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Abstract—Considering the productivity and profits of manufacturers, defects in steel products must be detected very carefully. 

Traditionally, machine learning-based methods such as support vector machines (SVM) have been widely used for steel surface defect 

detection (SDD). These machine learning methods rely on expert parameters, so their performance is susceptible to these parameters. 

Recently, deep learning-based methods independent of these expert parameters have been developed. The most popular of these uses 

is transfer learning, which allows for efficient learning by applying a previously trained model to a new problem. This approach can 

overcome existing methods' limitations and provide more accurate and efficient SDD solutions. In order to design the transfer learning-

based SDD, input images should be modified and resized, which could cause input image distortion. Moreover, the transfer learning-

based models generally have many layers and weights. This paper is motivated by the following questions. 1) Is the transfer learning-

based model the best method for SDD? 2) What is the smallest model without compromising performance? This paper proposes a 

dedicated neural network for steel surface defect detection to answer the above questions. In addition, for cheap neural networks, the 

initially designed neural network is gradually reduced by monitoring the performances. We achieved a maximum f1-score of 0.978 and 

a minimum AUC of 0.995 from the experimental results.  
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I. INTRODUCTION

Productivity and profitability in steel manufacturing 

require proactive product defect detection [1]–[3]. However, 
accurate and fast defect detection is not accessible due to the 

reflective nature of the material, the poor manufacturing 

environment, and foreign substances such as dust, iron 

powder, oil, and water [4]–[6]. Surface defect detection can 

be accomplished using magnetic flux leakage (MFL) 

techniques and imaging. MFL is a specialized nondestructive 

testing (NDT) method that converts magnetic flux leaking 

from a defect into an electrical signal when a ferromagnetic 

test piece is magnetized, taking advantage of the fact that the 

deeper the defect, the stronger the electrical signal [7],[8]. 

Traditionally, image processing using machine learning has 
been the primary way to use images [9]–[10]. A steel defect 

classifier using HARR classifier and support vector machine 

(SVM) was also reported [11]–[13], and a method was 

proposed to determine whether the image to be inspected is 

defective by comparing the normal image and the image to be 

inspected and then analyzing the statistical value [14]–[16].  

Recently, deep learning has been used in various fields to 

design fire alarm systems, such as adding a new smoke class 

for early fire warning [17]–[19], and in eye disease diagnosis, 

a system to distinguish between six diseases has been 
proposed [20]. These artificial intelligence neural networks 

have also been used to detect surface defects in steel. 

However, the proposed method utilizes transfer learning. 

Transfer learning is a method that borrows the model structure 

and trained weights from the winning ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) and modifies them 

to fit the purpose of using only the input and output parts of 

the neural network.  

Since there are 1,000 classes to be distinguished in 

ILSVRC, the model used in transfer learning is necessarily 

deep and wide in the layers of the neural network [21], [22]. 
This is because the model requires a large multiplier and 
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accumulator (MAC) and a large amount of memory to store 

many weights, so models used for transfer learning will 

inevitably only work on expensive systems [23]. ResNet, a 

popular model for transfer learning, has a structure that 

utilizes residual error to speed up training and is arguably an 

outstanding performer [24]. ResNet152, with 152 layers, has 

many layers and correspondingly large weights and was used 

to win the ILSVRC in 2015. A steel surface defect detector 

using ResNet152 was designed [25], and a detector using 

ResNet50 with a reduced model size was proposed [26]. The 
original model, ResNet152, and even the reduced-size 

ResNet50, have inherently large layers and weights, requiring 

expensive, high-performance systems. Attempts have been 

made to use MobileNet to create a more cost-competitive 

model [27]–[29]. MobileNet significantly reduces model size 

for use on mobile devices [30]. More recently, a method not 

using transfer learning has been proposed to substantially 

reduce the model's size with a slight performance penalty 

[31], [32]. 

In this paper, we propose a steel surface detector that 

optimizes the previously proposed model to reduce its size to 
a minimum while achieving better performance. To detect 

defects on the steel surface, it is necessary to be able to detect 

the texture of the surface well, so we designed a basic model 

based on a convolutional neural network (CNN). After 

developing the basic model, we iteratively reduce the layers 

while checking the performance to reduce the model 

gradually. The minimum-sized model obtained was evaluated 

on several performance metrics for fairness. In addition, 

inference time is also measured and compared to verify the 

effectiveness of model reduction. 

This paper is organized as follows. In Section 2, the 
proposed optimized steel surface defect detector is designed 

and trained; Section 3 uses the designed neural network to 

conduct experiments with real images and evaluate its 

performance; and Section 4 presents conclusions. 

II. MATERIALS AND METHOD 

This chapter details the theoretical background, description 

of the dataset used, model design method, and model training 

method for designing a steel surface detector based on 

artificial neural networks. 

A. Theoretical Background 

The CNN-based surface defect detector is roughly divided 

into image feature extraction and image classification stages, 

with the overall structure shown in Fig. 1. 
 

 
Fig. 1  Basic structure of SDD 

 

The feature extraction stage extracts the texture 

characteristics of the input image and passes the results to the 

image classifier stage. To extract an image's texture, we use 

CNN. The layers of a CNN are convolution, activation 

function, and pooling. Convolution abstracts and quantizes 

the input image's information, and the kernel's size determines 

how much area of the image is of interest, which is defined as 

the receptive field. The behavior of convolution is represented 

by the equation (1). 

 

 

(1) 

where z, s and u are the inputs, outputs and kernel. h is the size 

of the kernel, which determines the size of the receptive field. 

Typically, h is an odd number to ensure the output abstraction 

is centered on the input image. The activation function is a 

rectifier linear unit (ReLU). The ReLU was proposed to 

improve the vanishing gradient problem of sigmoid functions 

and is expressed as follows. 

 (2) 

The pooling layer reduces the computation of the next layer 

and makes the model more robust by making it insensitive to 

noise. In this paper, we use max-pooling, which is represented 

as follows: 

 (3) 

In Eq. (3), h is the stride, which determines how much to move 

by. 

In the image classification stage, a layer, also called 

multilayer perceptron (MLP) or fully connected layer (FC), is 

used to classify the extracted features. The fully connected 

layer is represented as follows: 

 (4) 

where � ∈ ���� , W∈ �
��� ,   z ∈ ���� , b ∈ ���� . The 

input is z, the output is s, and b is a bias vector with the same 

elements. This fully connected layer can also be used in the 

hidden layer and the final layer, where the function f uses the 
ReLU in equation (2). The final layer uses SoftMax, which 

converts the hidden layer values to probabilities, such as in 

equation (5).  

 

(5) 

where C is the number of classes to be classified and zj is the 

j-th input. Since SoftMax converts inputs to probabilities, the 

following expression is guaranteed.  

 
(6) 

Finally, the best probabilistic values are selected and exported 

as the final output. 

 (7) 

B. Datasets 

The paper uses a dataset from Northeastern University 

[33]. The dataset is categorized into six different defects in 
sheet steel. 
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TABLE I 

DEFECT CLASSES 

Number Class Name 

0 Crazing 
1 Inclusion 
2 Patches 
3 Pitted surface 
4 Rolled in scale 
5 Scratches 

 
The dataset images are divided into 300 images for each 

class, 240 for training, and 60 for evaluation. The defect 

images for each class are as follows. 

 

 
Fig. 2  Defect images (from left-top clockwise, crazing, inclusion, patches, 

pitted surface, rolled in scale, scratches 

 

The images are all 200×200 in size and are gray images. 

C. Designing an Optimal Model 

For the basic model design and optimization, we need to 

simplify the layer representation, so we define conv-

activation-pooling as a single layer and set the size of all 
kernels to 3×3 and the stride to 1×1. To design the model, the 

framework uses TensorFlow 2.12. The basic model preselects 

the number of layers in the feature extraction stage and then 

continuously iterates through training and evaluation, 

reducing the number of layers until the f1-score reaches a 

certain level and storing the model. After that, the model is 

optimized by increasing the number of epochs, and the 

method is provided in Fig. 3. 

Table 2 shows the reduced model structure. In Table 2, an 

optimization model is designed that uses only four layers in 

the feature extraction phase and two layers in the 

classification phase.  

TABLE II 

OPTIMIZED MODEL STRUCTURE 

Layer Output Size (H, W, C) 

Input (200, 200, 3) 
Conv1 (100, 100, 8) 
Conv2 (50, 50, 16) 
Conv3 (25, 25, 32) 
Conv4 (12, 12, 64) 

FC1 (1, 16) 
FC2 (1, 6) 

 
Fig. 3  Model optimization 

D. Extra Training  

In the previous section, we optimized the model and trained 

with a reduced viewpoint, so the performance still needs to 

reach the final goal. Therefore, we use the designed model to 

improve the performance through additional training. To 

remove noise, we reduced the learning rate to 0.0001 and 

increased the number of training epochs to 256 to complete 

the final model. In Figures 4 and 5, the loss function 

decreases, and the accuracy gradually increases due to 

training, indicating that standard training has occurred. 
 

 
Fig. 4  Model loss while training 
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Fig. 5  Model accuracy while training 

III. RESULTS AND DISCUSSION 

Use the evaluation data to test the designed steel surface 
defect detector. The evaluation data contains 60 images per 

class, which are applied to the detector to experiment and 

evaluate the results. 

A. Performance Metrics 

To evaluate performance in this paper, we use the 

following performance metrics. 

TABLE III 

PERFORMANCE METRICS 

Name Definition 

TP (true positive) prediction=positive, correct 
FN (false negative) prediction=negative, false 
FP (false positive) prediction=positive, false 

TN (true negative) prediction=negative, true 
precision TP/(TP+FP) 
recall TP/(TP+FN) 
accuracy TP+TN/(TP+FN+FP+TN) 
f1-score 2(precision x recall)/(precision + recall) 

 

A critical metric in Table 3 is the f1-score. This harmonic 

means of precision and recall is considered the fairest metric 

in machine learning. The classification results with 60 images 

in each class are shown in Figure 6 as a chaotic matrix. 

The vertical axis is the correct label value, and the 

horizontal axis is the value determined by the designed 

detector. The actual and determined or inferred values should 
be the same in an ideal detector. For example, we fed 60 

images for crazing, and the detector labeled all of them as 

crazing. The 100% performance above is for crazing, patches, 

and rolled-in scale. In the case of inclusion, the detector 

incorrectly labeled Fig. 4 as a pitted surface. We obtained 

performance metrics for each class from this confusion 

matrix, shown in Table 4. 

The results show that the rolled-in scale gets all the answers 

perfectly correct, while the pitted-in scale performs poorly. 

Another performance metric is the area under the curve 

(AUC), which covers the receiver operating characteristic 

(ROC) curve and its graph. Ideally, the AUC should be 1. 
Figure 7 shows the ROC curve and AUC simultaneously. 

 

 

 
Fig. 6  Confusion matrix 

TABLE IV 

OPTIMIZED MODEL STRUCTURE 

 Precision Recall F1-Score 

Crazing 0.968 1.000 0.984 
Inclusion 0.982 0.933 0.957 
Patches 0.984 1.000 0.992 
Pitted surface 0.935 0.967 0.951 
Rolled in scale 1.000 1.000 1.000 
Scratches 1.000 0.967 0.983 
Average - - 0.978 

 

 
Fig. 7  ROC and AUC 

 

The AUC for all classes is 1.0 because the evaluation tool 

was designed to round to three decimal places. Therefore, the 

minimum AUC in this experiment is at least 0.995. The 
proposed defect detector is designed as an artificial 

intelligence neural network based on deep learning. The 

weights of the internal neural network are trained to reason 

well so that in the final output, the probability in equation (6) 

is changed to the maximum value by equation (7). Now, we 

can see how the statistical properties perform when real 

images are fed in. All images were tested, and Figure 8 shows 

two test results for each class. 
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Fig. 8a  Real image test crazing 

 

 
Fig. 8b  Real image test inclusion 

 

 
Fig. 8c  Real image test patches 

 

 
Fig. 8d  Real image test pitted surface 

 
Fig. 8e  Real image test rolled in scale 

 

 
Fig. 8f  Real image test scratches 

 
The test image shows all the SoftMax output values, which 

are the values before the final output, to see what happens 

probabilistically. Since the number of classes is 6, the sum of 

the probabilities of each class is either 1 or 100%, and the class 

with the highest probability value is finally selected. In Figure 

8, the images identified as bad are chosen to analyze the causes 

of inadequate identification. In the inclusion defect experiment, 

the image on the right with the error is slightly more likely to 

be a pitted surface defect. Still, the inclusion defect image is 

similar to the pitted surface defect. Similarly, in the right image 

in Figure 8.d, the texture is very similar to crazing, even though 
the label (correct) is a pitted surface. However, the image on the 

right in Figure 8.f was identified as a patch even though it was 

a scratch. To analyze the reason for this, we checked all the 

patch images in the training data set and found a training data 

set with a similarly straight texture, and we believe that this 

reduced the error in the inference results. The authors 

concluded that there is little difference between what a human 

sees and what an AI sees through this image experiment. 

The detector proposed in this paper has shown good 

performance despite its small size. Table 5 summarizes the 

comparison with other models using the same dataset. 

TABLE V 

PERFORMANCE RESULTS 

Model # Layers # Weight F1-Score 

ResNet152 [26] 152 55M 0.912 
ResNet50 [27] 50 55M 0.975 
MobileNet-v1 [28] 28 4.2M < 0.95 
our previous [32] 6 0.17M 0.931 

proposed 6 0.08M 0.978 

1790



The existing detector design with transfer learning requires 

4.2M weights and 28 layers, even when using mobileNet with 

small weights, while the proposed method uses only six layers 

and 0.08M weights and achieves the best performance. 

Finally, we measured the inference time. The inference time 

is measured from the time of reading the image file to the final 

judgment of the image. Since we do not have a mobile device, 

we measured the time on a training machine (ubuntu 

RTX3090) and authorized a total of 60 images × 6 classes = 

360 images, and the measured inference time was 1.253772 
seconds. This works out to 1.253772/360 = 0.0034827 

seconds per image, giving us an inference time of 3.5 

msec/image. This leads to the conclusion that if the camera 

has a field of view (FOV) of 0.5 meters, it can inspect a steel 

surface moving at a speed of 0.5 / (1.253772/360) ≃ 143.57 

m/sec. Of course, in the case of an H beam, which is not a 

plate and requires multiple views, the time will increase with 

the number of necessary views. 

IV. CONCLUSION 

A cost-competitive and high-performance steel surface 

defect detector design method was presented. Unlike other 

papers, we proposed a dedicated model for the actual 

environment without transfer learning to achieve a small 

model and fast inference time and showed how to optimize 

the model. We also provided information on how much 

process speed should be maintained in the actual field by 

conducting real image experiments and measuring the 

inference time, which needed to be presented in previous 
studies. 
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