
Vol.14 (2024) No. 5

ISSN: 2088-5334

Sustainable Software Solutions: A Tool Integrating Life Cycle
Analysis and ISO Quality Models

Yang Qiang a,Noraini Che Pa a,*, Rosli Ismail a
a Department of Software Engineering and Information Systems, Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Corresponding author: *norainip@upm.edu.my

Abstract—Sustainability is essential in software systems in today's eco-conscious atmosphere. However, companies often overlook this,

resulting in energy waste and e-waste. We implemented an automated software sustainability assessment solution to address this by

fusing Life Cycle Analysis (LCA) and ISO quality model implementation capabilities. Our tool reduces environmental impact, promotes

economic, technical, environmental, and social sustainability, improves resource labor efficiency and usage time (hardware life), and

enables user autonomy. Developed in Python, it is a tool for assessing and evaluating software sustainability (such as performance or

maintainability) that has been validated in real-world scenarios. We provide a method for assessing software maintainability and energy

efficiency by combining LCA with the ISO 25010 standard. Case studies confirm that the new tool offers a comprehensive sustainability

assessment method consistent with sustainable development goals. The study results show that maintainability and energy efficiency

were thoroughly assessed. The accuracy and precision of the test assessment results were further confirmed, indicating that the tool is

consistent across different software projects and reliable, proving its practical application. This advancement is essential for sustainable

software development and provides concrete metrics and operational insights for developers and their companies. In future research,

we plan to extend the tool’s metric scope and improve data visualization/information customization suitable for more diverse software

environments and sustainability goals. Our tool promotes eco-responsibility while raising quality and sustainability standards for all

software systems.

Keywords—Sustainability; life cycle analysis; ISO.

Manuscript received 5 Mar. 2024; revised 21 Jun. 2024; accepted 9 Sep. 2024. Date of publication 31 Oct. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

With the rapid advancement of technology, software
systems have become integral to various aspects of modern
life, raising significant sustainability concerns. Traditional
software development practices have primarily focused on
performance, functionality, and usability, often neglecting the
broader environmental, economic, and social impacts [1].
This project addresses these gaps by developing a
comprehensive software sustainability assessment tool that
integrates Life Cycle Assessment (LCA) with the ISO 25010
quality model. The ISO 25010 model provides a robust
framework for evaluating software quality, focusing on
performance efficiency, maintainability, and availability [2].
However, it does not explicitly consider environmental
sustainability. This project seeks to fill this gap by
incorporating LCA, which evaluates the environmental
impacts of products across their entire lifecycle—from raw

material extraction to end-of-life disposal [3]. By integrating
LCA with ISO 25010, the project aims to provide a more
holistic evaluation of software sustainability, encompassing
traditional quality attributes and indicators [4]. This research
uniquely contributes to the field by combining the Life Cycle
Assessment (LCA) with the ISO 25010 quality model,
providing a novel framework for assessing software
sustainability. Unlike existing models that treat software
quality and environmental impact as separate entities, our
approach unifies these aspects and ensures a comprehensive
assessment throughout the software lifecycle. This integration
bridges the gap between software quality and sustainability
and provides a practical tool that can be used in real-world
scenarios to achieve sustainability goals.

The primary problem this study addresses is the need for
comprehensive sustainability metrics in existing software
quality models. Most current models, including ISO 25010,
overlook critical sustainability metrics, limiting the scope of

1728

their assessments and preventing software development from
fully supporting broader sustainability goals [5]. Additionally,
there needs to be more effective integration between LCA and
software quality models, which hampers the ability to assess
environmental impacts during the software development
process [6]. Furthermore, standard practices often neglect the
ecological sustainability of software, such as its energy
consumption and e-waste generation, leading to a significant
ecological footprint [7].

The objectives of this project are threefold: first, to
integrate ISO and LCA principles into a comprehensive
framework for evaluating software sustainability; second, to
develop practical tools for assessing software sustainability
that incorporate this integrated framework; and third, to
empirically validate the effectiveness of these tools in real-
world software development scenarios [8]. By achieving these
objectives, the project aims to enhance the ability of software
developers and organizations to make informed decisions that
support both quality and sustainability goals [9].

This project's scope includes designing and implementing
a software sustainability assessment tool that integrates LCA
with the ISO 25010 quality model. This involves identifying
relevant environmental indicators and incorporating them into
the ISO 25010 framework, focusing mainly on
maintainability and energy efficiency [2]. The tool will be
developed using Python and validated through case studies to
ensure practical applicability. Continuous improvement
mechanisms will be established to incorporate user feedback
and the latest advancements in sustainability assessment and
software quality modeling [10]. This project aligns with the
Sustainable Development Goals (SDGs) by promoting
sustainable software practices. It aims to reduce the ecological
footprint of software systems, thereby supporting broader
environmental and sustainability initiatives [11].

Software sustainability has gained increasing importance
as software systems' environmental, economic, and social
impacts are more widely recognized. Existing literature on
software sustainability, Life Cycle Assessment (LCA), the
ISO 25010 quality model, related works, and selected
indicators and evaluation standards provides a foundation for
developing a comprehensive software sustainability
assessment tool that integrates LCA with ISO 25010 [12].

Software sustainability refers to software systems' long-
term environmental, economic, and social impacts throughout
their lifecycle. It encompasses technical, environmental,
social, and economic dimensions [13]. Technical
sustainability focuses on maintainability, ensuring software
can be easily modified and improved, thus reducing resource
wastage. Environmental sustainability involves optimizing
energy consumption and reducing carbon emissions and e-
waste [14]. Social sustainability addresses user satisfaction,
privacy, and ethical considerations, while economic
sustainability aims at cost-effectiveness and financial
viability [15]. Recent studies emphasize the need for holistic
software engineering practices integrating sustainability at all
lifecycle stages, from design and development to deployment
and maintenance [16]. For instance, Penzenstadler et al. (2014)
highlighted the importance of considering sustainability
throughout the software lifecycle to minimize operational
costs, improve software quality, and increase user satisfaction
[1]. Albertao et al. [17] further noted that sustainable software

development aligns with broader organizational goals of
corporate social responsibility and environmental stewardship.

Life Cycle Assessment (LCA) is a systematic method for
assessing the environmental impacts of a product, process, or
service across its entire lifecycle. It includes four main stages:
goal and scope definition, inventory analysis, impact
assessment, and interpretation [2]. LCA provides valuable
insights into the environmental performance of products and
processes, making it a crucial tool for enhancing software
sustainability. In software engineering, LCA helps quantify
energy consumption and carbon footprint during software
development and operation, enabling optimization for better
environmental performance [4]. For example, Calero and
Piattini [2] discussed the application of LCA in software
development to assess the environmental impacts of software
systems, highlighting its capability to quantify energy
consumption and carbon footprint. Penzenstadler et al. [18]
emphasized the significance of LCA in identifying critical
stages in the software development process to mitigate
environmental impacts effectively. Despite the challenges
posed by the dynamic nature of software lifecycles, LCA
offers significant opportunities for improving environmental
impacts [19].

The ISO 25010 quality model is an international standard
for assessing software quality. It defines eight key quality
characteristics: functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability,
and portability [20]. While ISO 25010 provides a
comprehensive framework for evaluating software quality, it
does not explicitly include environmental sustainability.
Integrating LCA with ISO 25010 can bridge this gap,
allowing for a more holistic assessment with sustainability
metrics [4]. This integration enables development teams to
systematically identify and address sustainability aspects,
enhancing software quality and reducing environmental
impacts [21]. For example, Calero et al. [4] proposed
extending ISO 25010 by incorporating sustainability
characteristics into the quality model, allowing for a
comprehensive evaluation of the software’s environmental
impact. Boarim et al. [8] demonstrated the practical
application of ISO 25010 in assessing Customer Relationship
Management (CRM) systems, improving functional
suitability and performance efficiency.

Various approaches and tools have been developed to
assess software sustainability. These include the Global
Sustainability Index, which simplifies sustainability reporting
using mathematical algorithms, and the Sustainability
Assessment Framework (SAF), which integrates
sustainability-quality requirements into software projects [22].
The Global Sustainability Index addresses the heterogeneity
of sustainability indicators through systematic aggregation
and evaluation methods, offering valuable insights into
sustainable management practices [23]. Grecu et al. [24]
highlighted the tool's adaptability in handling imprecise and
scarce information, making it a valuable asset for
organizations striving toward sustainable practices. The SAF
employs a participatory and technical action research
methodology, enhancing its applicability in the software
industry [25]. Workshops and surveys have identified gaps in
understanding and applying sustainability principles among
software developers, highlighting the need for better training

1729

and guidelines [7]. For instance, Oyedeji et al. [26] conducted
workshops with software developers to identify key
sustainability concerns, finding that economic and technical
dimensions are often prioritized over social sustainability.
Noman et al. [7] surveyed software professionals and found
significant gaps in understanding sustainability principles,
emphasizing the need for comprehensive training and
guidelines.

The GREENSOFT model offers a comprehensive
framework for sustainable software design and development,
addressing sustainability criteria across all lifecycle phases
[12]. This model includes a lifecycle model for software
products, sustainability metrics, and criteria, providing a
cradle-to-grave approach to software lifecycle management
[12]. Naumann et al. [12] described the GREENSOFT
model’s extensive coverage of sustainability criteria,
emphasizing its role in balancing ICT's resource and energy
consumption with its benefits in solving environmental issues.

This project focuses on maintainability and energy
efficiency as crucial indicators for software sustainability. As
defined by ISO 25010, maintainability ensures that software
can be easily updated and repaired, reducing resource
consumption and waste [27]. By ensuring high
maintainability, organizations can extend the lifespan of their

software systems, reduce technical debt, and minimize the
environmental impact associated with frequent replacements
or extensive rework [27]. Key metrics for maintainability
include Halstead metrics, cyclomatic complexity, and lines of
code [27]. Energy efficiency minimizes the environmental
footprint by optimizing power consumption and operational
costs [28]. Key energy efficiency indicators include CPU
power, DRAM power, CPU utilization, and package
temperature [29]. Intel Power Gadget and other tools provide
real-time data on these metrics, allowing for comprehensive
analysis and optimization of software energy consumption
[24].

In summary, the literature on software sustainability, LCA,
the ISO 25010 quality model, and related works highlight the
need for an integrated approach to assess software
sustainability comprehensively [18]. By focusing on
maintainability and energy efficiency, this project aims to
develop a robust tool that advances sustainable software
engineering practices, aligns with the Sustainable
Development Goals (SDGs), and reduces the ecological
footprint of software systems [12]. The following Table I
summarizes the related works。

TABLE I
SUMMARY OF RELATED WORKS

Authors Year Title Methodology/Tool Key Findings Limitations

Oyedeji et
al.[24]

2021 Software sustainability:
academic understanding and
industry perceptions

Workshops with
software developers

Identified economic and
technical dimensions as
primary concerns

Limited focus on social
dimensions

Noman et al.
[7]

2022 An exploratory study of
software sustainability at
early stages of software
development

Survey of software
professionals

Highlighted the need for
better understanding of
sustainability

Confusion between
"green software" and
"sustainable software"

Grecu et al.
[1]

2020 Software Application for
Organizational
Sustainability Performance
Assessment

Mathematical algorithms
for sustainability
reporting

Simplified sustainability
reporting process

Accuracy issues with
complex environmental
data

Boarim & Da
Rocha[8]

2020 Evaluating CRM Systems
with ISO 25010

ISO 25010 quality
evaluation

Improved functional
suitability and performance
efficiency

Specific to CRM
systems, not
generalizable to all
software types

Condori-
Fernandez et
al. [23]

2022 An Action Research for
Improving the Sustainability
Assessment Framework
Instruments

Participatory and
technical action research

Validated SAF's
applicability in identifying
sustainability-quality
requirements

Limited by the specific
cases and software
products used in the
study

Naumann et
al. [12]

2011 The GREENSOFT Model:
A reference model for green
and sustainable software and
its engineering

Development of a
conceptual reference
model

Provides a comprehensive
framework for sustainable
software across all life
cycle phases

Requires further
empirical validation
across different
software domains

II. MATERIAL AND METHOD

Integrating life Cycle Assessment (LCA) with the ISO
25010 quality model is the methodology for developing a
software sustainability assessment tool. This approach
ensures a systematic and rigorous process by combining
theoretical insights with practical implementation to achieve
the research objectives. The methodology is divided into
several key sections: theoretical research, integration, design,
development, and evaluation.

The theoretical research involved an extensive literature
review to understand key concepts in software sustainability,

LCA, and ISO quality models. The review focused on
identifying gaps and potential improvements in software
sustainability practices. Key findings from previous studies
were summarized to form the foundation for the project's
framework.

The integration phase combined insights from the
theoretical research to develop a cohesive framework that
merges ISO 25010 standards with LCA principles. This
involved mapping ISO 25010 quality characteristics to LCA
stages and defining specific sustainability indicators. Expert
reviews and preliminary tests ensured the integrated
framework's robustness and applicability.

1730

The integrated framework was translated into a practical
tool in the design phase. The system architecture was detailed,
including user interface design and component interactions.
The design process also involved creating algorithms to
calculate sustainability scores based on defined indicators and
establishing a database schema for efficient data management
using MySQL.

The development phase implemented the design using
Python for its versatility and PyQt5 for a user-friendly
graphical interface. The tool's backend was developed to
handle data processing, while the frontend focused on
ensuring responsiveness and usability. Rigorous testing,
including unit and integration tests, ensured the tool's
functionality and reliability.

The evaluation phase involved testing the tool with real-
world software projects to validate its effectiveness. Specific
evaluation standards and indicators were defined, and the
tool's performance was assessed through practical application.
Feedback mechanisms were established to enable continuous
improvement based on user input and the latest advancements
in sustainability assessment.

By following this structured methodology, the project aims
to develop a robust, reliable, and comprehensive tool for
assessing the sustainability of software products, contributing
valuable insights into software engineering and sustainability
(refer to Fig.1).

Fig. 1 Research Methodology

The analysis and design phase of a software sustainability

assessment tool focuses on translating theoretical frameworks
and integration methods into practical, functional tools. This
phase includes use case design, framework design, data
processing workflow design, and tool functionality design.
My tool combines ISO to assess the sustainability of software

across the life cycle. The following is a detailed analysis of
the tool's phase-specific assessment methodology.

1) Requirements Analysis Phase: Although the
requirements analysis phase usually involves documentation,
the tool assesses the sustainability of the initial code
prototypes or modules associated with the requirements. This
includes assessing whether the code implements
sustainability-related functionality, such as resource
optimization or energy efficiency management. The tool can
analyze the complexity and redundancy of the initial code
structure to determine the effectiveness of requirements
implementation and identify potential environmental impacts
early in the development process.

2) System Design Phase: During the system design phase,
the tool assesses the sustainability of design-generated code
modules by analyzing maintainability and extensibility.
Specifically, the tool uses static analysis to examine the code's
modularity, coupling, and cohesion, which directly affect the
system's long-term maintainability and resource efficiency.
The tool also checks whether design patterns or optimization
strategies are implemented in the code to ensure the system
remains resource-efficient during future development and
operation.

3) Implementation Phase: During the implementation
phase, the tool assesses the sustainability of the code through
static and dynamic analysis. Static analysis involves
evaluating code complexity metrics (e.g., Halstead
complexity, circle complexity, and lines of code) and
maintainability indices, which help assess the code's long-
term maintainability. Dynamic analysis involves monitoring
resource usage while the code runs, including CPU utilization,
memory consumption, and energy efficiency. The tool
identifies high energy-consuming code segments and
provides optimization suggestions to reduce energy
consumption during execution.

4) Testing Phase: During the testing phase, the tool
evaluates the efficiency and resource usage of the test code. It
analyzes the execution time and resource consumption of test
scripts and compares different testing approaches to
determine the most energy-efficient testing strategy. In
addition, the tool monitors real-time energy consumption
during test execution to help optimize resource usage while
ensuring comprehensive and efficient test coverage.

5) Deployment Phase: During the deployment phase, the
tool assesses the sustainability of the deployment process by
analyzing the deployment scripts or automation code. It
evaluates the efficiency of the script's tasks, identifies any
redundant tasks, and determines whether to use energy-
efficient deployment configurations. The tool also simulates
the deployment process, predicts resource consumption under
different configurations, and assists in selecting the most
energy-efficient deployment strategy.

6) Maintenance Phase: During maintenance, the tool
assesses the system's sustainability by analyzing code changes
over time. It detects if new complexity is introduced during
code updates or if these changes affect the overall efficiency
of the system. The tool also supports the assessment of
resource usage efficiency during maintenance, e.g., whether

1731

code optimization has reduced the system's energy
consumption during updates.

7) End-of-Life: During the end-of-life phase, the tool
assesses the sustainability of code execution during system
decommissioning or migration to ensure that these processes
do not lead to wasted resources or data leakage. The tool also
provides recommendations to help the development team
develop a strategy for archiving or removing code,
maximizing resource recovery, and minimizing
environmental impact during system decommissioning.

The use case design（ as shown in Fig.2.) identifies the
primary interactions between users and the software
sustainability assessment tool. The leading actor, the user, can
upload source code, select a programming language for analysis,
run the tool, and view the generated sustainability assessment
reports. The tool processes include obtaining initial results from
the source code analysis, processing these results to create
detailed sustainability assessment reports, and providing
recommendations for improvement. The use case diagram
visually represents these interactions and processes, ensuring
clarity in how the tool functions and interacts with users.

The framework design（as shown in Fig.3） breaks down
the core components of the tool into three major parts: data
input, data processing, and data output. The data input module

accepts source code from users, either through file uploads or
direct code pasting. The system supports multiple
programming languages to ensure broad applicability. The
data processing module is the core of the assessment tool,
consisting of three key processes: code extraction,
maintainability indicator analysis, and energy efficiency
analysis. These processes operate independently but provide
necessary data for the final sustainability assessment. The
data output module generates a detailed software
sustainability assessment report, including scores for
maintainability and energy efficiency, overall sustainability
evaluation, and specific improvement suggestions.

Fig. 2 Use case diagrams for software sustainability assessment tool

Fig. 3 Framework for software sustainability tools

The flowchart design（as shown in Fig.4.）provides a

step-by-step visual representation of the tool's operation. It
begins with user input of the source code, followed by parallel
paths for extracting maintainability metrics and integrating

tools for energy efficiency analysis. The extracted data is then
consolidated and processed to generate a detailed assessment
report. This flowchart ensures that each step of the process is
clearly defined and logically sequenced, facilitating smooth
and efficient tool operation.

Upload

Choose Language

Run

View Report

Generate Result

Generate Details Reports

Sustainability Assessment Tool

Users

INPUT DATA ANALYSIS PROCESS OUTPUT

Select Maintainability In ISO 25010 The Environmental Impact of Energy Efficiency in LCA

Source

Code

ENERGY EFFICIENCY ANALYSIS

MAINTAINABILITY INDEX ANALYSIS

Code

Extraction

AveE

Avev(g’)

AveLOC

Maintainability Index Indicators

Analysis

Energy Efficiency Analysis Report

MI
Overall
Score

EE
Overall
Assess

CalculateExtract

Generate Generate

Software
Sustainability
Assessment

Report

Result

Conclusion

Suggestion

Package Power

CPU Utilization

Package Tempture

DRAM Power

Package Frequeney

1732

Fig. 4 Flowchart for Software Sustainability Tool

The functional design outlines the significant features and
capabilities of the tool. Key features include source code input,
where users can input source code in multiple programming
languages through file uploads or direct pasting. Using static
and dynamic analysis tools, the tool extracts maintainability
and energy efficiency metrics from the source code. It
calculates maintainability indices based on Halstead metrics,
cyclomatic complexity, and lines of code. Additionally, it
analyzes energy efficiency data, including CPU power
consumption, DRAM power, CPU utilization, and package
temperature. The tool then generates detailed assessment
reports summarizing the analysis results and providing
specific recommendations for improving software
sustainability.

By integrating these features, the tool aims to provide
comprehensive insights into the maintainability and energy
efficiency of the input source code, helping developers
optimize and improve their code effectively. This phase
ensures the design is user-centric, functional, and capable of
delivering valuable sustainability assessments.

The analysis and design phase establishes a clear and
structured approach to developing the software sustainability
assessment tool. This phase lays the groundwork for creating
a robust and practical tool that supports sustainable software
development practices by focusing on use case design,
framework design, data processing workflows, and functional
capabilities.

The Software Sustainability Assessment Tool (SSAT)
implementation phase translates the design into a functional
application through systematic steps, including environment
setup, back-end and front-end coding, database integration,
and complete testing.

First, the development environment was configured with
Python (for its large number of libraries), PyQt5 (for its
responsive graphical user interface (GUI)), and MySQL (for

its powerful data management capabilities.) Tools such as
Anaconda and Spyder facilitated development, and Intel
Power Gadget was used for real-time energy efficiency data
Back-end development focused on implementing the core
logic and

Back-end development focused on implementing the core
logic and algorithms. Functions to calculate maintainability
indices were developed using Halstead metrics, cyclomatic
complexity, and lines of code. Energy efficiency analysis
included the integration of an Intel Power Gadget to measure
CPU power, DRAM power, CPU utilization, and package
temperature to provide a comprehensive software energy
efficiency assessment.

Front-end development creates an intuitive interface that
allows users to enter source code via file upload or direct paste,
select a programming language, and specify a report output
path. Key features included buttons to upload code, run the
assessment and view results, ensuring a straightforward user
experience.

Database integration included designing a MySQL schema
for storing source code information, maintainability metrics,
and energy efficiency data. Efficient data storage, retrieval,
and update operations were implemented to ensure the
security and accessibility of the assessment data.

Rigorous testing and debugging were also performed to
ensure reliability and accuracy. Unit tests verified the
functionality of individual components, while integration
tests ensured seamless operation of all elements. Detailed test
cases covering a wide range of scenarios ensured the tool's
robustness in handling different types of source code and
generating accurate assessments.

By completing the implementation phase, the project
ensured the software sustainability assessment tool was
functional and user-friendly, providing valuable insights into
software maintainability and energy efficiency. This phase
laid the groundwork for future enhancements and continuous
improvements based on user feedback and advances in
sustainability assessment methodologies.

III. RESULT AND DISCUSSION

The evaluation involved rigorous tool testing using several
software projects to ensure the thoroughness and
representativeness of the results. Experiments were conducted
on a consistent hardware and software platform, including an
Intel i7 processor and 16 GB RAM, running Windows 10 and
Python 3.8 with its dependencies. The tool's maintainability
and energy efficiency metrics were collected and compared
against manual evaluations and other existing tools to validate
its precision.

A. Case Study

Case Study 1: Small to Medium-Sized Web Application
This case study evaluated a web application designed for
managing online content and user interactions. The
application, developed using HTML, CSS, JavaScript, and
Python (Django framework), performed standard tasks such
as user authentication, data management, and content creation.
The maintainability analysis indicated an average Halstead
Volume of 35.4, cyclomatic complexity of 4.2, lines of code
at 150, and a maintainability index of 82.7, suggesting the
code is well-structured and relatively easy to maintain.

1733

Energy efficiency analysis showed a package power
consumption of 25W, DRAM power of 3.8W, CPU utilization
at 55%, and a package temperature within acceptable limits,
highlighting areas for optimization.

Case Study 2: Large Enterprise Application The second
case study focused on a large enterprise customer relationship
management (CRM) application. The application was
developed using Java and Spring framework, with
functionalities including customer data management, sales
tracking, and reporting. The maintainability analysis revealed
an average Halstead Volume of 48.2, cyclomatic complexity
of 6.5, lines of code at 800, and a maintainability index of 75.3,
indicating higher complexity and potential areas for
improvement. Energy efficiency analysis showed a package
power consumption of 40W, DRAM power of 5.5W, CPU
utilization at 70%, and elevated package temperatures,
emphasizing the need for performance optimization.

B. Expert Survey

To evaluate the usability and effectiveness of the software
sustainability assessment tool, we conducted an expert survey

involving a group of professionals in software engineering
and sustainability. These experts were carefully selected
based on their extensive experience and knowledge in
software development, sustainability practices, and quality
assessment. We used the System Usability Scale (SUS)
survey, a widely recognized tool for evaluating system
usability. Each expert participant was asked to rate these
statements based on their experience using the tool. This
structured feedback provided valuable insights into how well
the tool meets the needs of professionals in the industry.

The SUS consists of 10 questions (as shown in Fig.5), each
rated on a 5-point Likert scale from "strongly disagree" to
"strongly agree". The survey covers the ease of use,
functionality, complexity, and user confidence in using the
system. The significance of the SUS scale is to quantitatively
assess the overall user satisfaction and usability of the system
and to provide data to support the improvement and
optimization of the system

Fig. 5 Results of the Expert System Usability Assessment

The following are the demographics of the experts involved:
Expert 1: Senior Software Engineer with over 5 years of experience in software development and sustainability.
Expert 2: Intermediate Software Engineer. Has researched in the field of sustainability
Expert 3: -Intermediate Software Engineer, specializing in various tools development for many years

1734

Fig. 6 Tool Evaluation Synthesis Report

In summary, the expert survey thoroughly evaluated the
software sustainability assessment tool (Fig.6), highlighting
its strengths in usability, accuracy, integration, and overall
user satisfaction. The feedback gathered from this survey will
be instrumental in further refining the tool to better serve the
needs of software professionals and contribute to more
sustainable software development practices.

C. Manual Measurement Comparison

We conducted a manual measurement comparison to
highlight the software sustainability assessment tool's
advantages. We divided the participants into two groups: one
used the tool, and the other performed manual measurements.
Each group consisted of three experts evaluating the same
software projects (Case Study 2: Large Enterprise
Application), and the results were compared.

Group 1: Tool-Assisted Assessment
Participants: Expert 1， Expert 2， Expert 3.
Group 2: Manual Assessment
Participants: Expert 4, Expert 5, Expert 6.
Tasks for Manual Assessment: For maintainability

evaluation, participants from Group 2 manually calculated the
Halstead metric, cyclomatic complexity, and lines of code
(LOC). Then, the maintainability index was calculated using
a formula. For energy efficiency evaluation, real-time CPU
and memory power consumption during software execution
was measured using tools such as Intel Power Gadget.

TABLE II
TIME TAKEN FOR ASSESSMENTS

Method Expert
Time Cost

(min)

Average Time

(min)

Tool
measurement

Expert
1

<1

<1
Expert
2

<1

Expert
3

<1

Manual
measurement

Expert
4

25

31
Expert
5

30

Expert
6

38

Time Saved (min) - - 30

In summary, the comparison results indicate (as shown in
Table II) that the Software Sustainability Assessment Tool
offers significant advantages in terms of efficiency. The tool
significantly reduces the time required for the assessment,

emphasizing its potential to streamline and enhance the
software assessment process

D. Accuracy and Precision Data

TABLE III
ACCURACY DATA FOR SMALL TO MEDIUM-SIZED WEB APPLICATION [31]

Metric
Tool

Result

Manual

result
Deviation

Maintainability Index
(MI)

82.7 81.9 0.8

Package Power (W) 25 24.8 0.2
DRAM Power (W) 3.8 3.7 0.1
CPU Utilization (%) 55 54.5 0.5
Package Temperature
(°C)

68 67.5 0.5

Package Frequency
(GHz)

2.8 2.75 0.05

TABLE IV
ACCURACY DATA FOR LARGE ENTERPRISE APPLICATION [31]

Metric
Tool

Result

Manual

result
Deviation

Maintainability Index
(MI)

70.5 71.0 0.5

Package Power (W) 40.0 39.8 0.2
DRAM Power (W) 6.5 6.4 0.1
CPU Utilization (%) 75.0 74.5 0.5
Package Temperature
(°C)

80.0 79.5 0.5

Package Frequency
(GHz)

2.2 2.25 0.05

TABLE V
PRECISION DATA FOR SMALL TO MEDIUM-SIZED WEB APPLICATION

Metric 1 2 3 4 5
Standard

Deviation

Maintainability
Index(MI)

82.7 82.6 82.8 82.7 82.6 0.07

Package
Power(W)

25 25.1 25 25.1 25 0.04

DRAM Power(W) 3.8 3.8 3.7 3.8 3.8 0.05
CPU
Utilization(%)

55 55.1 54.9 55 55 0.07

Package
Temperature(°C)

68 68.1 67.9 68 68 0.07

Package
Frequency(GHz)

2.8 2.8 2.8 2.8 2.8 0.00

TABLE VI
 PRECISION DATA FOR LARGE ENTERPRISE APPLICATION

Metric 1 2 3 4 5
Standard

Deviation

Maintainability
Index (MI)

70.5 70.6 70.4 70.5 70.5 0.07

Package
Power(W)

40.0 40.1 39.9 40.0 40.0 0.07

DRAM
Power(W)

6.5 6.5 6.4 6.5 6.5 0.05

CPU Utilization
(%)

75.0 75.1 74.9 75.0 75.0 0.07

Package
Temperature(°C)

80.0 80.1 79.9 80.0 80.0 0.07

Package
Frequency (GHz)

2.2 2.2 2.2 2.2 2.2 0.00

The four tables summarize the tool's accuracy and

precision. Tables III and IV compare the tool's assessments
with manual evaluations, showing minimal deviations, which
demonstrate the tool's high accuracy. Table V and VI present
the results of multiple runs for small and large applications.
Low standard deviations indicate that the tool is highly
consistent and reliable across various assessments. These

1735

results validate the tool's effectiveness and stability in
evaluating software sustainability.

The evaluation results demonstrated that the tool
effectively provided comprehensive and accurate software
maintainability and energy efficiency assessments. The
generated reports offered valuable insights and actionable
recommendations for improving software sustainability, such
as optimizing code structure and enhancing energy efficiency.
Feedback from users highlighted the tool's ease of use, the
clarity of the reports, and the practical applicability of the
recommendations.

However, the evaluation also identified areas for
improvement. For instance, enhancing the tool's capability to
handle larger and more complex codebases efficiently and
improving the accuracy of certain metrics could further
increase its utility. Continuous feedback and iterative
development will be crucial for refining the tool and ensuring
it remains up-to-date with the latest advancements in software
sustainability assessment.

In summary, the evaluation phase validated the
effectiveness of the software sustainability assessment tool in
real-world scenarios, providing comprehensive and accurate
insights into software maintainability and energy efficiency.
The results highlighted the tool's strengths and identified
areas for further enhancement, laying the foundation for
ongoing improvements and future development.

IV. CONCLUSION

The conclusion of this project highlights the successful
development and validation of a comprehensive software
sustainability assessment tool that integrates the Life Cycle
Assessment (LCA) with the ISO 25010 quality model. This
tool addresses the need for a holistic approach to software
sustainability, encompassing environmental, technical, social,
and economic dimensions.

The project followed a systematic methodology, beginning
with an extensive literature review, integrating theoretical
insights into a cohesive framework, and translating this
framework into a practical tool through detailed architectural and
interface designs. The implementation phase involved setting up
the environment, developing the backend and front end,
integrating the database, and rigorously testing to ensure
reliability and accuracy. Python and PyQt5 were used to create a
responsive GUI, and MySQL ensured robust data management.

The evaluation phase demonstrated the tool's effectiveness
by applying it to various real-world software projects,
including web applications, enterprise systems, and mobile
apps. The tool provided detailed maintainability and energy
efficiency analyses, offering valuable insights and actionable
recommendations for improving software sustainability. User
feedback highlighted the tool’s ease of use and the practical
relevance of the generated reports.

The contributions of this project are significant in the field
of software engineering. By developing a model that
integrates LCA with ISO 25010, the tool offers a
comprehensive assessment of software sustainability that
includes environmental impacts. This model bridges the gap
between traditional software quality assessments and
sustainability metrics, providing a holistic view of software
performance. The tool’s ability to generate detailed reports
with specific recommendations helps developers optimize

their code for better maintainability and energy efficiency.
Additionally, the tool promotes sustainable software
development practices, aligning software engineering with
broader environmental and sustainability goals.

Specific contributions include the creation of a
maintainability index that incorporates Halstead metrics,
cyclomatic complexity, and lines of code, providing a robust
measure of software maintainability. Integrating energy
efficiency metrics, such as CPU power consumption and
DRAM power, offers a comprehensive analysis of the
software’s environmental impact. The tool’s user-friendly
interface and robust data management capabilities make it
accessible and practical for developers.

Despite its success, the project identified several areas for
future improvement. Enhancements to handle more extensive
and complex codebases efficiently and improving the
accuracy of specific metrics are critical areas for development.
Future iterations of the tool should focus on these
enhancements to increase its utility and effectiveness.
Expanding the tool’s capabilities to include more diverse
software environments and sustainability goals will further its
applicability and relevance. Continuous feedback and
iterative development will be essential for refining the tool
and ensuring it remains up-to-date with the latest
advancements in software sustainability assessment.

ACKNOWLEDGMENT

This research was supported by the Faculty of Computer
Science and Information Technology, Universiti Putra
Malaysia.

REFERENCES
[1] V. Grecu, R.-I.-G. Ciobotea, and A. Florea, “Software Application for

Organizational Sustainability Performance Assessment,”
Sustainability, vol. 12, no. 11, p. 4435, May 2020,
doi:10.3390/su12114435.

[2] C. Calero and M. Piattini, Eds., Green in Software Engineering, vol. 3.
Cham, Switzerland: Springer, 2015.doi: 10.1007/978-3-319-08581-4.

[3] M. A. H. M. Azman et al., “Life cycle Assessment (LCA) of
particleboard: Investigation of the environmental parameters,”
Polymers, vol. 13, no. 13, p. 2043, Jun. 2021,
doi:10.3390/polym13132043.

[4] C. Calero, M. F. Bertoa, and M. A. Moraga, “A systematic literature
review for software sustainability measures,” 2013 2nd International

Workshop on Green and Sustainable Software (GREENS), San

Francisco, CA, USA, pp. 46–53, May 2013,
doi:10.1109/greens.2013.6606421.

[5] H. Cabezas, C. W. Pawlowski, A. L. Mayer, and N. T. Hoagland,
“Sustainability: ecological, social, economic, technological, and
systems perspectives,” in Springer eBooks, 2004, pp. 37–64.
doi:10.1007/978-3-662-10270-1_3.

[6] D. Chang, C. K. M. Lee, and C.-H. Chen, “Review of life cycle
assessment towards sustainable product development,” Journal of

Cleaner Production, vol. 83, pp. 48–60, Nov. 2014,
doi:10.1016/j.jclepro.2014.07.050.

[7] H. Noman, N. A. Mahoto, S. Bhatti, H. A. Abosaq, M. S. A. Reshan,
and A. Shaikh, “An exploratory study of software sustainability at
early stages of software development,” Sustainability, vol. 14, no. 14,
p. 8596, Jul. 2022, doi: 10.3390/su14148596.

[8] J. Boarim and A. R. C. Da Rocha, “Quality Characteristics of CRM
Systems,” SBQS ’20: Proceedings of the XIX Brazilian Symposium on

Software Quality, Art. no. 19, Dec. 2020,
doi:10.1145/3439961.3439980.

[9] R. Mehra, P. Pathania, V. S. Sharma, V. Kaulgud, S. Podder, and A.
P. Burden, “Assessing the Impact of Refactoring Energy-Inefficient
Code Patterns on Software Sustainability: An Industry Case Study,”
2023 38th IEEE/ACM International Conference on Automated

1736

Software Engineering (ASE), Luxembourg, Luxembourg, 2023, pp.
1825–1827, Sep. 2023, doi: 10.1109/ase56229.2023.00205.

[10] V. Borja, J. Ávila, M. López-Parra, A. Ramírez-Reivich, and A.
Espinosa, “Sustainability Assessment of Products: A Comparative
Study of Sustainability Assessment Tools,” Proceedings of the ASME

2014 International Mechanical Engineering Congress and Exposition.

Montreal, Quebec, Canada., vol. 11, pp. 14–20, Nov. 2014,
doi:10.1115/imece2014-39449.

[11] L. M. Hilty and B. Aebischer, Eds., ICT Innovations for Sustainability,
vol. 310. Cham, Switzerland: Springer International Publishing, 2015.
doi: 10.1007/978-3-319-09228-7.

[12] S. Naumann, E. Kern, and M. Dick, “Classifying green Software
Engineering - the GREENSOFT model,” Softwaretechnik-Trends, vol.
33, no. 2, pp. 18–19, May 2013, doi: 10.1007/s40568-013-0027-z.

[13] E. A. Christoforou and P. A. Fokaides, “Life cycle assessment (LCA)
of olive husk torrefaction,” Renewable Energy, vol. 90, pp. 257–266,
May 2016, doi: 10.1016/j.renene.2016.01.022.

[14] E. Boakes, J.-K. De Voogd, G. Wauters, and J. Van Caneghem, “The
influence of energy output and substitution on the environmental
impact of waste-to-energy operation: quantification by means of a case
study,” Clean Technologies and Environmental Policy, vol. 25, no. 1,
pp. 253–267, Apr. 2022, doi: 10.1007/s10098-022-02297-y.

[15] C. Celauro, A. Cardella, and M. Guerrieri, “LCA of different
construction choices for a Double-Track railway line for sustainability
evaluations,” Sustainability, vol. 15, no. 6, p. 5066, Mar. 2023,
doi:10.3390/su15065066.

[16] J. P. Miguel, D. Mauricio, and G. Rodriguez, “A review of software
quality models for the evaluation of software products,” International

Journal of Software Engineering and Applications, vol. 5, no. 6, pp.
31–53, Nov. 2014, doi: 10.5121/ijsea.2014.5603.

[17] F. Albertao, J. Xiao, C. Tian, Y. Lu, K. Q. Zhang, and C. Liu,
“Measuring the Sustainability Performance of Software Projects,”
2010 IEEE 7th International Conference on E-Business Engineering,

Shanghai, China, pp. 369–373, Nov. 2010, doi:10.1109/icebe.2010.26.
[18] B. Penzenstadler et al., “Software Engineering for sustainability: Find

the leverage points!,” IEEE Software, vol. 35, no. 4, pp. 22–33, Jul.
2018, doi: 10.1109/ms.2018.110154908.

[19] C. S. Couto, P. S. Pires, M. S. Valente, R. S. Bigonha, and N. Anquetil,
“Predicting software defects with causality tests,” Journal of Systems

and Software, vol. 93, pp. 24–41, Jul. 2014,
doi:10.1016/j.jss.2014.01.033.

[20] J. Estdale and E. Georgiadou, “Applying the ISO/IEC 25010 quality
models to software product,” in Communications in computer and

information science, 2018, pp. 492–503. doi: 10.1007/978-3-319-
97925-0_42.

[21] T. R. D. Saputri and S.-W. Lee, “Integrated framework for
incorporating sustainability design in software engineering life-cycle:
An empirical study,” Information and Software Technology, vol. 129,
p. 106407, Jan. 2021, doi: 10.1016/j.infsof.2020.106407.

[22] T. Hovorushchenko and O. Pomorova, “Evaluation of mutual
influences of software quality characteristics based ISO 25010:2011,”
2016 XIth International Scientific and Technical Conference

Computer Sciences and Information Technologies (CSIT), Lviv,

Ukraine, pp. 80–83, Sep. 2016, doi: 10.1109/stc-csit.2016.7589874.
[23] N. Condori-Fernandez, P. Lago, M. R. Luaces, and Á. S. Places, “An

Action Research for Improving the Sustainability Assessment
Framework Instruments,” Sustainability, vol. 12, no. 4, p. 1682, Feb.
2020, doi: 10.3390/su12041682.

[24] S. Oyedeji, H. Shamshiri, J. Porras, and D. Lammert, “Software
sustainability: academic understanding and industry perceptions,” in
Lecture notes in business information processing, 2021, pp. 18–34.
doi:10.1007/978-3-030-91983-2_3.

[25] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to
evaluate software system maintainability,” Computer, vol. 27, no. 8,
pp. 44–49, Aug. 1994, doi: 10.1109/2.303623.

[26] B. Dastjerdi, V. Strezov, M. A. Rajaeifar, R. Kumar, and M. Behnia,
“A systematic review on life cycle assessment of different waste to
energy valorization technologies,” Journal of Cleaner Production, vol.
290, p. 125747, Mar. 2021, doi: 10.1016/j.jclepro.2020.125747.

[27] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:

Using Software Metrics to Characterize, Evaluate, and Improve the

Design of Object-Oriented Systems. Berlin, Germany: Springer
Science & Business Media, 2007. doi: 10.1007/3-540-39538-5.

[28] A. Gurzhii, E. Hanelt, P. Verhoef, and J. Zhu, "Digital Transformation
and Flexible Performance Management: A Systematic Literature
Review of the Evolution of Performance Measurement Systems,"
Global Journal of Flexible Systems Management, vol. 24, no. 2, pp.
300-317, 2023. doi: 10.1007/s40171-023-00313-4.

[29] J. L. Díaz-Herrera, Ed., Software Engineering Education: 7th SEI

CSEE Conference, San Antonio, Texas, USA, January 5-7, 1994.

Proceedings, vol. 750, Berlin, Germany: Springer-Verlag, 1994.
doi:10.1007/BFb0017602.

[30] J. Mancebo, C. Calero, and F. García, “Does maintainability relate to
the energy consumption of software? A case study,” Software Quality

Journal, vol. 29, no. 1, pp. 101–127, Jan. 2021, doi: 10.1007/s11219-
020-09536-9.

1737

