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Abstract— Estimating and predicting crowd density at large events or during disasters is of paramount importance for enhancing 

emergency management systems. This includes planning effective evacuation routes, optimizing rescue operations, and ensuring 

efficient deployment of emergency services. Traditionally, surveillance systems that rely on cameras have been employed to monitor 

crowd movements. However, accurately estimating crowd density using such systems presents several challenges. These challenges stem 

primarily from the interaction between large crowds and the limitations of two-dimensional cameras in capturing the full scope of 

three-dimensional spaces. Optical distortions, environmental factors, and variations in camera angles further complicate the task, 

making accurate estimations difficult to achieve. To address these challenges, this paper introduces a robust method for calculating 

crowd density that leverages advanced vision transformers. By combining the output of these transformers with a two-stage neural 

network, the method effectively mitigates the limitations of traditional approaches. One of the key advantages of the proposed system 

is its robustness, which allows it to perform well across different camera specifications, installation locations, and image aspect ratios. 

The method applies and evaluates various deep learning techniques, introducing improvements to existing network structures that are 

better suited for the problem at hand. Extensive experimental verification demonstrates that the proposed method consistently produces 

accurate crowd density estimates, even in diverse and complex crowd environments. This robust performance underscores its potential 

for improving emergency management and crowd control in real-world situations. 

Keywords— Estimation of crowd density; vision transformer; data augmentation as feature manipulation; Deep Crowd Density 

Network (DCDN); Convolutional Crowd Density Network (CCDN). 
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I. INTRODUCTION

Estimating crowd density is important in various situations, 
such as for public safety, urban planning, and traffic 

management. Accurately determining the density of crowds, 

especially at significant events or in public transport facilities, 

is essential for enhancing safety and the efficiency of resource 

allocation. Against this backdrop, computer vision 

technology has become crucial for automatically estimating 

crowd density from video sources like closed-circuit 

television, enabling real-time monitoring and analysis [1], [2]. 

Most vision-based crowd density estimation methods have 

been optimized for static camera setups and consistent 

environmental conditions. In real-world settings, however, 
cameras' specifications and installation positions, capture 

angles, and image ratios can vary significantly and greatly 

affect the accuracy of density estimates. Traditional methods 

are vulnerable to environmental changes, especially when 

processing images taken from multiple locations and angles, 

often resulting in significant accuracy issues [3]. 

Anticipating abnormal events or emergencies enables the 

mobilization of necessary resources in response. This allows 

the efficient deployment of safety personnel, such as police or 
administrators, and crowds can be safely guided or managed 

using public address systems. Pre-planned response strategies 

can enhance on-site management during emergencies and 

help minimize casualties. Therefore, estimating and 

predicting crowd densities accurately is critical in emergency 

management. 

While monitoring crowd complexities with cameras is 

generally sound, accurately understanding crowds' three-

dimensional spatial positions and interactions can be 

challenging with two-dimensional cameras. This can hinder a 

comprehensive understanding of crowd depth and spatial 

structure. Moreover, factors such as lighting conditions, 
shadows, reflections, and other optical issues or 

environmental effects can complicate accurate crowd 
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detection and analysis using cameras. Processing and 

analyzing extensive crowd data in real-time requires high 

efficiency in computing resources and algorithms. 

This paper proposes a hybrid network that combines vision 

transformers and neural network methods to overcome the 

challenges of estimating crowd density using cameras. 

Research on crowd density prediction using cameras has 

evolved with advances in vision technology. Some studies by 

[4] and [5] proposed methods using computer vision 

technology to measure crowd density in outdoor locations, 
considering factors such as lighting changes, attire, and 

weather variation in images. They used a grey-level 

dependency matrix, Minkowski fractal dimension, and newly 

developed translation invariant orthonormal Chebyshev 

moments to extract image features, classifying them into 

various densities using a self-organizing map. They suggested 

the best method for vision-based crowd density measurement 

by comparing three methods. 

Saleh et al. discussed advances in automated systems for 

crowd density estimation and accounting [6], [7]. They 

reviewed various methods used in computer vision-based 
surveillance systems for analyzing and managing crowds. 

They considered direct (object-based target detection) and 

indirect (pixel-based, texture-based, and edge point-based 

analysis) approaches for analyzing crowds. Analyzing crowd 

dynamics and behavior remains an important research topic 

in psychology, sociology, public services, safety, and 

computer vision. 

The use of cameras for crowd analysis has undergone many 

changes with the emergence of deep learning [8], [9], [10], 

particularly with the advent of the Transformer Model. Islam 

et al. wrote an extensive introduction to the Transformer 
Model, which comprehensively surveyed the various uses of 

transformers in deep learning tasks [11]. Transformers use 

attention mechanisms to understand contextual relationships 

within sequential data and perform exceptionally in natural 

language processing (NLP), computer vision, speech and 

audio processing, healthcare, and the Internet of Things. They 

reviewed transformer models proposed from 2017 to 2022, 

identifying and classifying critical models in five main 

application areas: NLP, computer vision, multimodality, 

audio and speech processing, and signal processing. They 

analyzed the impact of transformer-based models in each 

region and discussed future research directions and 
possibilities. 

Some previous studies proposed methods for applying the 

Transformer Model to images, notably the Vision 

Transformer [12], [13]. This method was proposed to identify 

and focus on areas of interest within images for human 

recognition or detection tasks. It includes dividing images into 

multiple patches, flattening each patch into a one-dimensional 

vector, and feeding these vectors into the transformer 

architecture. Importantly, positional information between 

patches is also integrated as model input to preserve spatial 

information. This model performed well in various vision 
tasks using embeddings from pre-trained language models on 

large datasets and applying a transfer learning approach. It has 

gained attention for its ability to train compelling vision 

models using extensive datasets and computational resources. 

Chen et al. proposed a new method using convolutional 

neural networks (CNNs) and transformers to count crowds of 

various densities effectively, introducing the CNN and 

Transformer Adaptive Selection Network (CTASNet), which 

automatically selects the appropriate counting branch for 

areas of varying density [14, 15]. CNNs are effective for 

target location and counting in low-density regions, while 

transformers have high reliability in high-density areas. This 

paper validated the superiority of this method through 

extensive experiments using four primary crowd-counting 

datasets. It introduced coherent entropy-based optimal 

transport loss to reduce the impact of annotation noise. 
A multifaceted Attention Network (MAN) has been 

proposed for counting crowds, effectively handling the 

considerable variation common in crowd images [16], [17]. 

This network combines traditional transformer global and 

local attention to achieve enhanced local spatial relationship 

encoding. It uses Multifaceted Attention to allocate attention 

to feature locations and supervise training. It also includes a 

method focused on the most essential instances during 

training. Extensive experiments confirmed that this method 

performed outstandingly on four challenging crowd-counting 

datasets. 
Our proposed method robustly estimates crowd density 

using vision transformer technology. It effectively captures 

global and local contexts within images using attention 

mechanisms, thus implementing a model resilient to various 

visual changes. This study aimed to achieve more precise 

density estimation by combining the estimated density 

information with a two-stage neural network. 

First, this paper develops methods that can be applied 

robustly across various camera specifications, installation 

positions, and image ratios, introducing data preprocessing 

and augmentation techniques that consider camera physical 
constraints. Then, it applies these methods to improve existing 

network structures to be compatible with various deep 

learning approaches. This includes experimental approaches 

to compare the strengths and weaknesses of different deep 

learning architectures and find the optimal combination. 

To validate the performance of the proposed methods, 

density estimation experiments are conducted in complex 

crowd situations and various camera environments to verify 

the method's applicability and efficiency in real-world 

settings. This research advances crowd density estimation 

methods and aims for widespread application in real urban 

environments. 

II. MATERIALS AND METHOD 

A. Vision Transformer for Crowd Counting 

In this paper, we use the method proposed by Lin et al. [16] 

for counting the number of people in a crowd. This method 

introduces the Multifaceted Attention Network (MAN) to 

address the complex problems of crowd counting, proposing 

ways to enhance the accuracy of crowd counting for various 

applications, such as video surveillance and traffic 
management. Its key feature is the introduction of Learnable 

Region Attention (LRA), which dynamically allocates unique 

attention regions at each feature location, and Local Attention 

Regularization (LAR) to supervise the training of LRA, 

minimizing the deviation in attention. Additionally, Instance 

Attention is applied to focus on essential instances during 

exercise, thereby reducing the impact of annotation errors. 
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This approach has demonstrated excellent performance on 

crowd-counting datasets such as ShanghaiTech [18], [19], 

UCF-QNRF [20], JHU++ [21], and NWPU [22]. Technically, 

the model uses VGG-19 CNN as a backbone to extract initial 

features fed into a transformer encoder to apply LRA and 

integrate various loss functions to optimize training. The 

current study presents a new approach that robustly handles 

large-scale variation in crowd images, effectively integrates 

global and local attention mechanisms, and contributes to 

improving the accuracy of crowd counting and developing 
models resilient to label noise. 

 

 
Fig. 1  A target image used for estimating crowd density. 

 

In this paper, we propose a method for robustly detecting 
individuals within crowds of varying sizes using the vision 

transformer approach, as illustrated in Fig. 1. Instead of 

merely counting the number of people to estimate density, we 

suggest dividing an area into multiple grid-like regions. 

Subsequently, we use a machine learning training process 

based on the number of people in each region to compute the 

complexity of the crowd. 

B. Feature Transformation for Using the Output of Vision 

Transformers as Input 

The output from the vision transformer provides feature 

results for counting the number of people in a crowd. These 

results need an appropriate transformation formula to 

calculate the crowd density. As shown in Fig. 2, detection is 

centered around the people in the image. 

 

 
Fig. 2  Result using the vision transformer to count the number of people in 

a crowd. 

 

In Fig. 2, each individual in the crowd is detected 

successfully despite the complex environment. In the second 

stage, these results are used as input for the next network on a 

regional basis. Using the final headcount as input might not 

yield the desired results if only the number of individuals is 

used to determine crowd density. Alternatively, using the 

results from the first stage may lead to undesirable outcomes 

depending on how the result areas are divided. 

Considering real datasets and various surveillance camera 

settings, the results must be transformed. To apply this 
robustly across different camera specifications, installation 

locations, and image ratios, it is essential to preprocess and 

augment the output from the vision transformer. For this 

purpose, this paper develops the following formula. 

 �� = ∑�(�, 	) (1)  

 �� = ∑�(
(�,�)�� )  (2) 

 �(�� , 	�) = ��

���(

(�,�)
�� ) (3) 

This formula transforms the output of the vision 

transformer into features that have the same size and contain 

the calculated number of people. Equation (1) is the sum of 

the output values �(�, 	), where � and 	 are the respective row 

and column positions of the output. Equation (2) sums the 

transformed values after normalizing the differently sized 

feature values with the value from equation (1). Here, the 

function � �
(�,�)�� � uses the resize function from the NumPy 

library [23, 24], applying bilinear interpolation. Equation (3) 

is the formula applied to ensure that the resized features 

contain the number of people where �� and 	� are the row and 

column positions of the transformed features, respectively. In 

this paper, considering the size and efficiency of the dataset, 

the features are transformed into 64x64 dimensions. 

C. Vision Transformer for Crowd Counting 

In typical images, feature values are normalized before 

input, but this cannot be applied when calculating crowd 

density in this paper, as it may cause distortion. Additionally, 
images with fewer people in the training dataset may need 

more image data, which can result in poorer performance at 

distinguishing them. To address these issues, this paper 

modifies the method proposed by [25] and [26], using data 

augmentation as feature manipulation, and uses the value 

from equation (1) as input data in the final layer of the 

network structure. This approach allows the feature values 

from equation (3) to compensate for the reduced significance 

of the original crowd numbers with intermediate values. 

Fig. 3 outlines the changes in network structure using data 

augmentation as feature manipulation, as proposed here. Our 
proposed method describes a network structure that uses data 

augmentation to manipulate features and goes through two 

classification stages. The initial data �(�, 	) are input through 

the Vision Transformer Network, which is fixed in a pre-

trained state and transforms features without additional 

training. The transformed features �(�, 	) are then input into 

the first classification network, either a deep neural network 

(DNN) or a CNN, producing the first set of classification 

results. We call these methods the Deep Crowd Density 

Network (DCDN) and Convolutional Crowd Density 
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Network (CCDN) [27, 28]. A critical aspect of this figure is 

the application of the data augmentation technique M1. This 

allows the input feature vectors to receive additional 

information for learning. These vectors are used as inputs to 

the second network, either DNN or CNN, which we call Deep 

Crowd Density Network with Data Augmentation (DCDN+) 

and Convolutional Crowd Density Network with Data 

Augmentation (CCDN+). These networks have more refined 

learning capabilities and, by processing the modified data, 

they produce more robust and accurate classification results. 

The results of these experiments will be detailed in the next 

chapter. 

 

 
Fig. 3  Proposed changes in network architecture using data augmentation as feature manipulation. 

 
Consequently, this paper proposes a more robust, accurate 

method for estimating crowd density that integrates vision 

transformer technology with data augmentation techniques 

and can adapt to changing environments and various crowd 

scenarios. This method should perform better than existing 

methods, mainly when applied to large-scale crowd data. 

III. RESULTS AND DISCUSSION 

The experiments conducted in this paper used an Intel i9 

CPU, 32GB of memory, and a Nvidia GeForce RTX 3070 

graphics card. The program was implemented using Python, 

and the training library used was PyTorch [29], [30]. The 

public dataset used to test the proposed method was the JHU 

CROWD set [31]. This dataset contains 2,034 images for 

training and 1,433 images for testing. Fig. 4 shows the images 

that are categorized in the paper. 

The images in Table 1 differ in shooting angle, resolution, 

and aspect ratio, suggesting that such diversity is essential for 

estimating crowd density. Images with high crowd densities 

differ significantly depending on the capture location and 

angle and also vary in resolution and lighting conditions (day 

and night). The image on the left was taken indoors in the 

medium crowd density images. In contrast, the image on the 

right was taken in a foggy outdoor setting, demonstrating that 

these environmental factors must be considered when 

estimating crowd density. The low crowd density images 

consist of an image taken by the sea with fog and another 

taken close to individuals. 

This study used training and testing data that reflect various 
conditions to estimate crowd density accurately under these 

varied environmental conditions. Crowd density was 

categorized into three levels (high, medium, and low), and a 

density function appropriate for each category was trained. 

This is a crucial step to enhance the accuracy of crowd density 

estimation and strengthen the generalization capabilities of 

the model. 
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TABLE I  

SAMPLE IMAGES FROM A PUBLIC DATASET FOR ESTIMATING CROWD DENSITY CLASSIFICATION. 

 

Fig. 4 plots the accuracy of the experiments using the test 

set, based on the methods proposed in the previous chapter, 

comparing the changes in accuracy while training the DCDN 

(black), DCDN+ (red), CCDN (blue), and CCDN+ (green) 

network models. 

 
Fig. 4  Experimental results of the method proposed in this paper 

 

Initially, the accuracy of the DCDN model is low, but it 

improves gradually as training progresses and reaches 78%. 
By contrast, the accuracy of the DCDN+ model increases 

rapidly, reaching 81% with training, the best performance 

among all the models. The CCDN model begins with very low 

initial accuracy, and its performance improvements are 

unstable, reaching an accuracy of 75%. The CCDN+ has low 

initial accuracy but improves significantly after ten epochs, 

stabilizing at 77% accuracy. These results suggest that the 

DCDN+ model based on the Vision Transformer has superior 

learning efficiency and accuracy in crowd density estimation, 

with the '+' models generally performing better, indicating 

their further optimization. This analysis provides important 
insights into how each network structure performs in specific 

environments. 

IV. CONCLUSION 

This paper proposes a robust, accurate crowd density 

estimation method at large event or during disasters. 

Specifically, we used vision transformers to calculate crowd 

numbers and combined this with an enhanced two-stage 

neural network structure to overcome computer vision 
challenges and environmental effects. The experimental 

results showed that the proposed DCDN+ model had high 

accuracy and robustness across various camera specifications, 

installation positions, and image ratios. We evaluated various 

deep learning methods and confirmed that this approach is 

effective in real, complex crowd situations. The method 

proposed here significantly enhances emergency management 

and provides essential information on crowd density for 

planning evacuation routes and emergency services. This 

research provides important guidelines for designing and 

implementing crowd management and surveillance systems. 
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