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Abstract—Sustainability is essential in software systems in today's eco-conscious atmosphere. However, companies often overlook this, 

resulting in energy waste and e-waste. We implemented an automated software sustainability assessment solution to address this by 

fusing Life Cycle Analysis (LCA) and ISO quality model implementation capabilities. Our tool reduces environmental impact, promotes 

economic, technical, environmental, and social sustainability, improves resource labor efficiency and usage time (hardware life), and 

enables user autonomy. Developed in Python, it is a tool for assessing and evaluating software sustainability (such as performance or 

maintainability) that has been validated in real-world scenarios. We provide a method for assessing software maintainability and energy 

efficiency by combining LCA with the ISO 25010 standard. Case studies confirm that the new tool offers a comprehensive sustainability 

assessment method consistent with sustainable development goals. The study results show that maintainability and energy efficiency 

were thoroughly assessed. The accuracy and precision of the test assessment results were further confirmed, indicating that the tool is 

consistent across different software projects and reliable, proving its practical application. This advancement is essential for sustainable 

software development and provides concrete metrics and operational insights for developers and their companies. In future research, 

we plan to extend the tool’s metric scope and improve data visualization/information customization suitable for more diverse software 

environments and sustainability goals. Our tool promotes eco-responsibility while raising quality and sustainability standards for all 

software systems. 
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I. INTRODUCTION

With the rapid advancement of technology, software 
systems have become integral to various aspects of modern 
life, raising significant sustainability concerns. Traditional 
software development practices have primarily focused on 
performance, functionality, and usability, often neglecting the 
broader environmental, economic, and social impacts [1]. 
This project addresses these gaps by developing a 
comprehensive software sustainability assessment tool that 
integrates Life Cycle Assessment (LCA) with the ISO 25010 
quality model. The ISO 25010 model provides a robust 
framework for evaluating software quality, focusing on 
performance efficiency, maintainability, and availability [2]. 
However, it does not explicitly consider environmental 
sustainability. This project seeks to fill this gap by 
incorporating LCA, which evaluates the environmental 
impacts of products across their entire lifecycle—from raw 

material extraction to end-of-life disposal [3]. By integrating 
LCA with ISO 25010, the project aims to provide a more 
holistic evaluation of software sustainability, encompassing 
traditional quality attributes and indicators [4]. This research 
uniquely contributes to the field by combining the Life Cycle 
Assessment (LCA) with the ISO 25010 quality model, 
providing a novel framework for assessing software 
sustainability. Unlike existing models that treat software 
quality and environmental impact as separate entities, our 
approach unifies these aspects and ensures a comprehensive 
assessment throughout the software lifecycle. This integration 
bridges the gap between software quality and sustainability 
and provides a practical tool that can be used in real-world 
scenarios to achieve sustainability goals. 

The primary problem this study addresses is the need for 
comprehensive sustainability metrics in existing software 
quality models. Most current models, including ISO 25010, 
overlook critical sustainability metrics, limiting the scope of 
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their assessments and preventing software development from 
fully supporting broader sustainability goals [5]. Additionally, 
there needs to be more effective integration between LCA and 
software quality models, which hampers the ability to assess 
environmental impacts during the software development 
process [6]. Furthermore, standard practices often neglect the 
ecological sustainability of software, such as its energy 
consumption and e-waste generation, leading to a significant 
ecological footprint [7]. 

The objectives of this project are threefold: first, to 
integrate ISO and LCA principles into a comprehensive 
framework for evaluating software sustainability; second, to 
develop practical tools for assessing software sustainability 
that incorporate this integrated framework; and third, to 
empirically validate the effectiveness of these tools in real-
world software development scenarios [8]. By achieving these 
objectives, the project aims to enhance the ability of software 
developers and organizations to make informed decisions that 
support both quality and sustainability goals [9]. 

This project's scope includes designing and implementing 
a software sustainability assessment tool that integrates LCA 
with the ISO 25010 quality model. This involves identifying 
relevant environmental indicators and incorporating them into 
the ISO 25010 framework, focusing mainly on 
maintainability and energy efficiency [2]. The tool will be 
developed using Python and validated through case studies to 
ensure practical applicability. Continuous improvement 
mechanisms will be established to incorporate user feedback 
and the latest advancements in sustainability assessment and 
software quality modeling [10]. This project aligns with the 
Sustainable Development Goals (SDGs) by promoting 
sustainable software practices. It aims to reduce the ecological 
footprint of software systems, thereby supporting broader 
environmental and sustainability initiatives [11]. 

Software sustainability has gained increasing importance 
as software systems' environmental, economic, and social 
impacts are more widely recognized. Existing literature on 
software sustainability, Life Cycle Assessment (LCA), the 
ISO 25010 quality model, related works, and selected 
indicators and evaluation standards provides a foundation for 
developing a comprehensive software sustainability 
assessment tool that integrates LCA with ISO 25010 [12]. 

Software sustainability refers to software systems' long-
term environmental, economic, and social impacts throughout 
their lifecycle. It encompasses technical, environmental, 
social, and economic dimensions [13]. Technical 
sustainability focuses on maintainability, ensuring software 
can be easily modified and improved, thus reducing resource 
wastage. Environmental sustainability involves optimizing 
energy consumption and reducing carbon emissions and e-
waste [14]. Social sustainability addresses user satisfaction, 
privacy, and ethical considerations, while economic 
sustainability aims at cost-effectiveness and financial 
viability [15]. Recent studies emphasize the need for holistic 
software engineering practices integrating sustainability at all 
lifecycle stages, from design and development to deployment 
and maintenance [16]. For instance, Penzenstadler et al. (2014) 
highlighted the importance of considering sustainability 
throughout the software lifecycle to minimize operational 
costs, improve software quality, and increase user satisfaction 
[1]. Albertao et al. [17] further noted that sustainable software 

development aligns with broader organizational goals of 
corporate social responsibility and environmental stewardship. 

Life Cycle Assessment (LCA) is a systematic method for 
assessing the environmental impacts of a product, process, or 
service across its entire lifecycle. It includes four main stages: 
goal and scope definition, inventory analysis, impact 
assessment, and interpretation [2]. LCA provides valuable 
insights into the environmental performance of products and 
processes, making it a crucial tool for enhancing software 
sustainability. In software engineering, LCA helps quantify 
energy consumption and carbon footprint during software 
development and operation, enabling optimization for better 
environmental performance [4]. For example, Calero and 
Piattini [2] discussed the application of LCA in software 
development to assess the environmental impacts of software 
systems, highlighting its capability to quantify energy 
consumption and carbon footprint. Penzenstadler et al. [18] 
emphasized the significance of LCA in identifying critical 
stages in the software development process to mitigate 
environmental impacts effectively. Despite the challenges 
posed by the dynamic nature of software lifecycles, LCA 
offers significant opportunities for improving environmental 
impacts [19]. 

The ISO 25010 quality model is an international standard 
for assessing software quality. It defines eight key quality 
characteristics: functional suitability, performance efficiency, 
compatibility, usability, reliability, security, maintainability, 
and portability [20]. While ISO 25010 provides a 
comprehensive framework for evaluating software quality, it 
does not explicitly include environmental sustainability. 
Integrating LCA with ISO 25010 can bridge this gap, 
allowing for a more holistic assessment with sustainability 
metrics [4]. This integration enables development teams to 
systematically identify and address sustainability aspects, 
enhancing software quality and reducing environmental 
impacts [21]. For example, Calero et al. [4] proposed 
extending ISO 25010 by incorporating sustainability 
characteristics into the quality model, allowing for a 
comprehensive evaluation of the software’s environmental 
impact. Boarim et al. [8] demonstrated the practical 
application of ISO 25010 in assessing Customer Relationship 
Management (CRM) systems, improving functional 
suitability and performance efficiency. 

Various approaches and tools have been developed to 
assess software sustainability. These include the Global 
Sustainability Index, which simplifies sustainability reporting 
using mathematical algorithms, and the Sustainability 
Assessment Framework (SAF), which integrates 
sustainability-quality requirements into software projects [22]. 
The Global Sustainability Index addresses the heterogeneity 
of sustainability indicators through systematic aggregation 
and evaluation methods, offering valuable insights into 
sustainable management practices [23]. Grecu et al. [24] 
highlighted the tool's adaptability in handling imprecise and 
scarce information, making it a valuable asset for 
organizations striving toward sustainable practices. The SAF 
employs a participatory and technical action research 
methodology, enhancing its applicability in the software 
industry [25]. Workshops and surveys have identified gaps in 
understanding and applying sustainability principles among 
software developers, highlighting the need for better training 
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and guidelines [7]. For instance, Oyedeji et al. [26] conducted 
workshops with software developers to identify key 
sustainability concerns, finding that economic and technical 
dimensions are often prioritized over social sustainability. 
Noman et al. [7] surveyed software professionals and found 
significant gaps in understanding sustainability principles, 
emphasizing the need for comprehensive training and 
guidelines. 

The GREENSOFT model offers a comprehensive 
framework for sustainable software design and development, 
addressing sustainability criteria across all lifecycle phases 
[12]. This model includes a lifecycle model for software 
products, sustainability metrics, and criteria, providing a 
cradle-to-grave approach to software lifecycle management 
[12]. Naumann et al. [12] described the GREENSOFT 
model’s extensive coverage of sustainability criteria, 
emphasizing its role in balancing ICT's resource and energy 
consumption with its benefits in solving environmental issues. 

This project focuses on maintainability and energy 
efficiency as crucial indicators for software sustainability. As 
defined by ISO 25010, maintainability ensures that software 
can be easily updated and repaired, reducing resource 
consumption and waste [27]. By ensuring high 
maintainability, organizations can extend the lifespan of their 

software systems, reduce technical debt, and minimize the 
environmental impact associated with frequent replacements 
or extensive rework [27]. Key metrics for maintainability 
include Halstead metrics, cyclomatic complexity, and lines of 
code [27]. Energy efficiency minimizes the environmental 
footprint by optimizing power consumption and operational 
costs [28]. Key energy efficiency indicators include CPU 
power, DRAM power, CPU utilization, and package 
temperature [29]. Intel Power Gadget and other tools provide 
real-time data on these metrics, allowing for comprehensive 
analysis and optimization of software energy consumption 
[24]. 

In summary, the literature on software sustainability, LCA, 
the ISO 25010 quality model, and related works highlight the 
need for an integrated approach to assess software 
sustainability comprehensively [18]. By focusing on 
maintainability and energy efficiency, this project aims to 
develop a robust tool that advances sustainable software 
engineering practices, aligns with the Sustainable 
Development Goals (SDGs), and reduces the ecological 
footprint of software systems [12]. The following Table I 
summarizes the related works。  

TABLE I 
SUMMARY OF RELATED WORKS 

Authors Year Title Methodology/Tool Key Findings Limitations 

Oyedeji et 
al.[24] 

2021 Software sustainability: 
academic understanding and 
industry perceptions 

Workshops with 
software developers 

Identified economic and 
technical dimensions as 
primary concerns 

Limited focus on social 
dimensions 

Noman et al. 
[7] 

2022  An exploratory study of 
software sustainability at 
early stages of software 
development 

Survey of software 
professionals 

Highlighted the need for 
better understanding of 
sustainability 

Confusion between 
"green software" and 
"sustainable software" 

Grecu et al. 
[1] 

2020 Software Application for 
Organizational 
Sustainability Performance 
Assessment 

Mathematical algorithms 
for sustainability 
reporting 

Simplified sustainability 
reporting process 

Accuracy issues with 
complex environmental 
data 

Boarim & Da 
Rocha[8] 

2020 Evaluating CRM Systems 
with ISO 25010 

ISO 25010 quality 
evaluation 

Improved functional 
suitability and performance 
efficiency 

Specific to CRM 
systems, not 
generalizable to all 
software types 

Condori-
Fernandez et 
al. [23] 

2022 An Action Research for 
Improving the Sustainability 
Assessment Framework 
Instruments 

Participatory and 
technical action research 

Validated SAF's 
applicability in identifying 
sustainability-quality 
requirements 

Limited by the specific 
cases and software 
products used in the 
study 

Naumann et 
al. [12] 

2011 The GREENSOFT Model: 
A reference model for green 
and sustainable software and 
its engineering 

Development of a 
conceptual reference 
model 

Provides a comprehensive 
framework for sustainable 
software across all life 
cycle phases 

Requires further 
empirical validation 
across different 
software domains 

II. MATERIAL AND METHOD 

Integrating life Cycle Assessment (LCA) with the ISO 
25010 quality model is the methodology for developing a 
software sustainability assessment tool. This approach 
ensures a systematic and rigorous process by combining 
theoretical insights with practical implementation to achieve 
the research objectives. The methodology is divided into 
several key sections: theoretical research, integration, design, 
development, and evaluation. 

The theoretical research involved an extensive literature 
review to understand key concepts in software sustainability, 

LCA, and ISO quality models. The review focused on 
identifying gaps and potential improvements in software 
sustainability practices. Key findings from previous studies 
were summarized to form the foundation for the project's 
framework. 

The integration phase combined insights from the 
theoretical research to develop a cohesive framework that 
merges ISO 25010 standards with LCA principles. This 
involved mapping ISO 25010 quality characteristics to LCA 
stages and defining specific sustainability indicators. Expert 
reviews and preliminary tests ensured the integrated 
framework's robustness and applicability. 
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The integrated framework was translated into a practical 
tool in the design phase. The system architecture was detailed, 
including user interface design and component interactions. 
The design process also involved creating algorithms to 
calculate sustainability scores based on defined indicators and 
establishing a database schema for efficient data management 
using MySQL. 

The development phase implemented the design using 
Python for its versatility and PyQt5 for a user-friendly 
graphical interface. The tool's backend was developed to 
handle data processing, while the frontend focused on 
ensuring responsiveness and usability. Rigorous testing, 
including unit and integration tests, ensured the tool's 
functionality and reliability. 

The evaluation phase involved testing the tool with real-
world software projects to validate its effectiveness. Specific 
evaluation standards and indicators were defined, and the 
tool's performance was assessed through practical application. 
Feedback mechanisms were established to enable continuous 
improvement based on user input and the latest advancements 
in sustainability assessment. 

By following this structured methodology, the project aims 
to develop a robust, reliable, and comprehensive tool for 
assessing the sustainability of software products, contributing 
valuable insights into software engineering and sustainability 
(refer to Fig.1). 

 
Fig. 1  Research Methodology  

 
The analysis and design phase of a software sustainability 

assessment tool focuses on translating theoretical frameworks 
and integration methods into practical, functional tools. This 
phase includes use case design, framework design, data 
processing workflow design, and tool functionality design. 
My tool combines ISO to assess the sustainability of software 

across the life cycle. The following is a detailed analysis of 
the tool's phase-specific assessment methodology. 

1) Requirements Analysis Phase: Although the 
requirements analysis phase usually involves documentation, 
the tool assesses the sustainability of the initial code 
prototypes or modules associated with the requirements. This 
includes assessing whether the code implements 
sustainability-related functionality, such as resource 
optimization or energy efficiency management. The tool can 
analyze the complexity and redundancy of the initial code 
structure to determine the effectiveness of requirements 
implementation and identify potential environmental impacts 
early in the development process. 

2) System Design Phase: During the system design phase, 
the tool assesses the sustainability of design-generated code 
modules by analyzing maintainability and extensibility. 
Specifically, the tool uses static analysis to examine the code's 
modularity, coupling, and cohesion, which directly affect the 
system's long-term maintainability and resource efficiency. 
The tool also checks whether design patterns or optimization 
strategies are implemented in the code to ensure the system 
remains resource-efficient during future development and 
operation. 

3) Implementation Phase: During the implementation 
phase, the tool assesses the sustainability of the code through 
static and dynamic analysis. Static analysis involves 
evaluating code complexity metrics (e.g., Halstead 
complexity, circle complexity, and lines of code) and 
maintainability indices, which help assess the code's long-
term maintainability. Dynamic analysis involves monitoring 
resource usage while the code runs, including CPU utilization, 
memory consumption, and energy efficiency. The tool 
identifies high energy-consuming code segments and 
provides optimization suggestions to reduce energy 
consumption during execution. 

4) Testing Phase: During the testing phase, the tool 
evaluates the efficiency and resource usage of the test code. It 
analyzes the execution time and resource consumption of test 
scripts and compares different testing approaches to 
determine the most energy-efficient testing strategy. In 
addition, the tool monitors real-time energy consumption 
during test execution to help optimize resource usage while 
ensuring comprehensive and efficient test coverage.  

5) Deployment Phase: During the deployment phase, the 
tool assesses the sustainability of the deployment process by 
analyzing the deployment scripts or automation code. It 
evaluates the efficiency of the script's tasks, identifies any 
redundant tasks, and determines whether to use energy-
efficient deployment configurations. The tool also simulates 
the deployment process, predicts resource consumption under 
different configurations, and assists in selecting the most 
energy-efficient deployment strategy. 

6) Maintenance Phase: During maintenance, the tool 
assesses the system's sustainability by analyzing code changes 
over time. It detects if new complexity is introduced during 
code updates or if these changes affect the overall efficiency 
of the system. The tool also supports the assessment of 
resource usage efficiency during maintenance, e.g., whether 
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code optimization has reduced the system's energy 
consumption during updates. 

7) End-of-Life: During the end-of-life phase, the tool 
assesses the sustainability of code execution during system 
decommissioning or migration to ensure that these processes 
do not lead to wasted resources or data leakage. The tool also 
provides recommendations to help the development team 
develop a strategy for archiving or removing code, 
maximizing resource recovery, and minimizing 
environmental impact during system decommissioning. 

The use case design（ as shown in Fig.2.) identifies the 
primary interactions between users and the software 
sustainability assessment tool. The leading actor, the user, can 
upload source code, select a programming language for analysis, 
run the tool, and view the generated sustainability assessment 
reports. The tool processes include obtaining initial results from 
the source code analysis, processing these results to create 
detailed sustainability assessment reports, and providing 
recommendations for improvement. The use case diagram 
visually represents these interactions and processes, ensuring 
clarity in how the tool functions and interacts with users. 

The framework design（as shown in Fig.3） breaks down 
the core components of the tool into three major parts: data 
input, data processing, and data output. The data input module 

accepts source code from users, either through file uploads or 
direct code pasting. The system supports multiple 
programming languages to ensure broad applicability. The 
data processing module is the core of the assessment tool, 
consisting of three key processes: code extraction, 
maintainability indicator analysis, and energy efficiency 
analysis. These processes operate independently but provide 
necessary data for the final sustainability assessment. The 
data output module generates a detailed software 
sustainability assessment report, including scores for 
maintainability and energy efficiency, overall sustainability 
evaluation, and specific improvement suggestions. 

 

 
Fig. 2  Use case diagrams for software sustainability assessment tool 

 

 

 
Fig. 3  Framework for software sustainability tools 

 
The flowchart design（as shown in Fig.4.）provides a 

step-by-step visual representation of the tool's operation. It 
begins with user input of the source code, followed by parallel 
paths for extracting maintainability metrics and integrating 

tools for energy efficiency analysis. The extracted data is then 
consolidated and processed to generate a detailed assessment 
report. This flowchart ensures that each step of the process is 
clearly defined and logically sequenced, facilitating smooth 
and efficient tool operation. 
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Fig. 4  Flowchart for Software Sustainability Tool 

 

The functional design outlines the significant features and 
capabilities of the tool. Key features include source code input, 
where users can input source code in multiple programming 
languages through file uploads or direct pasting. Using static 
and dynamic analysis tools, the tool extracts maintainability 
and energy efficiency metrics from the source code. It 
calculates maintainability indices based on Halstead metrics, 
cyclomatic complexity, and lines of code. Additionally, it 
analyzes energy efficiency data, including CPU power 
consumption, DRAM power, CPU utilization, and package 
temperature. The tool then generates detailed assessment 
reports summarizing the analysis results and providing 
specific recommendations for improving software 
sustainability. 

By integrating these features, the tool aims to provide 
comprehensive insights into the maintainability and energy 
efficiency of the input source code, helping developers 
optimize and improve their code effectively. This phase 
ensures the design is user-centric, functional, and capable of 
delivering valuable sustainability assessments. 

The analysis and design phase establishes a clear and 
structured approach to developing the software sustainability 
assessment tool. This phase lays the groundwork for creating 
a robust and practical tool that supports sustainable software 
development practices by focusing on use case design, 
framework design, data processing workflows, and functional 
capabilities. 

The Software Sustainability Assessment Tool (SSAT) 
implementation phase translates the design into a functional 
application through systematic steps, including environment 
setup, back-end and front-end coding, database integration, 
and complete testing. 

First, the development environment was configured with 
Python (for its large number of libraries), PyQt5 (for its 
responsive graphical user interface (GUI)), and MySQL (for 

its powerful data management capabilities.) Tools such as 
Anaconda and Spyder facilitated development, and Intel 
Power Gadget was used for real-time energy efficiency data 
Back-end development focused on implementing the core 
logic and  

Back-end development focused on implementing the core 
logic and algorithms. Functions to calculate maintainability 
indices were developed using Halstead metrics, cyclomatic 
complexity, and lines of code. Energy efficiency analysis 
included the integration of an Intel Power Gadget to measure 
CPU power, DRAM power, CPU utilization, and package 
temperature to provide a comprehensive software energy 
efficiency assessment. 

Front-end development creates an intuitive interface that 
allows users to enter source code via file upload or direct paste, 
select a programming language, and specify a report output 
path. Key features included buttons to upload code, run the 
assessment and view results, ensuring a straightforward user 
experience. 

Database integration included designing a MySQL schema 
for storing source code information, maintainability metrics, 
and energy efficiency data. Efficient data storage, retrieval, 
and update operations were implemented to ensure the 
security and accessibility of the assessment data. 

Rigorous testing and debugging were also performed to 
ensure reliability and accuracy. Unit tests verified the 
functionality of individual components, while integration 
tests ensured seamless operation of all elements. Detailed test 
cases covering a wide range of scenarios ensured the tool's 
robustness in handling different types of source code and 
generating accurate assessments. 

By completing the implementation phase, the project 
ensured the software sustainability assessment tool was 
functional and user-friendly, providing valuable insights into 
software maintainability and energy efficiency. This phase 
laid the groundwork for future enhancements and continuous 
improvements based on user feedback and advances in 
sustainability assessment methodologies. 

III. RESULT AND DISCUSSION 

The evaluation involved rigorous tool testing using several 
software projects to ensure the thoroughness and 
representativeness of the results. Experiments were conducted 
on a consistent hardware and software platform, including an 
Intel i7 processor and 16 GB RAM, running Windows 10 and 
Python 3.8 with its dependencies. The tool's maintainability 
and energy efficiency metrics were collected and compared 
against manual evaluations and other existing tools to validate 
its precision. 

A. Case Study 

Case Study 1: Small to Medium-Sized Web Application 
This case study evaluated a web application designed for 
managing online content and user interactions. The 
application, developed using HTML, CSS, JavaScript, and 
Python (Django framework), performed standard tasks such 
as user authentication, data management, and content creation. 
The maintainability analysis indicated an average Halstead 
Volume of 35.4, cyclomatic complexity of 4.2, lines of code 
at 150, and a maintainability index of 82.7, suggesting the 
code is well-structured and relatively easy to maintain. 
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Energy efficiency analysis showed a package power 
consumption of 25W, DRAM power of 3.8W, CPU utilization 
at 55%, and a package temperature within acceptable limits, 
highlighting areas for optimization. 

Case Study 2: Large Enterprise Application The second 
case study focused on a large enterprise customer relationship 
management (CRM) application. The application was 
developed using Java and Spring framework, with 
functionalities including customer data management, sales 
tracking, and reporting. The maintainability analysis revealed 
an average Halstead Volume of 48.2, cyclomatic complexity 
of 6.5, lines of code at 800, and a maintainability index of 75.3, 
indicating higher complexity and potential areas for 
improvement. Energy efficiency analysis showed a package 
power consumption of 40W, DRAM power of 5.5W, CPU 
utilization at 70%, and elevated package temperatures, 
emphasizing the need for performance optimization. 

B. Expert Survey 

To evaluate the usability and effectiveness of the software 
sustainability assessment tool, we conducted an expert survey 

involving a group of professionals in software engineering 
and sustainability. These experts were carefully selected 
based on their extensive experience and knowledge in 
software development, sustainability practices, and quality 
assessment. We used the System Usability Scale (SUS) 
survey, a widely recognized tool for evaluating system 
usability. Each expert participant was asked to rate these 
statements based on their experience using the tool. This 
structured feedback provided valuable insights into how well 
the tool meets the needs of professionals in the industry. 

The SUS consists of 10 questions (as shown in Fig.5), each 
rated on a 5-point Likert scale from "strongly disagree" to 
"strongly agree". The survey covers the ease of use, 
functionality, complexity, and user confidence in using the 
system. The significance of the SUS scale is to quantitatively 
assess the overall user satisfaction and usability of the system 
and to provide data to support the improvement and 
optimization of the system

 

 

 
Fig. 5  Results of the Expert System Usability Assessment 

The following are the demographics of the experts involved:  
Expert 1: Senior Software Engineer with over 5 years of experience in software development and sustainability. 
Expert 2: Intermediate Software Engineer. Has researched in the field of sustainability 
Expert 3: -Intermediate Software Engineer, specializing in various tools development for many years
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Fig. 6  Tool Evaluation Synthesis Report 

 

In summary, the expert survey thoroughly evaluated the 
software sustainability assessment tool (Fig.6), highlighting 
its strengths in usability, accuracy, integration, and overall 
user satisfaction. The feedback gathered from this survey will 
be instrumental in further refining the tool to better serve the 
needs of software professionals and contribute to more 
sustainable software development practices. 

C. Manual Measurement Comparison 

We conducted a manual measurement comparison to 
highlight the software sustainability assessment tool's 
advantages. We divided the participants into two groups: one 
used the tool, and the other performed manual measurements. 
Each group consisted of three experts evaluating the same 
software projects (Case Study 2: Large Enterprise 
Application), and the results were compared. 

Group 1: Tool-Assisted Assessment 
Participants: Expert 1， Expert 2， Expert 3. 
Group 2: Manual Assessment 
Participants: Expert 4, Expert 5, Expert 6. 
Tasks for Manual Assessment: For maintainability 

evaluation, participants from Group 2 manually calculated the 
Halstead metric, cyclomatic complexity, and lines of code 
(LOC). Then, the maintainability index was calculated using 
a formula. For energy efficiency evaluation, real-time CPU 
and memory power consumption during software execution 
was measured using tools such as Intel Power Gadget. 

TABLE II 
TIME TAKEN FOR ASSESSMENTS 

Method Expert  
Time Cost 

(min) 

Average Time 

(min) 

Tool 
measurement 

Expert 
1 

<1 

<1 
Expert 
2 

<1 

Expert 
3 

<1 

Manual 
measurement 

Expert 
4 

25 

31 
Expert 
5 

30 

Expert 
6 

38 

Time Saved (min) - - 30 
 

In summary, the comparison results indicate (as shown in 
Table II) that the Software Sustainability Assessment Tool 
offers significant advantages in terms of efficiency. The tool 
significantly reduces the time required for the assessment, 

emphasizing its potential to streamline and enhance the 
software assessment process 

D. Accuracy and Precision Data 

TABLE III 
ACCURACY DATA FOR SMALL TO MEDIUM-SIZED WEB APPLICATION [31] 

Metric 
Tool 

Result 

Manual 

result 
Deviation 

Maintainability Index 
(MI) 

82.7 81.9 0.8 

Package Power (W) 25 24.8 0.2 
DRAM Power (W) 3.8 3.7 0.1 
CPU Utilization (%) 55 54.5 0.5 
Package Temperature 
(°C) 

68 67.5 0.5 

Package Frequency 
(GHz) 

2.8 2.75 0.05 

TABLE IV 
ACCURACY DATA FOR LARGE ENTERPRISE APPLICATION [31] 

Metric 
Tool 

Result 

Manual 

result 
Deviation 

Maintainability Index 
(MI) 

70.5 71.0 0.5 

Package Power (W) 40.0 39.8 0.2 
DRAM Power (W) 6.5 6.4 0.1 
CPU Utilization (%) 75.0 74.5 0.5 
Package Temperature 
(°C) 

80.0 79.5 0.5 

Package Frequency 
(GHz) 

2.2 2.25 0.05 

TABLE V  
PRECISION DATA FOR SMALL TO MEDIUM-SIZED WEB APPLICATION 

Metric 1 2 3 4 5 
Standard 

Deviation 

Maintainability 
Index(MI) 

82.7 82.6 82.8 82.7 82.6 0.07 

Package 
Power(W) 

25 25.1 25 25.1 25 0.04 

DRAM Power(W) 3.8 3.8 3.7 3.8 3.8 0.05 
CPU 
Utilization(%) 

55 55.1 54.9 55 55 0.07 

Package 
Temperature(°C) 

68 68.1 67.9 68 68 0.07 

Package 
Frequency(GHz) 

2.8 2.8 2.8 2.8 2.8 0.00 

TABLE VI 
 PRECISION DATA FOR LARGE ENTERPRISE APPLICATION 

Metric 1 2 3 4 5 
Standard 

Deviation 

Maintainability 
Index (MI) 

70.5 70.6 70.4 70.5 70.5 0.07 

Package 
Power(W) 

40.0 40.1 39.9 40.0 40.0 0.07 

DRAM 
Power(W) 

6.5 6.5 6.4 6.5 6.5 0.05 

CPU Utilization 
(%) 

75.0 75.1 74.9 75.0 75.0 0.07 

Package 
Temperature(°C) 

80.0 80.1 79.9 80.0 80.0 0.07 

Package 
Frequency (GHz) 

2.2 2.2 2.2 2.2 2.2 0.00 

 
The four tables summarize the tool's accuracy and 

precision. Tables III and IV compare the tool's assessments 
with manual evaluations, showing minimal deviations, which 
demonstrate the tool's high accuracy. Table V and VI present 
the results of multiple runs for small and large applications. 
Low standard deviations indicate that the tool is highly 
consistent and reliable across various assessments. These 
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results validate the tool's effectiveness and stability in 
evaluating software sustainability. 

The evaluation results demonstrated that the tool 
effectively provided comprehensive and accurate software 
maintainability and energy efficiency assessments. The 
generated reports offered valuable insights and actionable 
recommendations for improving software sustainability, such 
as optimizing code structure and enhancing energy efficiency. 
Feedback from users highlighted the tool's ease of use, the 
clarity of the reports, and the practical applicability of the 
recommendations. 

However, the evaluation also identified areas for 
improvement. For instance, enhancing the tool's capability to 
handle larger and more complex codebases efficiently and 
improving the accuracy of certain metrics could further 
increase its utility. Continuous feedback and iterative 
development will be crucial for refining the tool and ensuring 
it remains up-to-date with the latest advancements in software 
sustainability assessment. 

In summary, the evaluation phase validated the 
effectiveness of the software sustainability assessment tool in 
real-world scenarios, providing comprehensive and accurate 
insights into software maintainability and energy efficiency. 
The results highlighted the tool's strengths and identified 
areas for further enhancement, laying the foundation for 
ongoing improvements and future development. 

IV. CONCLUSION 

The conclusion of this project highlights the successful 
development and validation of a comprehensive software 
sustainability assessment tool that integrates the Life Cycle 
Assessment (LCA) with the ISO 25010 quality model. This 
tool addresses the need for a holistic approach to software 
sustainability, encompassing environmental, technical, social, 
and economic dimensions. 

The project followed a systematic methodology, beginning 
with an extensive literature review, integrating theoretical 
insights into a cohesive framework, and translating this 
framework into a practical tool through detailed architectural and 
interface designs. The implementation phase involved setting up 
the environment, developing the backend and front end, 
integrating the database, and rigorously testing to ensure 
reliability and accuracy. Python and PyQt5 were used to create a 
responsive GUI, and MySQL ensured robust data management. 

The evaluation phase demonstrated the tool's effectiveness 
by applying it to various real-world software projects, 
including web applications, enterprise systems, and mobile 
apps. The tool provided detailed maintainability and energy 
efficiency analyses, offering valuable insights and actionable 
recommendations for improving software sustainability. User 
feedback highlighted the tool’s ease of use and the practical 
relevance of the generated reports. 

The contributions of this project are significant in the field 
of software engineering. By developing a model that 
integrates LCA with ISO 25010, the tool offers a 
comprehensive assessment of software sustainability that 
includes environmental impacts. This model bridges the gap 
between traditional software quality assessments and 
sustainability metrics, providing a holistic view of software 
performance. The tool’s ability to generate detailed reports 
with specific recommendations helps developers optimize 

their code for better maintainability and energy efficiency. 
Additionally, the tool promotes sustainable software 
development practices, aligning software engineering with 
broader environmental and sustainability goals. 

Specific contributions include the creation of a 
maintainability index that incorporates Halstead metrics, 
cyclomatic complexity, and lines of code, providing a robust 
measure of software maintainability. Integrating energy 
efficiency metrics, such as CPU power consumption and 
DRAM power, offers a comprehensive analysis of the 
software’s environmental impact. The tool’s user-friendly 
interface and robust data management capabilities make it 
accessible and practical for developers. 

Despite its success, the project identified several areas for 
future improvement. Enhancements to handle more extensive 
and complex codebases efficiently and improving the 
accuracy of specific metrics are critical areas for development. 
Future iterations of the tool should focus on these 
enhancements to increase its utility and effectiveness. 
Expanding the tool’s capabilities to include more diverse 
software environments and sustainability goals will further its 
applicability and relevance. Continuous feedback and 
iterative development will be essential for refining the tool 
and ensuring it remains up-to-date with the latest 
advancements in software sustainability assessment. 
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