
Vol.14 (2024) No. 6

ISSN: 2088-5334

Generative AI Recommender System in E-Commerce

Nur Anis Nabila Binti Mohd Romzi a, Su-Cheng Haw a,*, Wan-Er Kong a, Heru Agus Santoso b,

Gee-Kok Tong a
a Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, Cyberjaya, Malaysia

b Department of Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang, Indonesia

Corresponding author: *sucheng@mmu.edu.my

Abstract—In today's information-rich world, recommender systems are essential for helping consumers find relevant products and

content. The development of efficient recommender systems is still a challenging endeavor even with their broad use. This research

explores different approaches to building recommender systems, emphasizing the use of generative AI to overcome underlying

difficulties. Conventional recommender systems, like collaborative filtering, struggle with problems like sparsity limitations and the

cold start problem. This paper aims to provide a comprehensive overview of recommender system techniques and algorithms, identify

the limitations of existing methods, and highlight open research questions and directions for future development. A thorough and

comprehensive literature analysis of recommender system algorithms is part of the process, ensuring the validity and reliability of the

research. The Autoencoder technique—which has shown to be highly significant and effective—is used for the evaluation. The review

will provide a detailed analysis of potential for improving research on recommender systems, while also thoroughly addressing the

primary challenges and drawbacks of current methodologies. Furthermore, by providing insights into the usage of Generative AI—

more especially, the Autoencoder technique— to improve recommender system accuracy. The study hopes to make a substantial

contribution to the area. Through the identification and resolution of current methods' shortcomings, particularly regarding the

incorporation of Generative AI, the study endeavors to widen up the opportunity for recommendations that are more precise, varied,

and focused on individuals. It is anticipated that the assessment process's use of Autoencoder will highlight the usefulness and efficiency

of the suggested strategy and highlight its significance in the continuous development of recommender systems.

Keywords—Machine learning; generative AI; recommendation system; autoencoder; e-commerce.

Manuscript received 8 Dec. 2023; revised 14 Apr. 2024; accepted 22 Sep. 2024. Date of publication 31 Dec. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The importance of recommendation systems has grown,

mainly since websites like YouTube, Amazon, and Netflix
emerged. Recommendation systems assess customer

preferences and make proactive suggestions for things they

are likely to purchase based on product information, customer

behavior, and other data. Numerous research investigations

have been carried out to create these recommendation systems,

and countless valuable systems have been effectively used in

a range of industries [1]. Nowadays, the majority of services

and products are sold online, making it challenging to build

relationships with clients. As a result, these complex

algorithms are meticulously designed to offer consumers

customized product recommendations. One creative way to
get beyond the constraints of e-commerce services is using

recommendation algorithms.

Designed to provide relevant and tailored experiences,

recommender systems are vital tools for users navigating

through the abundance of content available in today's world

of information. The rapidly developing field of Generative AI

in artificial intelligence is a promising area with the potential

to change recommender systems completely. This innovative

field of artificial intelligence promises to provide novel
aspects to user-centric content recommendations while

addressing the shortcomings of conventional recommender

systems. Evidence of this transformative technique’s success

is observable in various platforms such as Amazon, Netflix,

healthcare [2], food recommendation [3], and e-commerce [4],

where Generative AI has been effectively employed in

recommender systems to enhance the precision and

personalization of content suggestions [5]. Customers find it

very important in the e-commerce version because, for

example, generative AI makes it possible to create highly

personalized suggestions by evaluating each user's unique
behavior and interests [6]. By showing customers products

1823

that closely match their interests, personalization improves

the whole shopping experience and helps customers save time

and effort throughout their search. Customers are more likely

to be happy with their purchases when they obtain

recommendations that match their tastes. This optimized

process can promote client loyalty and repeat business as

consumers gain confidence in the platform's ability to

comprehend and meet their demands. By integrating powerful

generative AI into recommender systems, e-commerce firms

can gain a competitive advantage. In a competitive
marketplace, platforms that provide an exceptional,

customized purchasing experience are more likely to draw in

and keep users. Generative artificial intelligence (AI) in e-

commerce recommender systems helps individual customers

and makes e-commerce platforms more successful and

competitive.

Traditional RS can be broadly grouped into Content-based

(CB), collaborative filtering (CF), Hybrid-based (HB), and

Knowledge-based (KB). CB solutions are widely utilized in

various industries, where they are arguably the most popular

approach. A few examples are websites like Google Play
Store and Amazon.com. Recommendations supplied by the

user, either directly or through interacting with the interface,

are generated by a content-based recommender system. Data

can be utilized to produce suggestions for the user once the

customer profile has been created. As more data sources are

provided by the customer or suggested activities are accepted,

the engine gets more and more accurate. A content

recommendation system often looks at the user's past interests

and suggests related items or services.

By leveraging the interests of similar users, CF

technologies go above and beyond. Accurate
recommendations are made possible using the preferences of

individuals with similar tastes. Locating a group of

individuals with whom the target user shares interests is the

basic tenet of collaborative filtering [7]. The algorithm

forecasts the interests of the target user by considering these

neighbors’ preferences. Amazon is a well-known e-commerce

company that employs collaborative filtering to suggest

products to its customers. When the algorithm locates a

neighbor user for the target user, recommendations can be

produced based on the things these neighbors like. This

neighboring user group functions as a benchmark for item

recommendations, encapsulating the essence of collaborative
filtering in finding a user cluster with interests similar to those

of the target user. Memory-based approaches operate under

the assumption that there is no pre-existing model for

predictions. Instead, they rely on choices derived directly

from the user-item interaction matrix. This approach looks for

similarities between a new user and existing "profiles" by

mapping their regular interactions to determine what products

to present them. By utilizing the popularity of similar items

among users who have comparable experiences with the item,

the goal is to anticipate which item will be best for the new

user. The concept behind item-item recommendation is to
pinpoint items a user might find appealing based on their

positive interactions with other items. If most users engaged

with two separate items (a product, page, or email)

comparably, then the two products are deemed similar. In

contrast to user-user recommendation, this approach focuses

on finding commonalities in interactions between items in an

item matrix as opposed to between users. Therefore,

combining many recommender approaches is one of the best

ways to increase sales and enhance client retention.

Combining the best features of both methods, HB RS adds

content information to collaborative models, weights the

average recommendation from collaborative and content

sources, and generates final recommendations based on the

combined rankings. HB RS is the result of combining CB and

CF [8].

KB or Semantics-based recommender techniques make up
the other group. Context-based and ontology-based methods

are among them. Systems are knowledge-based and use

ontologies to frame knowledge about stakeholders and

material in the recommendation process. For example, e-

learning means that these systems use relational knowledge to

map learner-relevant learning resources [9].

On the other hand, generative AI Intelligence (GAI) is

powered by foundation models (large AI models), enabling

them to handle various tasks beyond conventional boundaries

seamlessly, including summarization, Q&A, classification,

and others. GAI can create customized products to satisfy
users' unique information requirements, and the recently

released ChatGPT greatly helps users express information

demands more precisely through natural language commands.

GAI is purposefully designed for content generation and the

development of robust recommendation systems. Leveraging

supervised learning, the model undergoes a dynamic learning

process directly from the data it encounters. Also,

implementing embeddings is integral to the system,

facilitating the computation of similarity between

recommendation embeddings. A higher degree of similarity

between these embeddings indicates a closer semantic
relationship, which improves the system's capacity to make

more contextually relevant recommendations. E-commerce

platforms like Amazon employ generative AI algorithms to

provide tailored product recommendations that are predicated

on consumers' past purchases and browsing patterns.

II. MATERIALS AND METHOD

A. Phases in RS

1) Traditional RS: To give consumers individualized

ideas, recommendation systems must be created using several

crucial procedures. First, gather data through explicit (such as

ratings) and implicit (such as clicks) input. Afterward, enter

the learning phase, during which the system uses this

information to comprehend user preferences. To do this,

profiles that reflect user preferences and objects' features must

be created. Lastly, the system applies all the knowledge it has
gathered to forecast and recommend products that consumers

may find interesting but haven't seen. This procedure

enhances user satisfaction by ensuring that recommendations

are customized to each user's preferences [10], [11]. The

implementations underlying the recommendation phases are

depicted in Fig. 1. The Information collection phase requires

a robust user profile or model. This first step collects relevant

user data, including the user's attributes, behaviors, and the

content of the resources they visit, to build a user profile or

model for taste prediction. To successfully make

recommendations that are appropriate for the user's

1824

preferences, the system requires as much information from

the user as possible.

Fig. 1 Phases in RS

Therefore, the model's capacity to represent users' current

choices or preferences is a crucial factor in the effectiveness

of a recommender system or recommendation. User input data

can be gathered in three ways: explicit, implicit, and hybrid

feedback. With implicit feedback, the user's preferences are

automatically set by the system based on an analysis of their

past browsing patterns, purchasing patterns, clicked links, and

amount of time spent on various websites. The user doesn't

have to do anything; instead, it analyses and gives

recommendations on its own, as previously said. This

approach is frequently regarded as less precise even if it does
not demand the same level of user effort. This input method's

benefit is that it makes data collection more accessible and

less demanding for the user [12].

Since explicit feedback solicits the user's direct input

regarding product preferences, its efficacy depends on

accuracy. This input requests ratings for multiple products

from users via the system interface, which helps build and

improve the recommendation model. The quantity and caliber

of these user-provided ratings directly affect the

recommendations' accuracy. In other words,

recommendations get more precise and well-rounded the

more perceptive and numerous opinions are. Since explicit
feedback does not involve deriving preferences from actions,

it still provides more reliable data even though it necessitates

more user work. Additionally, because it offers transparency

into the recommendation process, it raises perceived

recommendation quality and increases confidence in the

recommendations [12].

Additionally, users who wish to show their interest directly

can only provide feedback through hybrid feedback, which

combines explicit and implicit feedback ratings. This

approach empowers users by allowing them to provide input

explicitly, emphasizing the importance of their active

expression of interest in a choice. Within this hybrid

framework, the system adeptly incorporates indirect data as a
valuable attribute for recommendation generation, ensuring a

comprehensive understanding of user preferences. This

feedback can be obtained by letting consumers give direct

input and ratings while using indirect data as a

recommendation attribute.

In the learning phase, the user data collected during the

information-gathering phase is subjected to learning

algorithms. This phase's trained data offers specific patterns

to predict the user's future actions or interests. During the

suggestion stage, the learning algorithms assist in identifying

the appropriate patterns that are pertinent for application [5]
The recommendation phase suggests the kinds of products

a customer or user would find appealing. Recommendations

may be given directly from the dataset gathered in the

information gathering stage (model—or memory-based) or

indirectly via the system's observation of users' browsing

histories. The available filtering techniques will be discussed

in Section II (B).

2) Generative AI: Within the swiftly evolving landscape

of artificial intelligence, Generative AI emerges as a rapidly

advancing subfield with the transformative potential to

revolutionize recommender systems. Its forward momentum
promises to surmount existing limitations and elevate the

capabilities of these systems to new heights. Generative AI

models, such as Generative Adversarial Networks (GAN) and

Variational Autoencoders (VAE), demonstrate proficiency in

producing innovative and high-quality data by learning from

existing samples. Their aptitude for crafting new data holds

substantial promise for recommender systems, as these

systems heavily depend on data to understand user

preferences and deliver precise recommendations.

Fig. 2 Architecture of generative AI in recommender system

1825

In the Data Collection and Pre-processing Step, there is

data collection and pre-processing, a fundamental step in

which unprocessed data is carefully cleaned up and arranged.

The data must be cleaned, formatted, and transformed in this

first step to be effectively used later. Gathering a diverse and

representative dataset, such as high-quality images, is crucial

to align with the desired output domain. The data will be pre-

processed later to ensure consistency, remove noise, and

prepare for model training. Pre-processing, a crucial stage in

which raw data is meticulously cleansed and organized,
comes before data gathering. For the data to be used

efficiently in subsequent steps, it must be cleaned, formatted,

and converted in this initial step. A varied and representative

dataset—such as high-quality images—must be gathered to

correspond with the intended output domain. Later, the data

will undergo preprocessing to guarantee consistency,

eliminate noise, and prepare for model training.

Choosing an appropriate model is crucial to get the desired

results in the Model Architecture Selection Phase. Various

models have unique features that are appropriate for particular

applications. Variational Autoencoders (VAEs) are a popular
model architecture in generative AI that may be used to learn

the dataset's distribution. After that, realistic visuals and other

creative content are produced using Generative Adversarial

Networks (GANs), and lastly, the following word in a

sequence can be predicted by Autoregressive models. Using

GANs or VAEs to produce new interaction recommendations,

generative model layers train the model to recognize patterns

in user-item interactions. While VAEs concentrate on

encoding and decoding latent representations, GANs have a

generator that generates fresh samples and a discriminator that

provides feedback.
Following the selection of the model architecture, the

training process begins in the Model Training phase. The

model is trained using a dataset that contains input data. The

training process depends on the selected model and usually

involves regularization, gradient descent, and

backpropagation to maximize model parameters. Reducing

the difference between the output of the model and the actual

data, or ground truth, is the primary goal of training. Thanks

to this optimization process, the model can generate material

that closely resembles the patterns found in the training data.

As a result, the model can produce material similar to the

training set.
This is accomplished by comparing it to predetermined

criteria and benchmarks during the Evaluate and Refine

process. Using these measures, you can evaluate the created

output's quality, coherence, and realism. If the outcomes don't

meet your expectations, you can adjust the model iteratively.

This iterative procedure may involve tweaking the dataset,

changing the training parameters, or altering the architecture.

Remember that reaching optimal performance is a process

that requires incremental steps, and it may take several

attempts to get the necessary level of satisfaction with the

model's output.
After being satisfied with how the generative AI model

performs in the Test and Validate phase, it becomes essential

to conduct thorough testing and validation. It can be done by

testing it on a separate dataset that has not been seen before to

see how well it can generalize to new data. Additionally,

assess the model's capability to produce varied and coherent

outputs in diverse scenarios. Lastly, the results are compared

against human judgment and domain-specific criteria to

ensure the model's reliability and effectiveness.

The deployment and integration layer are where the

generative AI process ends in the Deploy and Integrate phase.

The improved model is incorporated into proper systems,

platforms, or applications, enabling end users to access its

creative results. While integration guarantees smooth

communication with current frameworks or technologies,

deployment entails the purposeful use of those changes.
Gather user feedback and opinions, monitor the model’s

performance, and make changes. Continuous improvement

will always help to keep the model relevant and effective. Fig.

3 shows the end-to-end process of generative AI.

Fig. 3 End-to-end process of generative AI

B. RS Techniques

1) CB: CB approaches leverage item or user metadata to

formulate tailored recommendations. This involves

examining the user's purchasing history as a critical factor.

For instance, a user is assumed to prefer a certain author or

brand if they have interacted with that author's book or brand's

product. Additionally, there's a chance they'll purchase a

comparable item later.

The three components of CB RS's architecture are a content

analyzer, a profile learner (generator), and a filtering

component. Fig. 4 illustrates this architecture. The Content

Analyzer uses feature extraction techniques to gather item

content from various information sources and derives item
representations. The Profile Learner generates a user profile

based on previous likes and dislikes by generalizing user input

and applying machine learning algorithms to the item

representation. The filtering component matches the user

profile with recommended items in the final stage [14].

Fig. 4 Architecture of content-based

A content-based book recommendation engine that uses

online book information is also shown. The system creates a

user profile by analyzing data taken from the web using a

1826

Naïve Bayes classifier. Using user-provided training

examples, this profile plays a crucial role in producing a

prioritized list of book titles. By enumerating the attributes

that contribute to the top ratings, the system can explain any

suggestions it makes to consumers. This gives people

complete confidence in the advice the system gives them.

2) CF: Collaborative filtering examines user relationships

and product interdependencies to find new user-item

correlations. User behavior or user evaluations of

recommended things are the foundation for CF
recommendations. It investigates a variety of potential

materials and suggests items loved by users who are similar

to you [15]Through a learner profile, RS can obtain data like

the learner's age, nationality, past educational experiences,

and educational background, among other things. Memory-

based and model-based collaborative filtering are the two

primary categories. Particularly accurate collaborative

filtering systems consider data from multiple users as opposed

to just one. One benefit of the CF is that it is independent of

the content. As a result, it may recommend sophisticated

products like films without the requirement for metadata
analysis.

When making suggestions, memory-based recommenders

depend on the direct similarities between users or items.

Typically, these systems leverage unprocessed historical user

interaction data, like user-item ratings or purchase histories,

to discern likenesses between users or items and formulate

personalized recommendations. User-based and item-based

collaborative filtering are the primary categories into which

memory-based recommenders fall.

The user-based approach involves suggesting items to the

target user by identifying others with similar behavior or
preferences. This entails finding users who closely resemble

the target user based on past interactions with items. This

results in recommendations like "users who are similar to you

also liked..." such as Jenny and Tom, both avid fans of sci-fi

books. In practical terms, if a new sci-fi book surfaces and

Jenny purchases it, the same book would be recommended to

Tom because of his shared fondness for sci-fi books.

Item-based collaborative filtering is a technique that finds

things that resemble the ones the target user has already

engaged with to make suggestions. The goal is to identify

products with comparable user experiences and suggest those

products to the intended user. This can include
recommendations of the kind "users who liked this item also

liked...". For example, let's say that Fahrenheit 451 and The

Time Machine are two science fiction novels for which John,

Robert, and Jenny gave five stars. As a result, the system

suggests The Time Machine to Tom after he purchases

Fahrenheit 451 since it believes it to be comparable based on

user ratings.

Next, model-based recommenders use machine learning

models to produce recommendations. These systems carefully

extract patterns, correlations, and linkages from past user-

item interaction data. By absorbing insights from this data,
model-based recommenders can forecast a user's preferences

for products they haven't interacted with before. Several

approaches are used in the field of model-based

recommenders, demonstrating the adaptability of this

methodology. These methods include neural networks, matrix

factorization, and Singular Value Decomposition (SVD),

each with a unique advantage in producing precise and

customized recommendations.

Despite this, matrix factorization is a popular method for

collaborative filtering. The models are better than

conventional nearest-neighbor methods for suggesting

products because they can include extra data such as implicit

feedback, temporal effects, and confidence levels. Some of

the best realizations of latent factor models are based on

matrix factorization.

Matrix factorization, in its most basic form, uses vectors of
factors created from patterns in item ratings to represent both

items and users. The ability to include more information is

one of matrix factorization's strengths. Recommender systems

can infer user preferences from implicit feedback when no

explicit feedback is available. Indirect feedback is the

expression of opinions through user behavior, such as past

purchases, browsing habits, search activity, or even mouse

movements. Implicit feedback is typically shown by the

existence or non-existence of an event, which is sometimes

depicted as a heavily packed matrix.

3) HB: Combining multiple recommender methods to
provide more personalized, different, and effective

recommendations is one of the best ways to increase sales and

improve client retention. Especially when recommendations

are made in real life, they generate more dependable, precise,

and adaptable ideas. Content-based and collaborative filtering

are combined, and both techniques are used to classify and

recommend products to customers. This method was created

to address the shortcomings of the CF methodology, such as

sparsity and diversity, while also utilizing the benefits of

memory and model-based CF techniques. Depending on the

unique needs and limitations of the recommendation system,
as well as the type of data that is accessible, a hybrid method

may be chosen. Netflix exemplifies hybrid filtering by

suggesting similar films based on user ratings (content-based

filtering) and comparing a user's past with other users who are

similar to them (collaborative filtering). The features

produced by one recommendation technique are fed into

another recommendation strategy in the feature-combination

hybrid technique. The feature augmentation technique creates

a model that is always richer in terms of information usage

than a single rating by using the ratings and other pertinent

data generated by a prior recommendation system as input for

another recommender [12]. The metalevel hybrid technique
learns a second recommendation algorithm from a first

algorithm by using the full model as input [16] which is shown

in Fig. 5 below on how the HB filtering works.

One good consequence of using hybrid recommenders is

that they are frequently robust in managing different

suggestion scenarios. They can adjust to user behaviors, data

features, and recommendation difficulties. Such adaptability

is helpful for practical recommendation systems. It also can

mitigate the limitations of individual recommendation

techniques. For example, they can tackle the "cold-start"

challenge for new users and items by incorporating content-
based recommendations, offering unexpected suggestions,

and mitigating popularity bias.

1827

Fig. 5 HB filtering

4) Generative AI: Recently, recommender systems have
benefited from applying various AI techniques, improving

user happiness and the overall user experience. AI makes

recommendations of a higher caliber than those made with

traditional techniques. Automation of intelligent behavior is

the aim of AI technology development. These six domains

include knowledge engineering, reasoning, planning,

communication, perception, and motion [17]. Hence, the next

step will explain techniques to achieve the desired outcome.

Fig. 6 explains the AI areas and the techniques used.

Fig. 6 The AI areas and the techniques used

Transfer learning has emerged as a method for knowledge

engineering, whereby information is transferred transferring

data from a large source domain to a small target domain [18].

According to this definition, transfer learning uses
information from one or more source data to help with target

data in a learning activity. Transfer learning methodologies

can be divided into three main categories: unsupervised

transfer learning, transductive transfer learning, and inductive

transfer learning. The fundamental principle of active learning

is to select training data with the purpose of maximizing

machine learning performance with minimal information

requirements. Users may be asked to name occurrences not

labeled by an active learning system. Active learning has

useful applications in different AI disciplines, especially well-

suited for online systems since labeling can be expensive,

time-consuming, and sometimes impractical. For reasoning,
the techniques used are deep neural networks (DDNs) and

fuzzy. DNNs can model nonlinear relationships effectively.

Recommender systems often involve non-linear dependencies

between user preferences and item characteristics, and DNNs

can capture these nuances. DNNs can be used for matrix

factorization, a common technique in recommender systems.

They can learn latent factors representing user and item

embeddings, capturing implicit relationships in the data.

Since fuzzy techniques can replicate real-world concepts that

cannot be adequately described, they are frequently used in

artificial intelligence (AI). Fuzzy approaches have drawn

much interest in the literature. For example, fuzzy distance

has been used to describe similar instances and fuzzy sets
have been utilized by researchers to represent linguistic

variables when feature values cannot be adequately expressed

in numerical values [18].

Afterward, reinforcement learning and evolutionary

algorithms participate in the planning domain. Evolutionary

algorithms (EA) are a subclass of population-based search

algorithms for global optimization in artificial intelligence

that is inspired by natural processes. Some potential answers

to a problem that needs to be solved make up an initial

population, also known as the parent population. An

evolutionary algorithm starts at this point. Genetic operators,
such as crossover and mutation, are applied to parent

individuals to create new solutions, referred to as offspring.

The selection of individuals who will become parents is based

on their suitability as future parents. This process continues

until a few conditions are met to end it.

The recommender system is seen as a learning agent in

reinforcement learning; user behaviors match states, and user

actions are suggestions generated by the system. The prize is

the feedback that users leave on the suggestion results, such

as the frequency of click-throughs or the duration of time

spent on the page. The aim is to find a value function or
method that enables consumers to maximize long-term

advantages.

In order to address the problem of data sparsity in

communication, most recommender systems also enrich the

rating matrix with review data acquired via natural language

processing. In extreme cases, virtual ratings are generated

utilizing the emotion polarity obtained from review

classification without ratings. Topic models evaluate item

metadata in "bag-of-words" representation and use matrix

factorization techniques to handle both warm-start and cold-

start circumstances. The researcher improved suggestions

with feature sentiment and product experience by mining
feature-based product descriptions from reviews, resulting in

better items based on user inquiries [19].

In summary, the direct application of computer vision in

picture recommendation—mapping images to user

preferences—contributes to recommender systems. Deep

neural networks were used to extract information from

photographs in early e-commerce suggestions, which were

then integrated into pre-existing techniques for apparel

recommendations [17]. This was extended in a later study by

using low-level data, like color qualities, that mimicked parts

of the human visual system. This provided a fresh viewpoint
on user preferences in movie recommendations by creatively

integrating visual elements from still frames and movie

posters with a matrix factorization algorithm. Point-of-

interest recommendations have also used visual content, using

the wealth of landmarks included in pictures and images

uploaded by users.

1828

C. Related Works

In the study by Ferreira et al. [20], challenges were

encountered when employing matrix factorization techniques,

such as SVD, due to the utilization of a dataset characterized
by its sparsity and large size. The project intends to enhance

some recommendation system-related areas. The task's loss

function had to be Mean Squared Error (MSE) since it did not

involve a classification problem where binary cross-entropy

could be used. The fact that ADAM stands out as one of the

most significant choices and is renowned for its speed, low

memory usage, and ability to handle big datasets impacted the

optimizer selection—a consistent strategy with this article.

The evolution of loss and validation loss (val_loss) show a

declining trend over each epoch, ultimately stabilizing at a

point. The absence of an intersection between the loss curve
and val_loss is attributed to the addition of the dropout layer,

which exclusively affects the training dataset, leading to the

observed disparity between them. Despite the inherent

challenges associated with very sparse datasets and the

application of a collaborative filtering approach, the study

anticipated problems but found that the autoencoder model

effectively overcame them. The Root Mean Squared Error

(RMSE) value of 0.996 indicates the model's success in

providing recommendations aligned with users' interests,

unaffected by the data sparsity problem. The obtained results

are promising, showcasing an RMSE value of 0.029 for the

first and 0.010 for the second datasets.
In the following study, Tran et al. [21]demonstrated

outstanding potential by implementing a deep Autoencoder

(DAE) for recommendation systems in an efficient manner.

They built a flexible deep neural network model, called the

FlexEncoder model, that combines characteristics and

methods from multiple sources into an all-encompassing

DAE model. Characterized by unique features and tunable

parameters, this FlexEncoder model enables a comprehensive

examination of parameter impacts on recommender system

prediction accuracy. This method incorporates novel features

from previous publications to make identifying the best
performance parameters for a particular dataset easier. The

ADAM optimizer, the SELU activation function, and one

round of dense refeeding with mean normalization enabled

were among the standard parameters used in the study that

contributed to an RMSE in the range of 0.90 to 0.91. The

authors conducted a thorough evaluation analysis to

substantiate their assertion that the parameters significantly

selected impact the DAE model's prediction accuracy. The

FlexEncoder model outperformed other cutting-edge

recommendation algorithms and showed the lowest RMSE

when tested against current methods on the MovieLens 100K

dataset. In particular, the FlexEncoder outperformed AutoRec
(0.887) and SVD++ (0.903) with an RMSE score of 0.833.

These comparative RMSE findings were taken from another

study.

Other than that, Zhang et al. [18] emphasized the

widespread use of conventional recommender systems,

encompassing knowledge-based, collaborative filtering,

content-based, and hybrid models created in the past ten years.

Even still, these models suffer from issues related to cold start

and data sparsity, which causes a large reduction in

recommendation performance in sparse user-item interactions.

The inability of recommendation systems to offer suggestions

for new users and things gives rise to the cold start issue.

Researchers have developed innovative recommendation

methods that use side data about individuals or objects to

address these problems. However, these models' limitations in

collecting customers' preferences and item attributes

frequently limit the improvement in recommended

performance. As a result, Autoencoder (AE) has become a

powerful method for extracting essential features from data,

transforming recommendation structures, and providing

improved user experiences. The authors stressed the
widespread use of recall and Root Mean Square Error (RMSE)

as evaluation measures. Mean Average Error (MAE) and

RMSE are commonly used for rating prediction assessment.

While accuracy and recall are still frequently employed to

evaluate classification results, recall, Mean Average Precision

(MAP), and Normalized Discounted Cumulative Gain

(NDCG) are preferred for giving correctly indicated items in

top ranks more credit.

In the following paper, Rama et al. [22] integrated

embeddings into a deep neural network using autoencoder

features for recommender system rating prediction. They
demonstrated a method for establishing a benchmark for

prediction accuracy using DAFERec (Deep Autoencoders for

Feature Learning for Recommendations). DAFERec uses the

innermost layer activations of a deep autoencoder as features

in a deep neural network for recommendation. This technique

combines the innermost activations of the autoencoders with

embeddings to incorporate higher-order innermost nonlinear

latent characteristics from both user and item autoencoders.

Using latent variables, one can learn a compressed higher-

order representation of user preferences or item attributes in

recommender systems, enabling the Deep Neural Network
(DNN) to learn it. Like the approaching method in this study,

they started with a list of user-item-rating tuples and turned it

into a rating matrix. The details of data preparation were not

explored; instead, the standard pivot operation in several

programming languages was used. The authors employed the

tenfold cross-validation technique to confirm the

dependability of their findings.

Furthermore, based on Loukili et al.[23], they have

succeeded in a significant milestone by developing an

algorithm to provide personalized recommendations to

customers, employing association rules through the utilization

of the Frequent Pattern Growth algorithm. This new method
has shown outstanding results, with a high chance that

customers will buy the following product suggested by the

system. The study focuses on assessing how well the

recommendation system performs, which is done by

calculating the average probability (Paverage) connected to

the chance that customers will buy the following suggested

product. The evaluation metric is a pivotal indicator of the

system's effectiveness in accurately suggesting items that

align with individual customer preferences, ultimately

contributing to an enhanced user experience and increased

customer satisfaction. The success of this algorithm not only
underscores its potential in optimizing recommendation

systems but also signifies a promising step towards delivering

more tailored and relevant suggestions to users in various

domains.

Additionally, retailers and service providers invest more

money in social media, e-commerce, mobile, and internet

1829

channels to improve customer engagement and

communication with current and potential customers and

increase sales. Thus, studies conducted by Grewal et al. [24]

explained in detail how predictive analytics helps estimate

people's product preferences, price sensitivity, and expected

next steps on the customer journey—all critical for improving

business activities. This is accomplished by utilizing big data

and advanced analytics tools to obtain knowledge and

generate tailored recommendations based on client

information. Furthermore, clear suggestions and insight into
the AI system are made possible by explainable AI (XAI)

techniques, which eventually boost confidence and lessen

algorithmic biases. However, the study also discusses the

possible dangers of the "big data revolution," especially as

they relate to data security, and it highlights the significance

of having better data that is influenced by the arts and sciences

of marketing and creativity in addition to the science of

robotics, AI, and machine learning.

Then, the techniques used for the recommendation system

on Amazon are discussed by Rybakov et al. [25] mentioned

in this study. The use of neural networks in a personalized
recommender system to make product recommendations

based on implicit feedback from customers—such as past

purchases, listens, or watches—is covered in this research.

Additionally, offline assessment metrics—like Product

Converted Coverage (PCC) at K and Precision at K—that are

frequently employed in real-world recommender system

applications are presented in this work. The use of a deep

learning package that facilitates parallel training with the

multi-GPU model is also mentioned in the research. This is a

crucial feature for developing neural network-based

recommenders with massive input and output data
dimensionality. Additionally, the study mentions the Deep

Scalable Sparse Tensor Network Engine (DSSTNE) at

Amazon and the utilization of Apache Spark for

recommendation generation at Amazon scale, demonstrating

the usefulness of the methods covered in the research at

Amazon. Among these, the advantages are increased accuracy

metrics as the research has shown that using a hybrid method

that combines predictor and auto-encoder models leads to

improvements in accuracy metrics like Product Converted

Coverage (PCC) and precision in a variety of digital product

categories.

Consequently, Yu et al. [26] claimed that collaborative
filtering frequently faces difficulties while handling sparse

data. Model-based Collaborative Filtering Algorithm Based

on Stacked AutoEncoder (MCFSAE), By first converting the

rating matrix into a high-dimensional classification dataset

the same size as the entire number of ratings, the suggested

solution effectively eliminates this problem. Because the

ratings are typically broad, this method guarantees strong

categorization performance. The authors utilize Stacked

AutoEncoder, a skilled nonlinear feature reduction approach,

to leverage the high-dimensional classification dataset and

produce an elevated low-dimensional feature depiction.
Experimental results show that MCFSAE outperforms other

collaborative filtering (CF) models, particularly in the case of

sparse rating matrices. Even with the large-scale training

dataset that was gathered, MCFSAE effectively resolves the

sparsity issue that existed in the initial recommendation task.

Furthermore, v. To assist in creating a high level, low-

dimensional feature representation of the original data,

stacked autoencoders (SAE) are used. According to

experimental findings, the suggested MCFSAE operates

better than the most advanced CF approaches in rating

prediction, especially when dealing with sparse rating

matrices, because of the remarkable representation

performance of SAE.

Next, Lacic et al. [27] recommendation approach shown in

this work encodes sessions inside the job domain using

several autoencoder architectures. The inferred latent session
representations are used in a k-nearest neighbor fashion to

recommend jobs within a session. Three autoencoder types

are used in the study: variational autoencoder (VAE),

denoising autoencoder (DAE), and classical autoencoder

(AE). A single hidden layer separates the input and output of

the most basic AE. By corrupting the input on one or more

layers prior to computing the final output, DAE, on the other

hand, develops representations that are resilient to minute,

insignificant changes in the input. Alternatively, VAE uses

variational inference to retrieve latent representations. Similar

to our methodology in this research, the authors performed a
grid search on hyperparameters for baseline approaches using

a validation set. They then assessed the models on three

datasets using NCDG, MRR, Session-based novelty (EPD),

and System-based novelty (EPC).

Lastly, Sachdeva et al. [28] presented a recurrent variant of

the Variational Autoencoder (VAE), in which they chose to

run a recurrent neural network (RNN) on the consumption

sequence subset rather than running a fraction of the full

history without taking temporal dependencies into account.

The sequence passes through several fully connected layers at

each RNN time step in this configuration. The probability
distribution of the most likely future preferences is modeled

by the output from these layers. The authors show that adding

temporal information is essential to improving the VAE's

accuracy. Their model achieves significant improvements

over the state-of-the-art, demonstrating its capacity to employ

the recurrent encoder to capture temporal relationships inside

the user-consumption sequence while adhering to the

fundamental ideas of variational autoencoders. They also

perform sensitivity analysis concerning the

configurations/contour circumstances under which Sequential

Variational Autoencoder (SVAE) performs best. The main

finding from their tests is that, for the top-N recommendation
task, SVAE outperforms the state-of-the-art in several criteria.

The evaluation concentrates on top-N recommendations

while considering implicit preferences, using measures like

NCDG, Precision, and Recall. On the MovieLens-1M and

Netflix datasets, SVAE continuously beats rivals, exhibiting

notable gains in all metrics.

III. RESULTS AND DISCUSSION

A. Theoretical Framework

1) Autoencoder Architecture (AE): Neural networks

designed for efficient coding, dimensionality reduction, and

generative modeling are good candidates for unsupervised

learning tasks, such as auto-encoders. It has been useful in

learning underlying feature representation in some domains,

including computer vision, speech recognition, and language

modelling. With this knowledge in mind, autoencoders have

1830

been incorporated into new suggestion designs, expanding the

possibilities for developing creative user experiences that

appeal to customers. An auto-encoder consists of three layers:

input, hidden, and output, as shown in Fig. 7. The input layer

is where the data is received. The input layer and the hidden

layer combine to form an encoder. The output layer and the

hidden layer combine to form a decoder [29].The output layer

is where the output data exits.

Fig. 7 Autoencoder architecture

The encoder encodes the high-dimensional input data x

into a lower-dimensional hidden representation h with a
function f in Equation (1).

 ℎ = �(�) = �� (�� + �) (1)

where Sf is an activation function, W is the weight matrix, and

b is the bias vector.

The decoder decodes the hidden representation h back to a

reconstruction x’ by another function g in Equation (2).

 x' = g(h) = Sg (W'h + b') (2)

where Sg is an activation function, W’ is the weight matrix,

and b’ is the bias vector.

Non-linear options for Sf and Sg include Sigmoid, TanH,

and ReLU. The auto-encoder can learn More meaningful

features as a result, compared to other unsupervised linear

techniques like Principal Component Analysis. The auto-

encoder was trained to use the squared error for regression

tasks or the cross-entropy error for classification tasks to

minimize the reconstruction error between x and x's.

The formula for the squared error as per Equation (3).

 �� (�, �′) = ||� − �′||2 (3)

2) Variational Autoencoder Architecture (VAE): The

extension of AE is called VAE [30] As shown in Fig. 8, the

bottleneck will have a sampling layer rather than a

straightforward dense layer. This layer will employ the mean

and variance from the previous encoder layer to create a

Gaussian sample that will be used as input for the decoder.

The first layer of the AE also uses dropout.

Fig. 8 VAE architecture

In the sampling layer, a latent vector z will be generated by

sampling from a Gaussian distribution with mean mu and

standard deviation sigma. This is the reparameterization trick,

which allows the network to be trained using gradient descent.

Equation (4) shows the sampling layer.

 Z =μ + σ ϵ (4)

where μ = is the mean vector, σ = is the standard deviation

vector, ϵ = is a random sample from a standard normal
distribution.

Then, to encourage the distribution of latent vectors to be

close to a standard normal distribution, a term related to the

Kullback-Leibler (KL) divergence is added to the loss

function, as shown in Equation (5).

 KL loss=−21∑i=1K(1+log(σi2)−μi2−σi2) (5)

Next, dropout is a regularization method that neural

networks frequently employ to avoid overfitting. During

training, it arbitrarily sets a portion of the input units to zero.

Dropout is applied to the encoder's initial layer in the VAE

scenario.

 Output = Input Mask

where Input = input vector, Mask = binary mask with values

randomly set to 0 or 1 during training.

Thus, VAE introduces a sampling layer in the bottleneck,

which involves generating a latent vector by sampling from a

Gaussian distribution. Additionally, dropout is applied to the

first layer of the encoder for regularization. The KL

divergence loss encourages the learned latent space to

approximate a standard normal distribution, promoting a

continuous and structured latent space. The equations

provided are simplified representations, and the actual
implementation might include additional details for practical

considerations.

B. Dataset

The dataset for model training in this prototype is Amazon

Consumer Review, obtained from the Kaggle Website

provided by Datafiniti’s Product Database. The dataset is

loaded into a pandas DataFrame after importing the necessary

libraries for developing the recommendation system. This

dataset consisted of 22 columns of features, but only five
columns were used for further exploration, as listed in Table I.

TABLE I

DESCRIPTION ON DATASET

Column Name Description

id Unique ID for every product purchase

name Name of each product

asins A list of ASINs (Amazon Standard

Identification Numbers) associated with

the product.

categories Categories for every product, indicating

its classification

reviews.ratings Overall ratings given by users in

product review

reviews.userna me People that rating for every product they

reviewed

brand Brand for each product

keys Universal Product Code (UPC), unique

product barcode used for retail and

online sales

1831

Column Name Description

manufacturer The company or entity responsible for

manufacturing the product.

reviews.date The date when a review was posted.

reviews.dateA dded The date when the review was added to

the system or dataset.

reviews.dataSe en The date when the review data was last

seen or accessed.

reviews.didPur chase Indicates whether the reviewer claims

to have purchased the product.

reviews.doRec

ommend

Indicates whether the reviewer

recommends the product.

reviews.id A unique identifier for each review.

reviews.numH

elpful

The number of users who found the

review helpful.

reviews.rating The specific rating given by the

reviewer in the review.

reviews.source URLs URLs pointing to the source of the

reviews.

reviews.text The text content of the review.

reviews.title The title or heading of the review.

reviews.userCi

ty

The city or location associated with the

reviewer.

C. Data Cleaning and Data Preprocessing

After loading the dataset in the prototype, data cleaning and

preprocessing are carried out to remove errors and

inconsistencies and improve its quality. The Pandas.drop()

method is used to remove unnecessary columns before

continuing further analysis. The columns selected were

“name,” “as is,” “categories,” “reviews.rating,” and

“reviews.username.”

After that, cleaning data was resumed by removing the

missing values (NaNs). This delicate process is essential

because it enables the models to extract more significant

insights from the dataset, providing a solid basis for further
analysis. The dataset becomes more complete by filling in

these gaps, enabling the models to produce more detailed

representations from the available data. Fig. 9 shows how to

handle the missing values by using the dropna() method.

Fig. 9 Handling missing values with dropna() method

Furthermore, since column “name” in this data frame is a

bit messy and needs to be cleaned up, the unique() method has

been used first to identify the unique product names available
in the dataset. Then, to standardize it, str.strip() and

str.replace() are also being used to remove leading and trailing

whitespaces(spaces, tabs, or newline characters) from a string.

This method returns a new string with the starting and trailing

whitespaces removed, without altering the original string.

Python's str.replace the (old, new) function to swap out

instances of one substring (old) in a given string for another

(new). In this case, str.replace (',,,' , ',') were used to replace

text sequences containing three consecutive commas with a

single comma. After that, the original column “name”,

replaced with new column name which is “cleaned_name”.

Next, since column “cleaned_name” and

“reviews.username” are categorical, it need to be coverted

into numerical format first by using LabelEncoder(). For

further work, only three columns will be used wich are

“username_encoded”, “product_name_encoded” and

“reviews.ratings” Fig. 10 shows how the categorical columns

were converted into numerical format.

Fig. 10 Convert categorical data into numerical formats

D. E-commerce Products Recommender System

After the preprocessing part is done, the cleaned datasets

are loaded using the surprise library, which imports Dataset

and Reader. Beside surprise library, other necessaries libraries

are also imported in this part including numpy,

tensorflow.keras.models, tensorflow.keras.layers,

keras.models, keras.optimizers, keras.layers and
surprise.model_selection. After defining autoencoder model,

the model then compiles it. The optimizer used is Adam

optimizer and loss function is

mean_squared_logarithmic_error. The data is then split into

training and testing data, which appears to be initializing

matrices to represent training and test data in a

recommendation system. The initialization with zeros

indicates that there is no known interaction or preference

between users and items. These matrices will be populated

with actual interaction data during the training and testing

phases of the recommendation system.

In addition, the autoencoder model uses the specified
training data, the ‘train_data’, so that it can learn a

representation of the input data that captures its important

features. By using the same data for input and target output,

the autoencoder is trained to reconstruct the original data. Fig.

11 shows the training process repeated for 30 epochs, with

each epoch consisting of batches of 52 samples.

Fig. 11 The Training process repeated for 30 epochs consisting of 52

batches of samples.

The user's attributes or characteristics are captured in the

subsequent function by the vector representing the user in the

learned latent space derived from the autoencoder model. The

representation of an item in the learned latent space is defined
by the matrix for each row, which is obtained by transposing

and accessing the weights of the second layer. Next, the user

representation vector and the transpose of the item

representation matrix are computed as the dot product. The

outcome of this operation is a vector of similarity scores,

where each score denotes how similar the user is to a

1832

particular object. Lastly, they are sorted based on similarity

scores in descending order, indicating the objects that are

most similar to the user. Recommendations are based on the

top-N items with the highest similarity scores.

Presumably, each item in the learned latent space is

represented by a similarity score that indicates how similar the

user is to it. It is calculated using the transpose of the item

representation matrix and the dot product of the user's

representation vector. Higher similarity scores indicate that an

item is more relevant or similar to the user and is
recommended accordingly. Lastly, for accurate visualization,

part of the code ensures that the label-encoded item IDs

obtained from the recommendations are transformed back to

their original item names before displaying the

recommendations to the user. This decoding step provides

human-readable information about the recommended items.

Fig. 12 illustrates the human-readable version of this

recommendation where the prototype will show previous

items bought by user ID prompted and recommend new

products.

Fig. 12 Example of product recommendation

E. User Interface

This prototype also includes a Graphic User Interface
(GUI). As shown in Fig. 13, the prototype can be started by

opening the “Autoencoder in E-commerce RecSys” in a

Jupyter notebook or another online or local application that

supports Python and its libraries.

Fig. 13 IPYNB file of the prototype

The user will first see the pop-up window prompting user

ID (1-32) only because the number of other user IDs has been
compressed earlier using the autoencoder model, as shown in

Fig. 14.

Fig. 14 GUI to prompt user ID

After the User ID is prompted, another window will pop up

to show the recommendation results. The window will first

show the User ID and the previous item bought. Then, the top
recommendation for the user ID will be displayed along with

the similarity scores, as shown in Fig. 15.

Fig. 15 Recommendation results

F. Evaluation Results

Mean absolute error (MAE) is a popular metric for

calculating the average absolute difference between expected
and actual values. It offers an easy-to-understand method for

determining the accuracy of a predictive model. The MAE is

computed by adding together all of the absolute differences

between each observed and forecasted value and dividing the

result by the total number of observations. Regardless of the

direction of the errors, the MAE shows how much predictions,

on average, differ from the actual data. A lower MAE

indicates better model accuracy.

On the other hand, the loss function of a machine learning

model is represented graphically by loss curves, which are

usually plotted against the total number of training epochs. As
the optimization goal during training, the loss function

measures the discrepancy between the target values and the

model's predictions. When tracking the learning process and

deciding on the model's performance, loss curves are a crucial

tool. Training and validation losses are typically plotted over

epochs in a loss curve. While the training loss indicates how

well the model matches the training data, the validation loss

suggests how well the model generalizes to new data. A

diminishing training loss is expected as the model improves

at reducing the error on the training set. The loss function,

often denoted as ,is a mathematical expression that

measures the discrepancy between the predicted values of a

machine learning model and the true target values. The goal
during training is to find the values of the parameters θ that

minimize this loss function, typically achieved through

optimization algorithms such as gradient descent.

Similarity scores measure how similar or similar two

entities—users or items—are in the context of machine

learning, especially in recommender systems. These scores

are essential for assessing how relevant an item is to a user or

how similar users are to one another regarding preferences or

behavior. It is possible to employ a variety of similarity

metrics, such as Jaccard similarity, Pearson correlation, and

cosine similarity [31],[32],[33]. Overall, similarity scores
play a crucial role in enhancing the personalization and

effectiveness of recommendation systems by quantifying the

relationships between entities within the system.

Fig. 16 depicts the MAE result for both the training and test

sets. Consistent MAE values between the training and testing

sets suggest a well-generalized model. This encouraging

result shows that the model has successfully discovered

underlying patterns in the data without committing individual

training examples to memory. A balanced performance on

both sets suggests that the model is ready to make good

predictions on unobserved data by collecting key properties

and avoiding overfitting pitfalls. Table II shows the score
obtained from the previous technique used.

1833

Next, loss curves, specifically training and validation loss

curves, provide information about how well the model is learning

over epochs. Monitoring the loss curves helps detect overfitting,

find the optimal epoch for early stopping, and understand the

model's convergence. The result is shown in Fig. 17.

Fig. 16 Result obtained

TABLE II

MAE SCORE

Evaluation Metric Training set Test Set
MAE Score 0.2327 0.2327

Fig. 17 Loss curves

A decreasing training loss is expected as the model learns
to minimize the error on the training set. However, the

validation loss helps identify potential overfitting or

underfitting issues. This can be described as a good model

because it demonstrates a decreasing training loss, which is

ideally a decreasing validation loss without significant

divergence.

IV. CONCLUSIONS

The investigation of recommendation techniques has
highlighted the advantages and disadvantages of three well-

known approaches: CB, CF, and hybrid. Apart from these

well-known methods, a new method incorporating generative

AI— more precisely, the AE technique—has been looked at

in detail. This research will primarily focus on this novel

approach, with many models to be implemented and assessed.

A basic GUI prototype has been created to show off the

expected features of the program. Metrics like MAE, Loss

Curves, and Similarity Scores will be used to measure how

well the models predict ratings within the dataset.

The next step will involve implementing new models, such

as VAE, to improve the recommendation system even further.

Metrics like precision and recall will be included in the

evaluation to examine the models' performances thoroughly.

Concurrently, efforts will be focused on finishing and
improving the system prototype and GUI development. This

iterative approach aims to guarantee the completeness and

efficiency of each recommendation system function. The

dedication to providing a reliable and user-friendly

recommendation system is demonstrated by the ongoing

development of both the user interface and the underlying

models.

REFERENCES

[1] S. Wei, X. Zheng, D. Chen, and C. Chen, “A hybrid approach for

movie recommendation via tags and ratings,” Electron Commer Res

Appl, vol. 18, 2016, doi: 10.1016/j.elerap.2016.01.003.

[2] S.-K. Tan, S.-C. Chong, K.-K. Wee, and L.-Y. Chong, “Personalized

Healthcare: A Comprehensive Approach for Symptom Diagnosis and

Hospital Recommendations Using AI and Location Services,” Journal

of Informatics and Web Engineering, vol. 3, no. 1, pp. 117–135, Feb.

2024, doi: 10.33093/jiwe.2024.3.1.8.

[3] P. Mahajan and P. D. Kaur, “A Systematic Literature Review of Food

Recommender Systems,” 2024. doi: 10.1007/s42979-023-02537-y.

[4] S. C. Haw, L. J. Chew, K. W. Ng, P. Naveen, A. Gandhi, and A. S. D.

Martha, “Ontology-based Recommender System with Descriptive

Analytics in e-Commerce,” in Proceedings - 2022 2nd International

Conference on Big Data Engineering and Education, BDEE 2022,

2022. doi: 10.1109/BDEE55929.2022.00015.

[5] W. Chang and J. Park, “A comparative study on the effect of ChatGPT

recommendation and AI recommender systems on the formation of a

consideration set,” Journal of Retailing and Consumer Services, vol.

78, 2024, doi: 10.1016/j.jretconser.2024.103743.

[6] R. J. Zwanka and M. M. Zondag, “Tired or Inspired: A Conceptual

Model for Using Regenerative Artificial Intelligence to Create Context,

User, and Time-Aware Individualized Shopping Guidance,” J Int

Consum Mark, vol. 36, no. 3, 2024,

doi:10.1080/08961530.2023.2266897.

[7] L. Jiang, Y. Cheng, L. Yang, J. Li, H. Yan, and X. Wang, “A trust-

based collaborative filtering algorithm for E-commerce

recommendation system,” J Ambient Intell Humaniz Comput, vol. 10,

no. 8, 2019, doi: 10.1007/s12652-018-0928-7.

[8] A. B. Barragáns-Martínez, E. Costa-Montenegro, J. C. Burguillo, M.

Rey-López, F. A. Mikic-Fonte, and A. Peleteiro, “A hybrid content-

based and item-based collaborative filtering approach to recommend

TV programs enhanced with singular value decomposition,” Inf Sci (N

Y), vol. 180, no. 22, 2010, doi: 10.1016/j.ins.2010.07.024.

[9] J. K. Tarus, Z. Niu, and G. Mustafa, “Knowledge-based

recommendation: a review of ontology-based recommender systems

for e-learning,” Artif Intell Rev, vol. 50, no. 1, 2018,

doi:10.1007/s10462-017-9539-5.

[10] E. A. Anaam, S.-C. Haw, K.-W. Ng, P. Naveen, and R. Thabit,

“Utilizing Fuzzy Algorithm for Understanding Emotional Intelligence

on Individual Feedback,” Journal of Informatics and Web Engineering,

vol. 2, no. 2, 2023, doi: 10.33093/jiwe.2023.2.2.19.

[11] Y. Lim, K.-W. Ng, P. Naveen, and S.-C. Haw, “Emotion Recognition

by Facial Expression and Voice: Review and Analysis,” Journal of

Informatics and Web Engineering, vol. 1, no. 2, 2022,

doi:10.33093/jiwe.2022.1.2.4.

[12] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation

systems: Principles, methods and evaluation,” 2015.

doi:10.1016/j.eij.2015.06.005.

[13] A. Drif, H. E. Zerrad, and H. Cherifi, “Ensvae: Ensemble variational

autoencoders for recommendations,” IEEE Access, vol. 8, 2020,

doi:10.1109/access.2020.3030693.

1834

[14] F. Narducci, C. Mustoy, M. Polignano, M. De Gemmis, P. Lops, and

G. Semeraro, “A recommender system for connecting patients to the

right doctors in the healthnet social network,” in WWW 2015

Companion - Proceedings of the 24th International Conference on

World Wide Web, 2015. doi: 10.1145/2740908.2742748.

[15] S. M. Al-ghuribi, S. Azman, and M. Noah, “A Comprehensive

Overview of Recommender System and Sentiment Analysis.

(arXiv:2109.08794v1 [cs.AI]),” arXiv Computer Science, 2016.

[16] Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim, and R. Kashef,

“Recommendation systems: Algorithms, challenges, metrics, and

business opportunities,” Applied Sciences (Switzerland), vol. 10, no.

21, 2020, doi: 10.3390/app10217748.

[17] Q. Zhang, J. Lu, and Y. Jin, “Artificial intelligence in recommender

systems,” Complex & Intelligent Systems, vol. 7, no. 1, pp. 439–457,

Feb. 2021, doi: 10.1007/s40747-020-00212-w.

[18] G. Zhang, Y. Liu, and X. Jin, “A survey of autoencoder-based

recommender systems,” 2020. doi: 10.1007/s11704-018-8052-6.

[19] G. Zhang, Y. Liu, and X. Jin, “Adversarial Variational Autoencoder

for Top-N Recommender Systems,” in Proceedings of the IEEE

International Conference on Software Engineering and Service

Sciences, ICSESS, 2018. doi: 10.1109/ICSESS.2018.8663730.

[20] D. Ferreira, S. Silva, A. Abelha, and J. Machado, “Recommendation

system using autoencoders,” Applied Sciences (Switzerland), vol. 10,

no. 16, 2020, doi: 10.3390/app10165510.

[21] D. H. Tran, Z. Hussain, W. E. Zhang, N. L. D. Khoa, N. H. Tran, and

Q. Z. Sheng, “Deep autoencoder for recommender systems: Parameter

influence analysis,” in ACIS 2018 - 29th Australasian Conference on

Information Systems, 2018. doi: 10.5130/acis2018.aj.

[22] K. Rama, P. Kumar, and B. Bhasker, “Deep autoencoders for feature

learning with embeddings for recommendations: a novel recommender

system solution,” Neural Comput Appl, 2021, doi: 10.1007/s00521-

021-06065-9.

[23] M. Loukili, F. Messaoudi, and M. El Ghazi, “Machine learning based

recommender system for e-commerce,” IAES International Journal of

Artificial Intelligence, vol. 12, no. 4, 2023,

doi:10.11591/ijai.v12.i4.pp1803-1811.

[24] D. Grewal, J. Hulland, P. K. Kopalle, and E. Karahanna, “The future

of technology and marketing: a multidisciplinary perspective,” 2020.

doi: 10.1007/s11747-019-00711-4.

[25] O. Rybakov et al., “The effectiveness of a two-layer neural network

for recommendations,” in 6th International Conference on Learning

Representations, ICLR 2018 - Workshop Track Proceedings, 2018.

[26] M. Yu, T. Quan, Q. Peng, X. Yu, and L. Liu, “A model-based

collaborate filtering algorithm based on stacked AutoEncoder,”

Neural Comput Appl, vol. 34, no. 4, 2022, doi: 10.1007/s00521-021-

05933-8.

[27] E. Lacic, M. Reiter-Haas, D. Kowald, M. Reddy Dareddy, J. Cho, and

E. Lex, “Using autoencoders for session-based job recommendations,”

User Model User-adapt Interact, vol. 30, no. 4, 2020,

doi:10.1007/s11257-020-09269-1.

[28] N. Sachdeva, E. Ritacco, G. Manco, and V. Pudi, “Sequential

variational autoencoders for collaborative filtering,” in WSDM 2019 -

Proceedings of the 12th ACM International Conference on Web

Search and Data Mining, 2019. doi: 10.1145/3289600.3291007.

[29] S. Chen and W. Guo, “Auto-Encoders in Deep Learning—A Review

with New Perspectives,” 2023. doi: 10.3390/math11081777.

[30] L. Vu, V. L. Cao, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, and E.

Dutkiewicz, “Learning Latent Distribution for Distinguishing

Network Traffic in Intrusion Detection System,” in IEEE International

Conference on Communications, 2019.

doi:10.1109/ICC.2019.8762015.

[31] P. M. LeBlanc, D. Banks, L. Fu, M. Li, Z. Tang, and Q. Wu,

“Recommender Systems: A Review,” J Am Stat Assoc, vol. 119, no.

545, pp. 773–785, Jan. 2024, doi: 10.1080/01621459.2023.2279695.

[32] Y. Y. Chow, S. C. Haw, P. Naveen, E. A. Anaam, and H. Bin Mahdin,

“Food Recommender System: A Review on Techniques, Datasets and

Evaluation Metrics,” Journal of System and Management Sciences,

vol. 13, no. 5, 2023, doi: 10.33168/JSMS.2023.0510.

[33] S. T. Lim, J. Y. Yuan, K. W. Khaw, and X. Chew, “Predicting Travel

Insurance Purchases in an Insurance Firm through Machine Learning

Methods after COVID-19,” Journal of Informatics and Web

Engineering, vol. 2, no. 2, 2023, doi: 10.33093/jiwe.2023.2.2.4.

1835

