significantly reduces computational demands. Experimental 
results confirm that GRU achieves performance comparable 
to LSTM while exhibiting reduced complexity. By fine-
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tuning the parameters, particularly through dropout and epoch 
adjustments, we determine the optimal settings, establishing 
the robustness of the GRU-CNN model. Our findings 
demonstrate that deep learning based on CNNs outperforms 
traditional machine learning in human behavior recognition. 
This is evidenced by the superior performance of deep images 
in spatial feature extraction, and the integration of LSTM 
networks enhancing temporal feature extraction. 

Regarding the research in this paper, the next work in the 
research plan and the issues that need to be addressed can be 
divided into two parts. First, in the deep 3D convolutional 
neural network model mentioned in this paper, depth images 
are affected by dark objects, (semi-)transparent objects, 
specular reflection objects, and disparity. The quality of depth 
maps is closely related to hardware, which poses challenges 
in high power consumption and cost for processing depth 
images. Secondly, the GRU-CNN model designed in this 
paper has only been validated on one dataset, lacking suitable 
datasets for further processing. Moreover, using global 
average pooling instead of fully connected layers in the final 
model reduces the number of parameters. This poses 
challenges for using the model for other feature extraction 
tasks on different datasets or when the pre-tuned parameters 
are no longer suitable, making transfer learning difficult. 
Furthermore, the model designed in this paper is more 
practical for data with sequential features, and improvements 
are needed for behavior recognition datasets without such 
sequential characteristics. 
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