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Abstract—In today's information-rich world, recommender systems are essential for helping consumers find relevant products and 

content. The development of efficient recommender systems is still a challenging endeavor even with their broad use. This research 

explores different approaches to building recommender systems, emphasizing the use of generative AI to overcome underlying 

difficulties. Conventional recommender systems, like collaborative filtering, struggle with problems like sparsity limitations and the 

cold start problem. This paper aims to provide a comprehensive overview of recommender system techniques and algorithms, identify 

the limitations of existing methods, and highlight open research questions and directions for future development. A thorough and 

comprehensive literature analysis of recommender system algorithms is part of the process, ensuring the validity and reliability of the 

research. The Autoencoder technique—which has shown to be highly significant and effective—is used for the evaluation. The review 

will provide a detailed analysis of potential for improving research on recommender systems, while also thoroughly addressing the 

primary challenges and drawbacks of current methodologies. Furthermore, by providing insights into the usage of Generative AI—

more especially, the Autoencoder technique— to improve recommender system accuracy. The study hopes to make a substantial 

contribution to the area. Through the identification and resolution of current methods' shortcomings, particularly regarding the 

incorporation of Generative AI, the study endeavors to widen up the opportunity for recommendations that are more precise, varied, 

and focused on individuals. It is anticipated that the assessment process's use of Autoencoder will highlight the usefulness and efficiency 

of the suggested strategy and highlight its significance in the continuous development of recommender systems.   
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I. INTRODUCTION

The importance of recommendation systems has grown, 

mainly since websites like YouTube, Amazon, and Netflix 
emerged. Recommendation systems assess customer 

preferences and make proactive suggestions for things they 

are likely to purchase based on product information, customer 

behavior, and other data. Numerous research investigations 

have been carried out to create these recommendation systems, 

and countless valuable systems have been effectively used in 

a range of industries [1]. Nowadays, the majority of services 

and products are sold online, making it challenging to build 

relationships with clients. As a result, these complex 

algorithms are meticulously designed to offer consumers 

customized product recommendations. One creative way to 
get beyond the constraints of e-commerce services is using 

recommendation algorithms.   

Designed to provide relevant and tailored experiences, 

recommender systems are vital tools for users navigating 

through the abundance of content available in today's world 

of information. The rapidly developing field of Generative AI 

in artificial intelligence is a promising area with the potential 

to change recommender systems completely. This innovative 

field of artificial intelligence promises to provide novel 
aspects to user-centric content recommendations while 

addressing the shortcomings of conventional recommender 

systems. Evidence of this transformative technique’s success 

is observable in various platforms such as Amazon, Netflix, 

healthcare [2], food recommendation [3], and e-commerce [4], 

where Generative AI has been effectively employed in 

recommender systems to enhance the precision and 

personalization of content suggestions [5]. Customers find it 

very important in the e-commerce version because, for 

example, generative AI makes it possible to create highly 

personalized suggestions by evaluating each user's unique 
behavior and interests [6]. By showing customers products 
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that closely match their interests, personalization improves 

the whole shopping experience and helps customers save time 

and effort throughout their search. Customers are more likely 

to be happy with their purchases when they obtain 

recommendations that match their tastes. This optimized 

process can promote client loyalty and repeat business as 

consumers gain confidence in the platform's ability to 

comprehend and meet their demands. By integrating powerful 

generative AI into recommender systems, e-commerce firms 

can gain a competitive advantage. In a competitive 
marketplace, platforms that provide an exceptional, 

customized purchasing experience are more likely to draw in 

and keep users. Generative artificial intelligence (AI) in e-

commerce recommender systems helps individual customers 

and makes e-commerce platforms more successful and 

competitive.   

Traditional RS can be broadly grouped into Content-based 

(CB), collaborative filtering (CF), Hybrid-based (HB), and 

Knowledge-based (KB). CB solutions are widely utilized in 

various industries, where they are arguably the most popular 

approach. A few examples are websites like Google Play 
Store and Amazon.com. Recommendations supplied by the 

user, either directly or through interacting with the interface, 

are generated by a content-based recommender system. Data 

can be utilized to produce suggestions for the user once the 

customer profile has been created. As more data sources are 

provided by the customer or suggested activities are accepted, 

the engine gets more and more accurate. A content 

recommendation system often looks at the user's past interests 

and suggests related items or services.   

By leveraging the interests of similar users, CF 

technologies go above and beyond. Accurate 
recommendations are made possible using the preferences of 

individuals with similar tastes. Locating a group of 

individuals with whom the target user shares interests is the 

basic tenet of collaborative filtering [7]. The algorithm 

forecasts the interests of the target user by considering these 

neighbors’ preferences. Amazon is a well-known e-commerce 

company that employs collaborative filtering to suggest 

products to its customers. When the algorithm locates a 

neighbor user for the target user, recommendations can be 

produced based on the things these neighbors like. This 

neighboring user group functions as a benchmark for item 

recommendations, encapsulating the essence of collaborative 
filtering in finding a user cluster with interests similar to those 

of the target user. Memory-based approaches operate under 

the assumption that there is no pre-existing model for 

predictions. Instead, they rely on choices derived directly 

from the user-item interaction matrix. This approach looks for 

similarities between a new user and existing "profiles" by 

mapping their regular interactions to determine what products 

to present them. By utilizing the popularity of similar items 

among users who have comparable experiences with the item, 

the goal is to anticipate which item will be best for the new 

user. The concept behind item-item recommendation is to 
pinpoint items a user might find appealing based on their 

positive interactions with other items. If most users engaged 

with two separate items (a product, page, or email) 

comparably, then the two products are deemed similar. In 

contrast to user-user recommendation, this approach focuses 

on finding commonalities in interactions between items in an 

item matrix as opposed to between users. Therefore, 

combining many recommender approaches is one of the best 

ways to increase sales and enhance client retention. 

Combining the best features of both methods, HB RS adds 

content information to collaborative models, weights the 

average recommendation from collaborative and content 

sources, and generates final recommendations based on the 

combined rankings. HB RS is the result of combining CB and 

CF [8]. 

KB or Semantics-based recommender techniques make up 
the other group. Context-based and ontology-based methods 

are among them. Systems are knowledge-based and use 

ontologies to frame knowledge about stakeholders and 

material in the recommendation process. For example, e-

learning means that these systems use relational knowledge to 

map learner-relevant learning resources [9].  

On the other hand, generative AI Intelligence (GAI) is 

powered by foundation models (large AI models), enabling 

them to handle various tasks beyond conventional boundaries 

seamlessly, including summarization, Q&A, classification, 

and others.  GAI can create customized products to satisfy 
users' unique information requirements, and the recently 

released ChatGPT greatly helps users express information 

demands more precisely through natural language commands.  

GAI is purposefully designed for content generation and the 

development of robust recommendation systems. Leveraging 

supervised learning, the model undergoes a dynamic learning 

process directly from the data it encounters. Also, 

implementing embeddings is integral to the system, 

facilitating the computation of similarity between 

recommendation embeddings. A higher degree of similarity 

between these embeddings indicates a closer semantic 
relationship, which improves the system's capacity to make 

more contextually relevant recommendations. E-commerce 

platforms like Amazon employ generative AI algorithms to 

provide tailored product recommendations that are predicated 

on consumers' past purchases and browsing patterns.   

II. MATERIALS AND METHOD 

A. Phases in RS 

1)  Traditional RS:  To give consumers individualized 

ideas, recommendation systems must be created using several 

crucial procedures. First, gather data through explicit (such as 

ratings) and implicit (such as clicks) input. Afterward, enter 

the learning phase, during which the system uses this 

information to comprehend user preferences. To do this, 

profiles that reflect user preferences and objects' features must 

be created. Lastly, the system applies all the knowledge it has 
gathered to forecast and recommend products that consumers 

may find interesting but haven't seen. This procedure 

enhances user satisfaction by ensuring that recommendations 

are customized to each user's preferences [10], [11]. The 

implementations underlying the recommendation phases are 

depicted in Fig. 1. The Information collection phase requires 

a robust user profile or model. This first step collects relevant 

user data, including the user's attributes, behaviors, and the 

content of the resources they visit, to build a user profile or 

model for taste prediction. To successfully make 

recommendations that are appropriate for the user's 
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preferences, the system requires as much information from 

the user as possible.  

 
Fig. 1  Phases in RS  

Therefore, the model's capacity to represent users' current 

choices or preferences is a crucial factor in the effectiveness 

of a recommender system or recommendation. User input data 

can be gathered in three ways: explicit, implicit, and hybrid 

feedback. With implicit feedback, the user's preferences are 

automatically set by the system based on an analysis of their 

past browsing patterns, purchasing patterns, clicked links, and 

amount of time spent on various websites. The user doesn't 

have to do anything; instead, it analyses and gives 

recommendations on its own, as previously said. This 

approach is frequently regarded as less precise even if it does 
not demand the same level of user effort. This input method's 

benefit is that it makes data collection more accessible and 

less demanding for the user [12].  

Since explicit feedback solicits the user's direct input 

regarding product preferences, its efficacy depends on 

accuracy. This input requests ratings for multiple products 

from users via the system interface, which helps build and 

improve the recommendation model. The quantity and caliber 

of these user-provided ratings directly affect the 

recommendations' accuracy. In other words, 

recommendations get more precise and well-rounded the 

more perceptive and numerous opinions are. Since explicit 
feedback does not involve deriving preferences from actions, 

it still provides more reliable data even though it necessitates 

more user work. Additionally, because it offers transparency 

into the recommendation process, it raises perceived 

recommendation quality and increases confidence in the 

recommendations [12]. 

Additionally, users who wish to show their interest directly 

can only provide feedback through hybrid feedback, which 

combines explicit and implicit feedback ratings. This 

approach empowers users by allowing them to provide input 

explicitly, emphasizing the importance of their active 

expression of interest in a choice. Within this hybrid 

framework, the system adeptly incorporates indirect data as a 
valuable attribute for recommendation generation, ensuring a 

comprehensive understanding of user preferences. This 

feedback can be obtained by letting consumers give direct 

input and ratings while using indirect data as a 

recommendation attribute.   

In the learning phase, the user data collected during the 

information-gathering phase is subjected to learning 

algorithms. This phase's trained data offers specific patterns 

to predict the user's future actions or interests. During the 

suggestion stage, the learning algorithms assist in identifying 

the appropriate patterns that are pertinent for application [5]  
The recommendation phase suggests the kinds of products 

a customer or user would find appealing. Recommendations 

may be given directly from the dataset gathered in the 

information gathering stage (model—or memory-based) or 

indirectly via the system's observation of users' browsing 

histories. The available filtering techniques will be discussed 

in Section II (B).   

2)  Generative AI:  Within the swiftly evolving landscape 

of artificial intelligence, Generative AI emerges as a rapidly 

advancing subfield with the transformative potential to 

revolutionize recommender systems. Its forward momentum 
promises to surmount existing limitations and elevate the 

capabilities of these systems to new heights. Generative AI 

models, such as Generative Adversarial Networks (GAN) and 

Variational Autoencoders (VAE), demonstrate proficiency in 

producing innovative and high-quality data by learning from 

existing samples. Their aptitude for crafting new data holds 

substantial promise for recommender systems, as these 

systems heavily depend on data to understand user 

preferences and deliver precise recommendations.  

  

 

Fig. 2  Architecture of generative AI in recommender system  
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In the Data Collection and Pre-processing Step, there is 

data collection and pre-processing, a fundamental step in 

which unprocessed data is carefully cleaned up and arranged. 

The data must be cleaned, formatted, and transformed in this 

first step to be effectively used later. Gathering a diverse and 

representative dataset, such as high-quality images, is crucial 

to align with the desired output domain. The data will be pre-

processed later to ensure consistency, remove noise, and 

prepare for model training. Pre-processing, a crucial stage in 

which raw data is meticulously cleansed and organized, 
comes before data gathering. For the data to be used 

efficiently in subsequent steps, it must be cleaned, formatted, 

and converted in this initial step. A varied and representative 

dataset—such as high-quality images—must be gathered to 

correspond with the intended output domain. Later, the data 

will undergo preprocessing to guarantee consistency, 

eliminate noise, and prepare for model training.  

Choosing an appropriate model is crucial to get the desired 

results in the Model Architecture Selection Phase. Various 

models have unique features that are appropriate for particular 

applications. Variational Autoencoders (VAEs) are a popular 
model architecture in generative AI that may be used to learn 

the dataset's distribution. After that, realistic visuals and other 

creative content are produced using Generative Adversarial 

Networks (GANs), and lastly, the following word in a 

sequence can be predicted by Autoregressive models. Using 

GANs or VAEs to produce new interaction recommendations, 

generative model layers train the model to recognize patterns 

in user-item interactions. While VAEs concentrate on 

encoding and decoding latent representations, GANs have a 

generator that generates fresh samples and a discriminator that 

provides feedback.  
Following the selection of the model architecture, the 

training process begins in the Model Training phase. The 

model is trained using a dataset that contains input data. The 

training process depends on the selected model and usually 

involves regularization, gradient descent, and 

backpropagation to maximize model parameters. Reducing 

the difference between the output of the model and the actual 

data, or ground truth, is the primary goal of training. Thanks 

to this optimization process, the model can generate material 

that closely resembles the patterns found in the training data. 

As a result, the model can produce material similar to the 

training set.  
This is accomplished by comparing it to predetermined 

criteria and benchmarks during the Evaluate and Refine 

process. Using these measures, you can evaluate the created 

output's quality, coherence, and realism. If the outcomes don't 

meet your expectations, you can adjust the model iteratively. 

This iterative procedure may involve tweaking the dataset, 

changing the training parameters, or altering the architecture. 

Remember that reaching optimal performance is a process 

that requires incremental steps, and it may take several 

attempts to get the necessary level of satisfaction with the 

model's output.  
After being satisfied with how the generative AI model 

performs in the Test and Validate phase, it becomes essential 

to conduct thorough testing and validation. It can be done by 

testing it on a separate dataset that has not been seen before to 

see how well it can generalize to new data. Additionally, 

assess the model's capability to produce varied and coherent 

outputs in diverse scenarios. Lastly, the results are compared 

against human judgment and domain-specific criteria to 

ensure the model's reliability and effectiveness.    

The deployment and integration layer are where the 

generative AI process ends in the Deploy and Integrate phase. 

The improved model is incorporated into proper systems, 

platforms, or applications, enabling end users to access its 

creative results. While integration guarantees smooth 

communication with current frameworks or technologies, 

deployment entails the purposeful use of those changes. 
Gather user feedback and opinions, monitor the model’s 

performance, and make changes. Continuous improvement 

will always help to keep the model relevant and effective. Fig. 

3 shows the end-to-end process of generative AI.   

 
Fig. 3  End-to-end process of generative AI  

B. RS Techniques 

1)  CB: CB approaches leverage item or user metadata to 

formulate tailored recommendations. This involves 

examining the user's purchasing history as a critical factor. 

For instance, a user is assumed to prefer a certain author or 

brand if they have interacted with that author's book or brand's 

product. Additionally, there's a chance they'll purchase a 

comparable item later.   

The three components of CB RS's architecture are a content 

analyzer, a profile learner (generator), and a filtering 

component. Fig. 4 illustrates this architecture. The Content 

Analyzer uses feature extraction techniques to gather item 

content from various information sources and derives item 
representations. The Profile Learner generates a user profile 

based on previous likes and dislikes by generalizing user input 

and applying machine learning algorithms to the item 

representation. The filtering component matches the user 

profile with recommended items in the final stage [14]. 
 

 

Fig. 4  Architecture of content-based 

 

A content-based book recommendation engine that uses 

online book information is also shown. The system creates a 

user profile by analyzing data taken from the web using a 
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Naïve Bayes classifier. Using user-provided training 

examples, this profile plays a crucial role in producing a 

prioritized list of book titles. By enumerating the attributes 

that contribute to the top ratings, the system can explain any 

suggestions it makes to consumers. This gives people 

complete confidence in the advice the system gives them.    

2)  CF: Collaborative filtering examines user relationships 

and product interdependencies to find new user-item 

correlations. User behavior or user evaluations of 

recommended things are the foundation for CF 
recommendations. It investigates a variety of potential 

materials and suggests items loved by users who are similar 

to you [15]Through a learner profile, RS can obtain data like 

the learner's age, nationality, past educational experiences, 

and educational background, among other things. Memory-

based and model-based collaborative filtering are the two 

primary categories. Particularly accurate collaborative 

filtering systems consider data from multiple users as opposed 

to just one. One benefit of the CF is that it is independent of 

the content. As a result, it may recommend sophisticated 

products like films without the requirement for metadata 
analysis.   

When making suggestions, memory-based recommenders 

depend on the direct similarities between users or items. 

Typically, these systems leverage unprocessed historical user 

interaction data, like user-item ratings or purchase histories, 

to discern likenesses between users or items and formulate 

personalized recommendations. User-based and item-based 

collaborative filtering are the primary categories into which 

memory-based recommenders fall.  

The user-based approach involves suggesting items to the 

target user by identifying others with similar behavior or 
preferences. This entails finding users who closely resemble 

the target user based on past interactions with items. This 

results in recommendations like "users who are similar to you 

also liked..." such as Jenny and Tom, both avid fans of sci-fi 

books. In practical terms, if a new sci-fi book surfaces and 

Jenny purchases it, the same book would be recommended to 

Tom because of his shared fondness for sci-fi books.   

Item-based collaborative filtering is a technique that finds 

things that resemble the ones the target user has already 

engaged with to make suggestions. The goal is to identify 

products with comparable user experiences and suggest those 

products to the intended user. This can include 
recommendations of the kind "users who liked this item also 

liked...". For example, let's say that Fahrenheit 451 and The 

Time Machine are two science fiction novels for which John, 

Robert, and Jenny gave five stars. As a result, the system 

suggests The Time Machine to Tom after he purchases 

Fahrenheit 451 since it believes it to be comparable based on 

user ratings.  

Next, model-based recommenders use machine learning 

models to produce recommendations. These systems carefully 

extract patterns, correlations, and linkages from past user-

item interaction data. By absorbing insights from this data, 
model-based recommenders can forecast a user's preferences 

for products they haven't interacted with before. Several 

approaches are used in the field of model-based 

recommenders, demonstrating the adaptability of this 

methodology. These methods include neural networks, matrix 

factorization, and Singular Value Decomposition (SVD), 

each with a unique advantage in producing precise and 

customized recommendations.  

Despite this, matrix factorization is a popular method for 

collaborative filtering. The models are better than 

conventional nearest-neighbor methods for suggesting 

products because they can include extra data such as implicit 

feedback, temporal effects, and confidence levels. Some of 

the best realizations of latent factor models are based on 

matrix factorization.  

Matrix factorization, in its most basic form, uses vectors of 
factors created from patterns in item ratings to represent both 

items and users. The ability to include more information is 

one of matrix factorization's strengths. Recommender systems 

can infer user preferences from implicit feedback when no 

explicit feedback is available. Indirect feedback is the 

expression of opinions through user behavior, such as past 

purchases, browsing habits, search activity, or even mouse 

movements. Implicit feedback is typically shown by the 

existence or non-existence of an event, which is sometimes 

depicted as a heavily packed matrix.   

3)  HB: Combining multiple recommender methods to 
provide more personalized, different, and effective 

recommendations is one of the best ways to increase sales and 

improve client retention. Especially when recommendations 

are made in real life, they generate more dependable, precise, 

and adaptable ideas. Content-based and collaborative filtering 

are combined, and both techniques are used to classify and 

recommend products to customers. This method was created 

to address the shortcomings of the CF methodology, such as 

sparsity and diversity, while also utilizing the benefits of 

memory and model-based CF techniques. Depending on the 

unique needs and limitations of the recommendation system, 
as well as the type of data that is accessible, a hybrid method 

may be chosen. Netflix exemplifies hybrid filtering by 

suggesting similar films based on user ratings (content-based 

filtering) and comparing a user's past with other users who are 

similar to them (collaborative filtering). The features 

produced by one recommendation technique are fed into 

another recommendation strategy in the feature-combination 

hybrid technique. The feature augmentation technique creates 

a model that is always richer in terms of information usage 

than a single rating by using the ratings and other pertinent 

data generated by a prior recommendation system as input for 

another recommender [12]. The metalevel hybrid technique 
learns a second recommendation algorithm from a first 

algorithm by using the full model as input [16] which is shown 

in Fig. 5 below on how the HB filtering works.   

One good consequence of using hybrid recommenders is 

that they are frequently robust in managing different 

suggestion scenarios. They can adjust to user behaviors, data 

features, and recommendation difficulties. Such adaptability 

is helpful for practical recommendation systems. It also can 

mitigate the limitations of individual recommendation 

techniques. For example, they can tackle the "cold-start" 

challenge for new users and items by incorporating content-
based recommendations, offering unexpected suggestions, 

and mitigating popularity bias.  
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Fig. 5  HB filtering 

4)  Generative AI: Recently, recommender systems have 
benefited from applying various AI techniques, improving 

user happiness and the overall user experience. AI makes 

recommendations of a higher caliber than those made with 

traditional techniques. Automation of intelligent behavior is 

the aim of AI technology development. These six domains 

include knowledge engineering, reasoning, planning, 

communication, perception, and motion [17]. Hence, the next 

step will explain techniques to achieve the desired outcome. 

Fig. 6 explains the AI areas and the techniques used.    

 

 
Fig. 6  The AI areas and the techniques used 

 

Transfer learning has emerged as a method for knowledge 

engineering, whereby information is transferred transferring 

data from a large source domain to a small target domain [18]. 

According to this definition, transfer learning uses 
information from one or more source data to help with target 

data in a learning activity. Transfer learning methodologies 

can be divided into three main categories: unsupervised 

transfer learning, transductive transfer learning, and inductive 

transfer learning. The fundamental principle of active learning 

is to select training data with the purpose of maximizing 

machine learning performance with minimal information 

requirements. Users may be asked to name occurrences not 

labeled by an active learning system. Active learning has 

useful applications in different AI disciplines, especially well-

suited for online systems since labeling can be expensive, 

time-consuming, and sometimes impractical. For reasoning, 
the techniques used are deep neural networks (DDNs) and 

fuzzy. DNNs can model nonlinear relationships effectively. 

Recommender systems often involve non-linear dependencies 

between user preferences and item characteristics, and DNNs 

can capture these nuances. DNNs can be used for matrix 

factorization, a common technique in recommender systems. 

They can learn latent factors representing user and item 

embeddings, capturing implicit relationships in the data. 

Since fuzzy techniques can replicate real-world concepts that 

cannot be adequately described, they are frequently used in 

artificial intelligence (AI). Fuzzy approaches have drawn 

much interest in the literature. For example, fuzzy distance 

has been used to describe similar instances and fuzzy sets 
have been utilized by researchers to represent linguistic 

variables when feature values cannot be adequately expressed 

in numerical values [18].  

Afterward, reinforcement learning and evolutionary 

algorithms participate in the planning domain. Evolutionary 

algorithms (EA) are a subclass of population-based search 

algorithms for global optimization in artificial intelligence 

that is inspired by natural processes. Some potential answers 

to a problem that needs to be solved make up an initial 

population, also known as the parent population. An 

evolutionary algorithm starts at this point. Genetic operators, 
such as crossover and mutation, are applied to parent 

individuals to create new solutions, referred to as offspring. 

The selection of individuals who will become parents is based 

on their suitability as future parents. This process continues 

until a few conditions are met to end it.  

The recommender system is seen as a learning agent in 

reinforcement learning; user behaviors match states, and user 

actions are suggestions generated by the system. The prize is 

the feedback that users leave on the suggestion results, such 

as the frequency of click-throughs or the duration of time 

spent on the page. The aim is to find a value function or 
method that enables consumers to maximize long-term 

advantages.   

In order to address the problem of data sparsity in 

communication, most recommender systems also enrich the 

rating matrix with review data acquired via natural language 

processing. In extreme cases, virtual ratings are generated 

utilizing the emotion polarity obtained from review 

classification without ratings. Topic models evaluate item 

metadata in "bag-of-words" representation and use matrix 

factorization techniques to handle both warm-start and cold-

start circumstances. The researcher improved suggestions 

with feature sentiment and product experience by mining 
feature-based product descriptions from reviews, resulting in 

better items based on user inquiries [19]. 

In summary, the direct application of computer vision in 

picture recommendation—mapping images to user 

preferences—contributes to recommender systems. Deep 

neural networks were used to extract information from 

photographs in early e-commerce suggestions, which were 

then integrated into pre-existing techniques for apparel 

recommendations [17]. This was extended in a later study by 

using low-level data, like color qualities, that mimicked parts 

of the human visual system. This provided a fresh viewpoint 
on user preferences in movie recommendations by creatively 

integrating visual elements from still frames and movie 

posters with a matrix factorization algorithm. Point-of-

interest recommendations have also used visual content, using 

the wealth of landmarks included in pictures and images 

uploaded by users.  
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C. Related Works 

In the study by Ferreira et al. [20], challenges were 

encountered when employing matrix factorization techniques, 

such as SVD, due to the utilization of a dataset characterized 
by its sparsity and large size. The project intends to enhance 

some recommendation system-related areas. The task's loss 

function had to be Mean Squared Error (MSE) since it did not 

involve a classification problem where binary cross-entropy 

could be used. The fact that ADAM stands out as one of the 

most significant choices and is renowned for its speed, low 

memory usage, and ability to handle big datasets impacted the 

optimizer selection—a consistent strategy with this article. 

The evolution of loss and validation loss (val_loss) show a 

declining trend over each epoch, ultimately stabilizing at a 

point. The absence of an intersection between the loss curve 
and val_loss is attributed to the addition of the dropout layer, 

which exclusively affects the training dataset, leading to the 

observed disparity between them. Despite the inherent 

challenges associated with very sparse datasets and the 

application of a collaborative filtering approach, the study 

anticipated problems but found that the autoencoder model 

effectively overcame them. The Root Mean Squared Error 

(RMSE) value of 0.996 indicates the model's success in 

providing recommendations aligned with users' interests, 

unaffected by the data sparsity problem. The obtained results 

are promising, showcasing an RMSE value of 0.029 for the 

first and 0.010 for the second datasets.    
In the following study, Tran et al. [21]demonstrated 

outstanding potential by implementing a deep Autoencoder 

(DAE) for recommendation systems in an efficient manner. 

They built a flexible deep neural network model, called the 

FlexEncoder model, that combines characteristics and 

methods from multiple sources into an all-encompassing 

DAE model. Characterized by unique features and tunable 

parameters, this FlexEncoder model enables a comprehensive 

examination of parameter impacts on recommender system 

prediction accuracy. This method incorporates novel features 

from previous publications to make identifying the best 
performance parameters for a particular dataset easier. The 

ADAM optimizer, the SELU activation function, and one 

round of dense refeeding with mean normalization enabled 

were among the standard parameters used in the study that 

contributed to an RMSE in the range of 0.90 to 0.91. The 

authors conducted a thorough evaluation analysis to 

substantiate their assertion that the parameters significantly 

selected impact the DAE model's prediction accuracy. The 

FlexEncoder model outperformed other cutting-edge 

recommendation algorithms and showed the lowest RMSE 

when tested against current methods on the MovieLens 100K 

dataset. In particular, the FlexEncoder outperformed AutoRec 
(0.887) and SVD++ (0.903) with an RMSE score of 0.833. 

These comparative RMSE findings were taken from another 

study.   

Other than that, Zhang et al. [18] emphasized the 

widespread use of conventional recommender systems, 

encompassing knowledge-based, collaborative filtering, 

content-based, and hybrid models created in the past ten years. 

Even still, these models suffer from issues related to cold start 

and data sparsity, which causes a large reduction in 

recommendation performance in sparse user-item interactions. 

The inability of recommendation systems to offer suggestions 

for new users and things gives rise to the cold start issue. 

Researchers have developed innovative recommendation 

methods that use side data about individuals or objects to 

address these problems. However, these models' limitations in 

collecting customers' preferences and item attributes 

frequently limit the improvement in recommended 

performance. As a result, Autoencoder (AE) has become a 

powerful method for extracting essential features from data, 

transforming recommendation structures, and providing 

improved user experiences. The authors stressed the 
widespread use of recall and Root Mean Square Error (RMSE) 

as evaluation measures. Mean Average Error (MAE) and 

RMSE are commonly used for rating prediction assessment. 

While accuracy and recall are still frequently employed to 

evaluate classification results, recall, Mean Average Precision 

(MAP), and Normalized Discounted Cumulative Gain 

(NDCG) are preferred for giving correctly indicated items in 

top ranks more credit.   

In the following paper, Rama et al. [22] integrated 

embeddings into a deep neural network using autoencoder 

features for recommender system rating prediction. They 
demonstrated a method for establishing a benchmark for 

prediction accuracy using DAFERec (Deep Autoencoders for 

Feature Learning for Recommendations). DAFERec uses the 

innermost layer activations of a deep autoencoder as features 

in a deep neural network for recommendation. This technique 

combines the innermost activations of the autoencoders with 

embeddings to incorporate higher-order innermost nonlinear 

latent characteristics from both user and item autoencoders. 

Using latent variables, one can learn a compressed higher-

order representation of user preferences or item attributes in 

recommender systems, enabling the Deep Neural Network 
(DNN) to learn it. Like the approaching method in this study, 

they started with a list of user-item-rating tuples and turned it 

into a rating matrix. The details of data preparation were not 

explored; instead, the standard pivot operation in several 

programming languages was used. The authors employed the 

tenfold cross-validation technique to confirm the 

dependability of their findings.  

Furthermore, based on Loukili et al.[23], they have 

succeeded in a significant milestone by developing an 

algorithm to provide personalized recommendations to 

customers, employing association rules through the utilization 

of the Frequent Pattern Growth algorithm. This new method 
has shown outstanding results, with a high chance that 

customers will buy the following product suggested by the 

system. The study focuses on assessing how well the 

recommendation system performs, which is done by 

calculating the average probability (Paverage) connected to 

the chance that customers will buy the following suggested 

product. The evaluation metric is a pivotal indicator of the 

system's effectiveness in accurately suggesting items that 

align with individual customer preferences, ultimately 

contributing to an enhanced user experience and increased 

customer satisfaction. The success of this algorithm not only 
underscores its potential in optimizing recommendation 

systems but also signifies a promising step towards delivering 

more tailored and relevant suggestions to users in various 

domains.   

Additionally, retailers and service providers invest more 

money in social media, e-commerce, mobile, and internet 
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channels to improve customer engagement and 

communication with current and potential customers and 

increase sales. Thus, studies conducted by Grewal et al. [24] 

explained in detail how predictive analytics helps estimate 

people's product preferences, price sensitivity, and expected 

next steps on the customer journey—all critical for improving 

business activities. This is accomplished by utilizing big data 

and advanced analytics tools to obtain knowledge and 

generate tailored recommendations based on client 

information. Furthermore, clear suggestions and insight into 
the AI system are made possible by explainable AI (XAI) 

techniques, which eventually boost confidence and lessen 

algorithmic biases. However, the study also discusses the 

possible dangers of the "big data revolution," especially as 

they relate to data security, and it highlights the significance 

of having better data that is influenced by the arts and sciences 

of marketing and creativity in addition to the science of 

robotics, AI, and machine learning.   

Then, the techniques used for the recommendation system 

on Amazon are discussed by Rybakov et al. [25] mentioned 

in this study. The use of neural networks in a personalized 
recommender system to make product recommendations 

based on implicit feedback from customers—such as past 

purchases, listens, or watches—is covered in this research. 

Additionally, offline assessment metrics—like Product 

Converted Coverage (PCC) at K and Precision at K—that are 

frequently employed in real-world recommender system 

applications are presented in this work. The use of a deep 

learning package that facilitates parallel training with the 

multi-GPU model is also mentioned in the research. This is a 

crucial feature for developing neural network-based 

recommenders with massive input and output data 
dimensionality. Additionally, the study mentions the Deep 

Scalable Sparse Tensor Network Engine (DSSTNE) at 

Amazon and the utilization of Apache Spark for 

recommendation generation at Amazon scale, demonstrating 

the usefulness of the methods covered in the research at 

Amazon. Among these, the advantages are increased accuracy 

metrics as the research has shown that using a hybrid method 

that combines predictor and auto-encoder models leads to 

improvements in accuracy metrics like Product Converted 

Coverage (PCC) and precision in a variety of digital product 

categories.    

Consequently, Yu et al. [26] claimed that collaborative 
filtering frequently faces difficulties while handling sparse 

data. Model-based Collaborative Filtering Algorithm Based 

on Stacked AutoEncoder (MCFSAE), By first converting the 

rating matrix into a high-dimensional classification dataset 

the same size as the entire number of ratings, the suggested 

solution effectively eliminates this problem. Because the 

ratings are typically broad, this method guarantees strong 

categorization performance. The authors utilize Stacked 

AutoEncoder, a skilled nonlinear feature reduction approach, 

to leverage the high-dimensional classification dataset and 

produce an elevated low-dimensional feature depiction. 
Experimental results show that MCFSAE outperforms other 

collaborative filtering (CF) models, particularly in the case of 

sparse rating matrices. Even with the large-scale training 

dataset that was gathered, MCFSAE effectively resolves the 

sparsity issue that existed in the initial recommendation task. 

Furthermore, v. To assist in creating a high level, low-

dimensional feature representation of the original data, 

stacked autoencoders (SAE) are used. According to 

experimental findings, the suggested MCFSAE operates 

better than the most advanced CF approaches in rating 

prediction, especially when dealing with sparse rating 

matrices, because of the remarkable representation 

performance of SAE.   

Next, Lacic et al. [27] recommendation approach shown in 

this work encodes sessions inside the job domain using 

several autoencoder architectures. The inferred latent session 
representations are used in a k-nearest neighbor fashion to 

recommend jobs within a session. Three autoencoder types 

are used in the study: variational autoencoder (VAE), 

denoising autoencoder (DAE), and classical autoencoder 

(AE). A single hidden layer separates the input and output of 

the most basic AE. By corrupting the input on one or more 

layers prior to computing the final output, DAE, on the other 

hand, develops representations that are resilient to minute, 

insignificant changes in the input. Alternatively, VAE uses 

variational inference to retrieve latent representations. Similar 

to our methodology in this research, the authors performed a 
grid search on hyperparameters for baseline approaches using 

a validation set. They then assessed the models on three 

datasets using NCDG, MRR, Session-based novelty (EPD), 

and System-based novelty (EPC).   

Lastly, Sachdeva et al. [28] presented a recurrent variant of 

the Variational Autoencoder (VAE), in which they chose to 

run a recurrent neural network (RNN) on the consumption 

sequence subset rather than running a fraction of the full 

history without taking temporal dependencies into account. 

The sequence passes through several fully connected layers at 

each RNN time step in this configuration. The probability 
distribution of the most likely future preferences is modeled 

by the output from these layers. The authors show that adding 

temporal information is essential to improving the VAE's 

accuracy. Their model achieves significant improvements 

over the state-of-the-art, demonstrating its capacity to employ 

the recurrent encoder to capture temporal relationships inside 

the user-consumption sequence while adhering to the 

fundamental ideas of variational autoencoders. They also 

perform sensitivity analysis concerning the 

configurations/contour circumstances under which Sequential 

Variational Autoencoder (SVAE) performs best. The main 

finding from their tests is that, for the top-N recommendation 
task, SVAE outperforms the state-of-the-art in several criteria. 

The evaluation concentrates on top-N recommendations 

while considering implicit preferences, using measures like 

NCDG, Precision, and Recall. On the MovieLens-1M and 

Netflix datasets, SVAE continuously beats rivals, exhibiting 

notable gains in all metrics.   

III. RESULTS AND DISCUSSION 

A. Theoretical Framework 

1)  Autoencoder Architecture (AE):  Neural networks 

designed for efficient coding, dimensionality reduction, and 

generative modeling are good candidates for unsupervised 

learning tasks, such as auto-encoders. It has been useful in 

learning underlying feature representation in some domains, 

including computer vision, speech recognition, and language 

modelling. With this knowledge in mind, autoencoders have 
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been incorporated into new suggestion designs, expanding the 

possibilities for developing creative user experiences that 

appeal to customers. An auto-encoder consists of three layers: 

input, hidden, and output, as shown in Fig. 7. The input layer 

is where the data is received. The input layer and the hidden 

layer combine to form an encoder. The output layer and the 

hidden layer combine to form a decoder [29].The output layer 

is where the output data exits.   

   
Fig. 7  Autoencoder architecture  

 

The encoder encodes the high-dimensional input data x 

into a lower-dimensional hidden representation h with a 
function f in Equation (1).    

 ℎ = �(�) = �� (�� + �)  (1) 

where Sf is an activation function, W is the weight matrix, and 

b is the bias vector.   

The decoder decodes the hidden representation h back to a 

reconstruction x’ by another function g in Equation (2).   

 x' = g(h) = Sg (W'h + b') (2) 

where Sg is an activation function, W’ is the weight matrix, 

and b’ is the bias vector.   

Non-linear options for Sf and Sg include Sigmoid, TanH, 

and ReLU. The auto-encoder can learn More meaningful 

features as a result, compared to other unsupervised linear 

techniques like Principal Component Analysis. The auto-

encoder was trained to use the squared error for regression 

tasks or the cross-entropy error for classification tasks to 

minimize the reconstruction error between x and x's.   

The formula for the squared error as per Equation (3). 

 �� (�, �′) = ||� − �′||2 (3) 

2)  Variational Autoencoder Architecture (VAE): The 

extension of AE is called VAE [30] As shown in Fig. 8, the 

bottleneck will have a sampling layer rather than a 

straightforward dense layer. This layer will employ the mean 

and variance from the previous encoder layer to create a 

Gaussian sample that will be used as input for the decoder. 

The first layer of the AE also uses dropout.  

 

 
Fig. 8  VAE architecture 

In the sampling layer, a latent vector z will be generated by 

sampling from a Gaussian distribution with mean mu and 

standard deviation sigma. This is the reparameterization trick, 

which allows the network to be trained using gradient descent. 

Equation (4) shows the sampling layer.     

 Z =μ + σ  ϵ   (4) 

where μ = is the mean vector, σ = is the standard deviation 

vector, ϵ = is a random sample from a standard normal 
distribution.   

Then, to encourage the distribution of latent vectors to be 

close to a standard normal distribution, a term related to the 

Kullback-Leibler (KL) divergence is added to the loss 

function, as shown in Equation (5). 

 KL loss=−21∑i=1K(1+log(σi2)−μi2−σi2) (5) 

Next, dropout is a regularization method that neural 

networks frequently employ to avoid overfitting. During 

training, it arbitrarily sets a portion of the input units to zero. 

Dropout is applied to the encoder's initial layer in the VAE 

scenario.   

 Output = Input  Mask   

where Input = input vector, Mask = binary mask with values 

randomly set to 0 or 1 during training. 

Thus, VAE introduces a sampling layer in the bottleneck, 

which involves generating a latent vector by sampling from a 

Gaussian distribution. Additionally, dropout is applied to the 

first layer of the encoder for regularization. The KL 

divergence loss encourages the learned latent space to 

approximate a standard normal distribution, promoting a 

continuous and structured latent space. The equations 

provided are simplified representations, and the actual 
implementation might include additional details for practical 

considerations.  

B. Dataset 

The dataset for model training in this prototype is Amazon 

Consumer Review, obtained from the Kaggle Website 

provided by Datafiniti’s Product Database. The dataset is 

loaded into a pandas DataFrame after importing the necessary 

libraries for developing the recommendation system. This 

dataset consisted of 22 columns of features, but only five 
columns were used for further exploration, as listed in Table I. 

TABLE I 

DESCRIPTION ON DATASET 

Column Name  Description  

id  Unique ID for every product purchase    

name  Name of each product   

asins   A list of ASINs (Amazon Standard 

Identification Numbers) associated with 

the product.   

categories  Categories for every product, indicating 

its classification   

reviews.ratings   Overall ratings given by users in 

product review   

reviews.userna me   People that rating for every product they 

reviewed    

brand   Brand for each product   

keys  Universal Product Code (UPC), unique 

product barcode used for retail and 

online sales    
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Column Name  Description  

manufacturer   The company or entity responsible for 

manufacturing the product.   

reviews.date   The date when a review was posted.   

reviews.dateA dded   The date when the review was added to 

the system or dataset.   

reviews.dataSe en   The date when the review data was last 

seen or accessed.   

reviews.didPur chase   Indicates whether the reviewer claims 

to have purchased the product.   

reviews.doRec 

ommend  

Indicates whether the reviewer 

recommends the product.   

reviews.id   A unique identifier for each review.   

reviews.numH 

elpful   

The number of users who found the 

review helpful.   

reviews.rating   The specific rating given by the 

reviewer in the review.   

reviews.source URLs   URLs pointing to the source of the 

reviews.   

reviews.text   The text content of the review.   

reviews.title   The title or heading of the review.   

reviews.userCi 

ty   

The city or location associated with the 

reviewer.   

C. Data Cleaning and Data Preprocessing 

After loading the dataset in the prototype, data cleaning and 

preprocessing are carried out to remove errors and 

inconsistencies and improve its quality. The Pandas.drop() 

method is used to remove unnecessary columns before 

continuing further analysis. The columns selected were 

“name,”  “as is,” “categories,” “reviews.rating,” and 

“reviews.username.”  

After that, cleaning data was resumed by removing the 

missing values (NaNs). This delicate process is essential 

because it enables the models to extract more significant 

insights from the dataset, providing a solid basis for further 
analysis. The dataset becomes more complete by filling in 

these gaps, enabling the models to produce more detailed 

representations from the available data. Fig. 9 shows how to 

handle the missing values by using the dropna() method. 
 

 

Fig. 9  Handling missing values with dropna() method 

 

Furthermore, since column “name” in this data frame is a 

bit messy and needs to be cleaned up, the unique() method has 

been used first to identify the unique product names available 
in the dataset. Then, to standardize it, str.strip() and 

str.replace() are also being used to remove leading and trailing 

whitespaces(spaces, tabs, or newline characters) from a string. 

This method returns a new string with the starting and trailing 

whitespaces removed, without altering the original string. 

Python's str.replace the (old, new) function to swap out 

instances of one substring (old) in a given string for another 

(new). In this case, str.replace (',,,' , ',') were used to replace 

text sequences containing three consecutive commas with a 

single comma. After that, the original column “name”, 

replaced with new column name which is “cleaned_name”.   

Next,  since  column  “cleaned_name”  and 

“reviews.username” are categorical, it need to be coverted 

into numerical format first by using LabelEncoder(). For 

further work, only three columns will be used wich are 

“username_encoded”, “product_name_encoded” and 

“reviews.ratings” Fig. 10 shows how the categorical columns 

were converted into numerical format.   

 
Fig. 10  Convert categorical data into numerical formats 

D. E-commerce Products Recommender System 

After the preprocessing part is done, the cleaned datasets 

are loaded using the surprise library, which imports Dataset 

and Reader. Beside surprise library, other necessaries libraries 

are also imported in this part including numpy, 

tensorflow.keras.models, tensorflow.keras.layers, 

keras.models, keras.optimizers, keras.layers and 
surprise.model_selection. After defining autoencoder model, 

the model then compiles it. The optimizer used is Adam 

optimizer and loss function is 

mean_squared_logarithmic_error. The data is then split into 

training and testing data, which appears to be initializing 

matrices to represent training and test data in a 

recommendation system. The initialization with zeros 

indicates that there is no known interaction or preference 

between users and items. These matrices will be populated 

with actual interaction data during the training and testing 

phases of the recommendation system.    

In addition, the autoencoder model uses the specified 
training data, the ‘train_data’, so that it can learn a 

representation of the input data that captures its important 

features. By using the same data for input and target output, 

the autoencoder is trained to reconstruct the original data. Fig. 

11 shows the training process repeated for 30 epochs, with 

each epoch consisting of batches of 52 samples.    

 

  
Fig. 11  The Training process repeated for 30 epochs consisting of 52 

batches of samples. 

 

The user's attributes or characteristics are captured in the 

subsequent function by the vector representing the user in the 

learned latent space derived from the autoencoder model. The 

representation of an item in the learned latent space is defined 
by the matrix for each row, which is obtained by transposing 

and accessing the weights of the second layer. Next, the user 

representation vector and the transpose of the item 

representation matrix are computed as the dot product. The 

outcome of this operation is a vector of similarity scores, 

where each score denotes how similar the user is to a 
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particular object. Lastly, they are sorted based on similarity 

scores in descending order, indicating the objects that are 

most similar to the user. Recommendations are based on the 

top-N items with the highest similarity scores.     

Presumably, each item in the learned latent space is 

represented by a similarity score that indicates how similar the 

user is to it. It is calculated using the transpose of the item 

representation matrix and the dot product of the user's 

representation vector. Higher similarity scores indicate that an 

item is more relevant or similar to the user and is 
recommended accordingly. Lastly, for accurate visualization, 

part of the code ensures that the label-encoded item IDs 

obtained from the recommendations are transformed back to 

their original item names before displaying the 

recommendations to the user. This decoding step provides 

human-readable information about the recommended items. 

Fig. 12 illustrates the human-readable version of this 

recommendation where the prototype will show previous 

items bought by user ID prompted and recommend new 

products.  

   
Fig. 12  Example of product recommendation 

E. User Interface 

This prototype also includes a Graphic User Interface 
(GUI). As shown in Fig. 13, the prototype can be started by 

opening the “Autoencoder in E-commerce RecSys” in a 

Jupyter notebook or another online or local application that 

supports Python and its libraries.   

 

 
Fig. 13  IPYNB file of the prototype  

The user will first see the pop-up window prompting user 

ID (1-32) only because the number of other user IDs has been 
compressed earlier using the autoencoder model, as shown in 

Fig. 14.   
 

 
Fig. 14  GUI to prompt user ID 

 

After the User ID is prompted, another window will pop up 

to show the recommendation results. The window will first 

show the User ID and the previous item bought. Then, the top 
recommendation for the user ID will be displayed along with 

the similarity scores, as shown in Fig. 15. 

   
Fig. 15  Recommendation results   

F. Evaluation Results 

Mean absolute error (MAE) is a popular metric for 

calculating the average absolute difference between expected 
and actual values. It offers an easy-to-understand method for 

determining the accuracy of a predictive model. The MAE is 

computed by adding together all of the absolute differences 

between each observed and forecasted value and dividing the 

result by the total number of observations. Regardless of the 

direction of the errors, the MAE shows how much predictions, 

on average, differ from the actual data. A lower MAE 

indicates better model accuracy.   

On the other hand, the loss function of a machine learning 

model is represented graphically by loss curves, which are 

usually plotted against the total number of training epochs. As 
the optimization goal during training, the loss function 

measures the discrepancy between the target values and the 

model's predictions. When tracking the learning process and 

deciding on the model's performance, loss curves are a crucial 

tool. Training and validation losses are typically plotted over 

epochs in a loss curve. While the training loss indicates how 

well the model matches the training data, the validation loss 

suggests how well the model generalizes to new data. A 

diminishing training loss is expected as the model improves 

at reducing the error on the training set. The loss function, 

often denoted as  ,is a mathematical expression that 

measures the discrepancy between the predicted values of a 

machine learning model and the true target values. The goal 
during training is to find the values of the parameters θ that 

minimize this loss function, typically achieved through 

optimization algorithms such as gradient descent.  

Similarity scores measure how similar or similar two 

entities—users or items—are in the context of machine 

learning, especially in recommender systems. These scores 

are essential for assessing how relevant an item is to a user or 

how similar users are to one another regarding preferences or 

behavior. It is possible to employ a variety of similarity 

metrics, such as Jaccard similarity, Pearson correlation, and 

cosine similarity [31],[32],[33]. Overall, similarity scores 
play a crucial role in enhancing the personalization and 

effectiveness of recommendation systems by quantifying the 

relationships between entities within the system.   

Fig. 16 depicts the MAE result for both the training and test 

sets. Consistent MAE values between the training and testing 

sets suggest a well-generalized model. This encouraging 

result shows that the model has successfully discovered 

underlying patterns in the data without committing individual 

training examples to memory. A balanced performance on 

both sets suggests that the model is ready to make good 

predictions on unobserved data by collecting key properties 

and avoiding overfitting pitfalls. Table II shows the score 
obtained from the previous technique used.  
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Next, loss curves, specifically training and validation loss 

curves, provide information about how well the model is learning 

over epochs. Monitoring the loss curves helps detect overfitting, 

find the optimal epoch for early stopping, and understand the 

model's convergence. The result is shown in Fig. 17.   

  
Fig. 16  Result obtained 

TABLE II 

MAE SCORE 

Evaluation Metric   Training set   Test Set   
MAE Score   0.2327   0.2327   

 

 
Fig. 17  Loss curves 

 

A decreasing training loss is expected as the model learns 
to minimize the error on the training set. However, the 

validation loss helps identify potential overfitting or 

underfitting issues. This can be described as a good model 

because it demonstrates a decreasing training loss, which is 

ideally a decreasing validation loss without significant 

divergence.  

IV. CONCLUSIONS 

The investigation of recommendation techniques has 
highlighted the advantages and disadvantages of three well-

known approaches: CB, CF, and hybrid. Apart from these 

well-known methods, a new method incorporating generative 

AI— more precisely, the AE technique—has been looked at 

in detail. This research will primarily focus on this novel 

approach, with many models to be implemented and assessed. 

A basic GUI prototype has been created to show off the 

expected features of the program. Metrics like MAE, Loss 

Curves, and Similarity Scores will be used to measure how 

well the models predict ratings within the dataset. 

The next step will involve implementing new models, such 

as VAE, to improve the recommendation system even further. 

Metrics like precision and recall will be included in the 

evaluation to examine the models' performances thoroughly. 

Concurrently, efforts will be focused on finishing and 
improving the system prototype and GUI development. This 

iterative approach aims to guarantee the completeness and 

efficiency of each recommendation system function. The 

dedication to providing a reliable and user-friendly 

recommendation system is demonstrated by the ongoing 

development of both the user interface and the underlying 

models. 
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