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Abstract—To extract forest parameters and individual tree information accurately and efficiently from plantations, this study focuses 

on a plantation of Pinus tabulaeformis in Chongli District in China. Utilizing LiDAR point cloud data and ground-measured data from 

30 plots, we examined the sensitivity of individual tree segmentation to key parameters by varying the grid values of the point cloud 

distance discriminant clustering algorithm and adjusting the canopy height resolution (CHR) of the watershed algorithm. The objective 

was to identify the optimal parameters for both algorithms in terms of tree height extraction precision. In the task of individual tree 

extraction, the point cloud distance discriminant clustering algorithm outperformed the watershed algorithm. This was evidenced by 

significantly higher recall, precision, and F1-score. However, in terms of tree height precision, as measured by the coefficient of 

determination and root mean square error (RMSE), the watershed algorithm proved superior. Specifically, the watershed algorithm 

achieved a coefficient of determination of 0.88 and an RMSE of 0.93 meters, indicating greater precision in estimating tree parameters. 

Nonetheless, the optimal parameter settings for the watershed algorithm need to be adjusted based on stand density. Thus, through this 

study, we found that for individual-tree extraction from LiDAR point cloud data, the initial setting of different grid values and 

resolutions has a significant impact on segmentation precision. It is essential to design tailored approaches for processing point cloud 

data under varying environmental conditions to achieve optimal results and precision. 
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I. INTRODUCTION

Forests are crucial components of terrestrial ecosystems, 
playing significant roles in water conservation, soil erosion 

control, and the global carbon cycle [1], [2]. Therefore, 

accurately and efficiently obtaining structural parameters 

such as individual tree count, tree height, canopy width, and 

diameter at breast height (DBH) is essential for the 

conservation and sustainable use of forest resources [3], [4]. 

Traditional forest surveys involve field measurements, 

including species identification and the measurement of DBH 

and canopy width. These methods are time-consuming, labor-

intensive, and can cause damage to the forest [5]. In recent 

years, Light Detection and Ranging (LiDAR) has emerged as a 

new tool for forest surveys by collecting high-density laser point 
cloud data, facilitating the extraction of forest structural 

parameters and detailed characterization of vertical structures [6]. 

Currently, there are two main methods for individual tree 

segmentation based on LiDAR point cloud data. One method 

involves using the Canopy Height Model (CHM) to identify 

the tree crown apex by searching for global maxima and then 

applying a segmentation algorithm, such as the watershed 

segmentation algorithm [7]. Dey et al. [8] compared four 
algorithms—watershed segmentation, point cloud clustering 

segmentation, neighborhood growth, and feature point 

decision tree—and found the watershed algorithm to be the 

most accurate for individual tree segmentation. Hu et al. [9] 

employed a marker-controlled watershed algorithm to detect 

and extract individual fruit tree information, achieving 

individual tree segmentation and canopy extraction accuracies 

of 95.03% and 86.39%, respectively, demonstrating the 

feasibility of the watershed algorithm in handling crown 

overlap and occlusion issues. Beil et al. [10] found that using 

CHMs of different resolutions, the optimal results for 

individual tree information extraction were achieved at a 
resolution of 0.3 meters, with segmentation and height 

extraction precision declining and under-segmentation issues 

increasing as the resolution decreased. 

The other method directly uses normalized point cloud data 

for individual tree segmentation. This approach can utilize the 

raw point cloud data without constructing additional 3D 

models, thereby reducing the complexity of data processing 
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[11]. Key methods include the point cloud distance 

discriminant clustering algorithm [12] and the k-means 

clustering algorithm [13]. McTegg et al. [4] designed and 

improved the k-means algorithm, evaluating the suitability of 

point cloud clustering methods for individual tree 

segmentation. Peters et al. [14] proposed a Gaussian clustering 

algorithm, achieving an individual tree segmentation precision 

of 89% with normalized point clouds. Milojevic et al. [15] 

conducted a sensitivity analysis of the point cloud distance 

discriminant clustering algorithm and found that the best 
segmentation results were obtained when the distance threshold 

equaled the average crown radius of the plot. 

Applying LiDAR point cloud data for individual tree 

segmentation allows for highly accurate acquisition of 

individual tree information, with key parameter values being 

crucial for the segmentation results. This study focuses on 

Pinus tabulaeformis plantations with varying stand densities 

in the Chongli District, utilizing airborne LiDAR data and 

ground-truth measurements to compare the effectiveness of 

the watershed segmentation algorithm and the point cloud 

distance discriminant clustering algorithm for individual tree 
segmentation and height extraction. The primary goal is to 

explore the optimal parameter values for different stand 

densities, providing technical support for forest surveys and 

monitoring, as well as carbon cycle and budget assessments 

in the region. 

The research area is located in Chongli District, 

Zhangjiakou City, Hebei Province, China, in the northwest of 

Hebei Province, and the transitional zone between the Inner 

Mongolia Plateau and North China Plain. The geographical 

coordinates are between 114 17′–115 34′ E and 40 47′–41 17′ 

N, as shown in Figure 1.  
 

 
Fig. 1  Chongli District, Zhangjiakou City, Hebei Province, China 

 

The total area of Chongli District is 2334 square 

kilometers, with 80% being mountainous and a forest 

coverage rate of 52.38%. The terrain in this area is steep, 

consisting of Zhongshan, with some low mountains and hills. 

The elevation ranges from 813 m to 2174 m, with a maximum 

height difference of 1361 m. The sample site is located in the 

Chongli, which covers an area of 39.33 km2, and is rich in 

plant species, with more than 170 common tree species, 

including Robinia pseudoacacia, Pinus tabuliformis, 

Platycladus orientalis, and Picea abies. principis-rupprechtii), 

and so on. 

II. MATERIALS AND METHOD 

A. Airborne LiDAR Data 

In this study, a DJI M300 RTK Unmanned Aerial Vehicle 

(UAV) equipped with a Zenith L1 radar lens was selected for 

data acquisition. In a windless environment, the UAV flew at 

a speed of 10 m/s, at a flight altitude of 80 m, with a laser 

bypass overlap rate of 80%, and an average point density of 

147 points/m2. In order to ensure the quality of the LiDAR 

point cloud data, the weather was selected to be sunny in May-

July 2024, and the wind speed was lower than level 3 for the 

suitable weather conditions for the operation. The collected 

LiDAR point cloud data were stored in the standard LiDAR 

format (.las). 

B. Ground Investigation Data 

In this study, 30 blocks of oil pine forests with different 

stand densities, good growth conditions, and complete stand 

structure were randomly selected from March to July 2024, 

and the trees within each sample plot were examined on a per-

timber basis, and the measurement indexes included stand 

density, slope, elevation, single-timber height, single-timber 

diameter at breast height (DBH), and single-timber crown 

width (as shown in Table I). At the same time, hand-held RTK 
equipment (QianXun SE Lite network RTK receiver, RTK 

horizontal precision ± (8 + 1 × 10-6D) mm, vertical precision 

± (15 + 1 × 10-6D) mm) was used to accurately record the 

geographic coordinates of each sample plot. 

C. Individual tree extraction method 

The LiDAR point cloud data are filtered and denoised, and 

the improved progressive dense triangular mesh filtering 

algorithm (IPTD) [5] is used to classify the ground points, 

which are processed by two individual tree segmentation 
methods. (1) Kriging interpolation was used to generate 

digital elevation model (DEM), digital surface model (DSM), 

and canopy height model (CHM), in order to optimize the 

performance of the algorithm and to retain the original height 

structure characteristics of the canopy height, Gaussian 

filtering was applied to the canopy height using a 3×3 window 

to reduce the impact of noise on the algorithm [14], and the 

local maximum algorithm was used to identify the single tree 

crown tops in the filtered canopy height. The local maximum 

algorithm was used to identify the crown tops of single trees 

in the filtered crown height, and the watershed segmentation 
algorithm was used to segment the single trees based on the 

identified crown tops of single trees. (2) For the classified 

point cloud, according to the ground point normalization 

process, in order to weaken the interference of topographic 

relief on the elevation value, the point cloud distance 

discrimination clustering algorithm is used for individual tree 

segmentation [15].

 

1801



TABLE I 

BASIC INFORMATION ON SAMPLE PLOTS 

Sample Plot 

No. 

Stand 

density/plant·hm-2 
Elevation / (°) altitude /m Mean crown width /m Mean tree height /m 

Mean diameter at 

breast height /cm 

1 1 866 38 1 350 (3.01±0.88) a (8.87±1.30) a (13.65±3.19) a 
2 2 000 0 1 075 (3.54±1.02) a (9.16±1.83) a (13.98±3.90) a 
3 2 025 30 1 344 (3.21±0.97) a (8.94±1.89) a (11.40±4.48) b 
4 2 150 18 1 403 (3.39±0.84) a (9.55±1.85) a (14.51±3.89) a 
5 2 350 38 1 336 (3.33±0.87) a (9.72±1.52) a (13.27±3.56) a 
6 2 600 25 1 354 (3.13±0.98) b (7.46±1.87) a (11.31±4.60) b 
7 2 900 26 1 358 (3.21±0.82) a (10.28±1.20) a (12.70±3.11) a 
8 2 900 30 1 337 (2.97±0.81) a (10.22±1.71) a (12.04±4.10) b 

9 2 950 40 1 270 (3.24±1.04) b (7.37±1.33) a (10.94±3.49) b 
10 3 075 25 1 284 (3.00±0.88) a (8.04±1.58) a (10.76±3.70) b 
11 3 100 0 1 333 (2.81±1.01) b (6.68±1.15) a (9.40±4.22) b 
12 3 450 30 1 301 (2.84±0.78) a (10.43±1.80) a (11.52±3.57) b 
13 3 475 24 1 395 (2.93±0.86) a (9.78±1.67) a (10.79±3.88) b 
14 3 500 16 1 215 (2.91±0.83) a (7.99±1.32) a (11.10±3.63) b 
15 3 500 16 1 304 (2.93±0.85) a (8.30±1.54) a (10.51±3.58) b 
16 3 550 33 1 227 (3.59±1.09) a (8.67±2.26) a (12.56±3.93) b 

17 3 600 27 1 275 (2.86±0.94) b (8.14±1.68) a (10.18±4.06) b 
18 3 700 31 1 199 (2.79±0.95) b (9.19±1.24) a (10.92±3.49) b 
19 3 850 23 1 356 (2.61±0.60) a (6.44±1.45) a (9.35±2.79) b 
20 3 950 21 1 340 (3.06±0.79) a (10.59±1.73) a (12.20±3.67) b 
21 4 000 29 1 290 (2.67±0.99) b (7.63±1.68) a (9.46±4.40) b 
22 4 025 28 1 410 (3.11±0.89) a (9.04±2.12) a (11.46±3.99) b 
23 4 043 10 1 344 (2.74±0.91) b (9.93±2.00) a (11.64±3.5) b 
24 4 325 25 1 308 (2.66±0.85) b (10.18±1.95) a (10.82±3.63) b 

25 4 375 36 1 252 (2.65±0.79) a (6.42±1.14) a (8.01±3.03) b 
26 4 625 25 1 334 (2.76±0.81) a (9.41±1.60) a (10.22±3.69) b 
27 5 000 20 1 277 (2.67±0.92) b (8.98±2.00) a (9.37±4.02) b 
28 5 350 25 1 307 (2.45±0.79) b (8.98±1.91) a (9.07±3.61) b 
29 5 400 24 1 273 (2.38±0.75) b (6.66±1.12) a (7.09±3.59) b 
30 5 700 0 1 277 (2.66±0.92) b (7.33±1.36) a (7.76±3.72) b 

Note: Different lowercase letters in the table indicate different coefficients of variation. a is coefficient of variation ≤0.3, b is coefficient of variation >0.3. 

 

D. Individual Tree Height Extraction 

Tree-top detection, as the core link in the single-tree 

segmentation and parameter extraction process, has a decisive 

impact on the reliability of the final results in terms of its 

precision. In this study, an adaptive dynamic windowing 

strategy is applied to find the local maxima of CHM and mark 

the potential tree tops [16]. These vertices are judged one by 

one by traversing the whole globe, in which the value of the 

image height attribute corresponding to each vertex is 

regarded as the tree height. 

E. Precision Evaluation 

First, we set the evaluation of individual tree segmentation 

precision. According to existing studies, individual tree 

segmentation is divided into correct segmentation, missed 

segmentation and over-segmentation, correct segmentation is 

when point cloud data can correctly detect an individual tree, 

missed segmentation is when point cloud data is not detected 

as an individual tree, and over-segmentation is when point 
cloud data divides a tree into multiple individual trees. The 

precision of individual tree segmentation results was 

evaluated using three metrics such as recall (r), precision (p) 

and reconciliation value (F) [17], [18]. Recall rate is the 

proportion of the number of correctly segmented trees to the 

number of measured trees, precision rate is the proportion of 

the number of correctly segmented trees to the number of 

extracted trees, and reconciliation value is the overall 

segmentation precision of the algorithm. The formula is 
expressed as: 

 � = ��/(�� + �	) (1) 

 � = ��/(�� + ��) (2) 

 � = �(×�)
��  (3) 

where: � is the recall rate; � is the precision rate; � is the 

reconciliation value; ��  is the number of correctly segmented 

single logs; �	 is the number of missed segmented single logs; 

and �� is the number of over-segmented individual trees. 

For evaluation of tree height extraction precision, on this 

research, the coefficient of determination (��) and root mean 

square error (����) were used as the evaluation indexes [19], 

and the precision of extracting single-tree parameters based 

on the point cloud distance discriminative clustering 

algorithm and watershed algorithm was verified by regression 

analysis between the estimated and measured values of the 

two methods, which was expressed by the formula: 

 �� = 1− ∑���� (������) 
∑���� (����)  (4) 

 ���� = !∑���� (������) 
	�"  (5) 

where: # is the number of samples; $%&  is the estimated tree 

height based on LiDAR point cloud data; $' is the measured 
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value of tree height; and $ is the arithmetic mean of measured 

tree height. 

III. RESULTS AND DISCUSSION 

A. Precision of Single Tree Segmentation 

As can be seen from Table 2 and Figure 2, the number of 

correct segmentation of the point cloud distance discriminant 
clustering algorithm (PCDDCA) is 3,009, the number of 

missed segmentation is 437, and the number of over-

segmentation is 489, which is 149 more than the number of 

correctly extracted single trees, 149 fewer than the number of 

missed segmentation, and 65 fewer than the number of over-

segmentation of single trees of the watershed segmentation 

algorithm (WSA), and the recall, precision, and concordance 

values of the point cloud distance discriminant clustering 

algorithm are 0.87, 0.86, 0.87, respectively, 0.86, 0.87; the 

recall, precision, and reconciliation values of the watershed 

segmentation algorithm are 0.83, 0.84, and 0.83, respectively; 

the overall segmentation precision of the point cloud distance 

discriminant clustering algorithm is better than that of the 

watershed segmentation algorithm. The overall segmentation 

effect of the point cloud distance discriminant clustering 
algorithm is relatively clear and significantly better than the 

overall segmentation effect of the watershed segmentation 

algorithm.  

TABLE II 

VERIFICATION OF INDIVIDUAL TREE SEGMENTATION PRECISION 

Segmentation 

method 

Correct 

Segmentation /plant 

Missing Segmentation 

/plant 

Over 

Segmentation/plant 

recall rate  � Precision  � F-score  � 

PCDDCA 3009 437 489 0.87 0.86 0.87 
WSA 2860 586 554 0.83 0.84 0.83 

 

Fig. 2  Segmentation effect diagram of different segmentation methods 
 

B. Sensitivity of Key Parameters 

1) Sensitivity of key parameters of the point cloud distance 
discriminant clustering algorithm: 

As can be seen from Figure 3 and Table 3, the key 
parameter used by LiDAR360 software to identify the 

location of trees is the grid value, and the recommended value 

is 1/5 of the crown diameter, and the grid values were set as 

1/5 of the measured minimum crown diameter, 1/5 of the 

average crown diameter and 1/5 of the maximum crown 

diameter of the sample plot, and sensitivity analysis was 

performed for the point cloud distance discriminant clustering 

algorithm. From left to right, the grid value increases 

sequentially, when the grid value is 1/5 of the minimum 

crown diameter, compared with the grid value of 1/5 of the 

average crown diameter, there are 5 more trees correctly 

segmented, compared with the grid value of 1/5 of the 
maximum crown diameter, there are 10 more trees correctly 

segmented. Although the number of over segmentations 

decreases and the number of missing segmentations increases 

as the grid value increases, the impact of missing 

segmentation on segmentation precision is greater than that of 

over segmentation, so the overall segmentation precision 

decreases. 

In Figure 3, the d, e, and f are local zoom-ins of the same 

region of Figures a, b, and c, respectively; white dots 

represent that this tree is correctly segmented, and black dots 

represent that this tree is over segmented. 
For the 30 sample plots with different stand densities, when 

the grid value was set to 1/5 of the minimum crown diameter 

of the sample plot, the segmentation precision was the 

highest, and the recall, precision, and F values were 0.87, 

0.86, and 0.87, respectively; when the grid value was set to 

1/5 of the maximum crown diameter of the sample plot, the 

precision was much higher than the recall because the number 

of trees that were missing segmented was more than 1/2 of the 

total number of trees in the sample plot, and the precision of 

the individual tree segmentation was the lowest, and the 

recall, precision, and F values were 0.28, 0.88, and 0.42. The 
recall for segmenting individual trees with different grid 

values showed significant differences (P<0.05), indicating 

that the number of missing individual tree segmentation 

varied greatly, while the precision did not show significant 

differences, and the F value showed significant differences ( 

P<0.05), so the seriousness of the missing segmentation was 

the main reason for the impact on the precision of individual  

tree segmentation with the point cloud distance discriminant 

clustering algorithm.  
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TABLE III 

EVALUATION OF INDIVIDUAL TREE SEGMENTATION PRECISION FOR DIFFERENT GRID VALUES 

Sample Plot 

No. 

Stand 

density/plant·hm-2 

Minimum crown diameter 

1/5 

Average crown diameter 

1/5 

Maximum crown diameter 

1/5 

recall precision F recall precision F recall precision F 

1 1 866 0.86 0.88 0.87 0.52 0.79 0.63 0.43 0.9 0.58 
2 2 000 0.93 0.82 0.87 0.59 0.85 0.7 0.41 0.89 0.56 
3 2 025 0.86 0.80 0.83 0.57 0.87 0.69 0.35 0.88 0.5 

4 2 150 0.84 0.88 0.86 0.59 0.86 0.7 0.36 0.89 0.51 
5 2 350 0.93 0.79 0.85 0.61 0.8 0.69 0.35 0.89 0.5 
6 2 600 0.84 0.93 0.88 0.6 0.78 0.68 0.36 0.9 0.51 
7 2 900 0.83 0.89 0.86 0.62 0.9 0.73 0.48 0.93 0.64 
8 2 900 0.89 0.80 0.84 0.59 0.84 0.69 0.3 0.83 0.44 
9 2 950 0.88 0.87 0.87 0.49 0.75 0.59 0.2 0.67 0.31 
10 3 075 0.89 0.84 0.87 0.64 0.84 0.73 0.3 0.86 0.45 
11 3 100 0.84 0.81 0.83 0.61 0.86 0.72 0.39 0.86 0.53 
12 3 450 0.92 0.85 0.89 0.52 0.81 0.63 0.27 0.8 0.40 

13 3 475 0.80 0.91 0.85 0.57 0.80 0.66 0.23 0.71 0.35 
14 3 500 0.88 0.84 0.86 0.54 0.84 0.66 0.26 0.84 0.40 
15 3 500 0.86 0.83 0.84 0.58 0.86 0.69 0.23 0.84 0.36 
16 3 550 0.79 0.90 0.84 0.58 0.85 0.69 0.25 0.80 0.39 
17 3 600 0.90 0.80 0.85 0.50 0.84 0.63 0.19 0.88 0.32 
18 3 700 0.86 0.84 0.85 0.57 0.91 0.7 0.38 0.82 0.52 
19 3 850 0.89 0.86 0.88 0.49 0.84 0.62 0.24 0.86 0.38 
20 3 950 0.78 0.90 0.83 0.56 0.84 0.67 0.27 0.82 0.4 

21 4 000 0.90 0.78 0.84 0.40 0.76 0.52 0.33 0.81 0.46 
22 4 025 0.88 0.93 0.90 0.55 0.85 0.67 0.24 0.83 0.38 
23 4 043 0.89 0.88 0.89 0.56 0.82 0.67 0.32 0.83 0.46 
24 4 325 0.94 0.86 0.90 0.62 0.87 0.73 0.27 0.79 0.4 
25 4 375 0.91 0.82 0.86 0.56 0.82 0.67 0.24 0.89 0.38 
26 4 625 0.89 0.88 0.88 0.55 0.82 0.66 0.31 0.94 0.47 
27 5 000 0.92 0.91 0.91 0.55 0.83 0.66 0.24 0.72 0.35 
28 5 350 0.84 0.93 0.88 0.47 0.74 0.58 0.24 0.86 0.37 

29 5 400 0.87 0.84 0.85 0.57 0.91 0.7 0.33 0.90 0.49 
30 5 700 0.88 0.77 0.82 0.47 0.84 0.61 0.26 0.88 0.41 
average 

 0.87 a 0.86 a 0.87 a 0.55 b 0.83 a 
0.66 
b 0.28 c 0.84 a 0.42 c 

Note: Different lower-case letters in the table indicate significant differences (P<0.05) between the indicators of individual tree segmentation at different grid 

values. 

 

 

Fig. 3  Performance of segmentation with different grid values 

 

2) Sensitivity of key parameters of the watershed segmentation 
algorithm:  

As shown in Table 4, the optimal canopy resolution of the 

watershed algorithm for segmenting individual trees varied 

for oil pine forests with different densities by selecting 0.2, 

0.3, and 0.4 m canopy height resolution. When the density of 

the stand is 1,866-3,600 plants/hm2 (sample plots 1-17), the 

results of segmenting individual trees with 0.3 m canopy 

height resolution are optimal, with a recall of 0.79, a precision 
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of 0.86, and a F value of 0.82. When individual trees are 

segmented with 0.2 m canopy height resolution, the resolution 

is too high, and the details of the image are enlarged, and the 

image is more sensitive to the noise, which results in an over 

segmentation and a lower precision. The overall segmentation 

precision is poor, with a recall of 0.83, a precision of 0.46, and 

a F value of 0.60; when segmenting individual trees with a 

crown height resolution of 0.4 m, the crown is too smooth, 

making it difficult to capture more information in the image, 

resulting in a serious phenomenon of missing segmentation, a 
reduction in the recall value, and a poor overall segmentation 

precision, with a recall of 0.49, a precision of 0.82, and a F 

value of 0.62. 

When the density of the forest stand was 3,700-5,700 

plants/hm2 (sample plots 18-30), the results were optimal 

when using 0.2 m canopy height resolution to split single 

trees, with a recall of 0.88, an precision of 0.84, and a F value 

of 0.86; when using 0.3 and 0.4 m canopy height resolution to 

segment individual trees, the precision was relatively high, 

but the phenomenon of missing segmentation was serious, 

and the over segmentation phenomenon was worse, the recall 
was 0.58 and 0.39, the precision was 0.89 and 0.83, and the F 

values were 0.70 and 0.53, respectively. 

As can be seen from Fig. 4, a sample plot with good growth 

condition and complete forest structure was selected from the 

sample plots with different stand densities (Sample Plot 6 and 

Sample Plot 20), and the stand densities of Sample Plot 6 and 

Sample Plot 20 were 2, 600/hm2 and 3, 950/hm2 respectively. 

In Sample Plot 6, the number of missing segmented individual 

trees at a canopy height resolution of 0.4 m is 4 more than at 

a resolution of 0.3 m. In this case, missing segmentation is the 

primary factor affecting segmentation precision; At a canopy 

height resolution of 0.2 m, there are 7 more over segmented 
individual trees compared to a resolution of 0.3 m. In this 

case, over segmentation is the primary factor affecting 

segmentation precision. The segmentation performance is 

optimal when the canopy height resolution is 0.3 m for this 

plot. Sample Plot 20, at canopy height resolutions of 0.3 m 

and 0.4 m, the number of missing segmented individual trees 

is 9 and 12 more, respectively, compared to a resolution of 0.2 

m; In this area, over segmentation occurs at a canopy height 

resolution of 0.2 m, but its impact on segmentation precision 

is less significant than that of missing segmentation. The 

segmentation performance is optimal at a canopy height 
resolution of 0.2 m for this sample plot.

TABLE IV 

PRECISION OF INDIVIDUAL TREE SEGMENTATION AT DIFFERENT CANOPY HEIGHT RESOLUTIONS 

Plot 

number 

Stand 

density/plant·hm-2 

Canopy height resolution    

0.2 m×0.2 m 

Canopy height resolution    

0.3 m×0.3 m 

Canopy height resolution    

0.4 m×0.4 m 

recall precision F recall precision F recall precision F 

1 1 866 0.76 0.39 0.52 0.83 0.74 0.79 0.67 0.78 0.72 
2 2 000 0.86 0.42 0.56 0.88 0.74 0.8 0.63 0.71 0.67 
3 2 025 0.83 0.35 0.49 0.91 0.66 0.77 0.72 0.77 0.74 

4 2 150 0.8 0.42 0.55 0.84 0.73 0.78 0.63 0.73 0.68 
5 2 350 0.84 0.52 0.64 0.85 0.9 0.87 0.48 0.85 0.61 
6 2 600 0.84 0.51 0.64 0.81 0.88 0.84 0.55 0.83 0.66 
7 2 900 0.69 0.47 0.56 0.76 0.73 0.75 0.59 0.74 0.65 
8 2 900 0.74 0.41 0.52 0.78 0.76 0.77 0.59 0.86 0.7 
9 2 950 0.7 0.48 0.57 0.69 0.92 0.79 0.42 0.88 0.56 
10 3 075 0.87 0.51 0.64 0.78 0.92 0.85 0.53 0.84 0.65 
11 3 100 0.81 0.48 0.6 0.84 0.84 0.84 0.61 0.95 0.75 
12 3 450 0.89 0.73 0.8 0.84 0.92 0.88 0.4 0.89 0.55 

13 3 475 0.86 0.79 0.83 0.86 0.92 0.89 0.31 0.84 0.45 
14 3 500 0.89 0.68 0.77 0.7 0.94 0.8 0.44 0.95 0.6 
15 3 500 0.85 0.58 0.69 0.81 0.93 0.86 0.48 0.8 0.6 
16 3 550 0.85 0.67 0.75 0.71 0.93 0.8 0.5 0.84 0.63 
17 3 600 0.87 0.58 0.7 0.76 0.92 0.83 0.43 0.74 0.54 
18 3 700 0.89 0.8 0.85 0.65 0.83 0.73 0.46 0.74 0.57 
19 3 850 0.88 0.76 0.81 0.64 0.9 0.75 0.44 0.89 0.59 
20 3 950 0.86 0.79 0.82 0.6 0.87 0.71 0.37 0.74 0.49 

21 4 000 0.85 0.71 0.77 0.65 0.87 0.74 0.45 0.86 0.59 
22 4 025 0.93 0.9 0.91 0.55 0.86 0.67 0.4 0.84 0.54 
23 4 043 0.9 0.78 0.84 0.65 0.87 0.74 0.49 0.85 0.63 
24 4 325 0.9 0.91 0.91 0.5 0.88 0.64 0.32 0.86 0.47 
25 4 375 0.92 0.78 0.84 0.65 0.92 0.76 0.45 0.81 0.58 
26 4 625 0.91 0.81 0.86 0.52 0.91 0.66 0.36 0.87 0.51 
27 5 000 0.86 0.91 0.88 0.56 0.91 0.69 0.35 0.8 0.49 
28 5 350 0.86 0.93 0.89 0.52 0.91 0.66 0.32 0.84 0.47 

29 5 400 0.76 0.85 0.8 0.46 0.83 0.6 0.41 0.88 0.56 
30 5 700 0.86 0.75 0.8 0.72 0.89 0.8 0.47 0.82 0.6 
Total  0.86a 0.65a 0.74a 0.69b 0.87a 0.77a 0.44c 0.82b 0.58b 

Different lowercase letters in the table indicate significant 

differences between the indicators of single wood 

segmentation at different CHM resolutions, starting from the 

highest mean value labelled a, and comparing with the other 

groups sequentially, if there is no significant difference then 

it is recorded as a, and if the difference is significant then it is 

recorded as b (P<0.05). 
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Fig. 4  Sensitivity analysis of the Watershed Algorithm 

 

White dots represent trees that are correctly segmented, and 

black dots represent trees that are over-segmented. In order to 

verify the precision of the point cloud distance discriminant 

clustering algorithm and the watershed segmentation 

algorithm in extracting tree heights, the measured values were 

linearly fitted to the estimated values 1 (point cloud distance 

discriminant clustering algorithm) and 2 (watershed 

segmentation algorithm), respectively. Since it was difficult 

to directly correspond the location of the segmented 
greasewood with the actual data of the trees, the estimation of 

tree height was judged based on the sample level statistics of 

the mean tree height of each sample site. 

As shown in Figure 5, the coefficient of determination (R2) 

in the point cloud distance discriminant clustering algorithm 

and the watershed segmentation algorithm were 0.82 and 

0.88, the root mean square error was 1.46 m and 0.93 m, and 

the correlation coefficients were 0.94 and 0.91, respectively 

(P<0.05). The correlation coefficients were 0.94 and 0.91 

(P<0.05). This indicates that the height values extracted by 

splitting a single tree in the watershed algorithm are closer to 

the measured values. 
 

 
Fig. 4  Extraction precision of tree height by different algorithms 

IV. CONCLUSION 

Taking airborne LiDAR point cloud data as the data source, 

the improved progressive encrypted triangular mesh filtering 

algorithm (IPTD) was used to classify the point cloud, and the 

point cloud distance discriminant clustering algorithm and 
watershed algorithm were applied to extract the structural 

parameters of the single trees for precision evaluation, and the 

following conclusions were drawn: the overall segmentation 

precision of the point cloud distance discriminant clustering 

algorithm and watershed segmentation algorithm for the man-

made oleander forests was higher, with a reconciliation value 

of 0.87 and 0.83, respectively. For oil pine forests with 

different stand densities, the point cloud distance discriminant 

clustering algorithm had the highest segmentation precision 

when the optimal grid value for segmenting single trees was 

1/5 of the minimum crown diameter of the sample site, with a 

recall of 0.87, a precision of 0.86, and a concordance value of 

0.87. The optimal resolution of crown height for the 

watershed algorithm for segmenting single trees varied, and 

the canopy height resolution varied when the density of the 

stand was between 1,866-3,600 trees/hm2, and the canopy 

height resolution varied from 1,000 to 1,600 plants/hm2, with 

the canopy height of 1,000 to 1,600 plants/hm2. When the 

stand density is 1,866-3,600 trees/hm2 and the canopy height 
resolution is 0.3 m, the extraction of single trees is the best, 

with a recall of 0.79, a precision of 0.86, and a reconciliation 

value of 0.82. When the stand density is 3,700-5,700 

trees/hm2 and the canopy height resolution is 0.2m, the 

extraction of single trees is the best, with a recall of 0.88, a 

precision of 0.84, and a reconciliation value of 0.86. The tree 

height resolution of the watershed segmentation algorithm is 

different, and the optimum tree height resolution for the split 

of single trees differs. The coefficient of determination (R2) 

of the watershed segmentation algorithm was 0.88, and the 

root mean square error (RMSE) was 0.93 m. The tree height 
extraction precision was higher than that of the point cloud 

distance discriminant clustering algorithm (the coefficient of 

determination (R2) was 0.82, and the RMSE was 1.46 m. The 

tree height extraction precision was higher than that of the 

point cloud distance discriminant clustering algorithm. 

The grid value is a key parameter of point cloud distance 

discriminant clustering algorithm for single-tree 

segmentation, Gu et al [20]. When applying the ground-based 

radar point cloud data to model the digital elevation of glacier 

surface, they found that a lower grid value would result in 

more voids in the digital elevation, and a higher grid value 
would result in a smoother surface of digital elevation, which 

would be difficult to describe the real details of the glacier 

surface, so choosing the appropriate grid value is crucial for 

segmentation effect. In this study, when the grid value was set 

to 1/5 of the minimum crown diameter of the sample plots in 

30 sample plots with different stand densities, the 

segmentation precision was the highest (r=0.87, p=0.86, 

F=0.87), and as the grid size increases, the number of over 

segmentations decreases while the number of missing 

segmentations increases. The impact of missing 

segmentations on segmentation precision is greater than that 

of over segmentations, resulting in a gradual decrease in the 
number of correctly segmented instances [21], [22]. 

Consequently, the recall rate declines, leading to an overall 

reduction in segmentation precision [23], [24]. In this study, 

the grid value is the key parameter because of the different 

versions of the software used (the essence of the two key 

parameters of the average value of the crown radius of the 

sample site and the grid value is to discriminate the distance 

of the point cloud for the purpose), and the optimal value of 

the grid for the minimum value of the crown diameter of the 

sample site 1/5 of the segmentation effect is the best [25], 

because of the large density of the oil pine stands in the study 
area (1,866-5,700 plants/hm2 ), and the density of the sample 

site in the previous study is the average of 478 plants/hm2 . 

The average stand density of the previous study was 478 

plants/hm2, so the canopy overlap was serious, which affected 

the point cloud distance discriminant clustering algorithm. 
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Resolution is an important parameter in the process of 

generating DEM, DSM, and CHM. Ao et al [26] found that 

by analysis of the precision of CHM single-tree canopy 

extraction at different resolutions, when data collection was 

carried out in forests with differences in scenes and scales, the 

spatial resolution could be adjusted to improve the recognition 

precision [10], and the segmentation effect was superior to 

that of resolutions of 0.1, 0.5, and 1.0 m when the resolution 

was 0.3 m × 0.3 m. This study found that for different 

densities of stands, the CHM resolution could be adjusted to 
make it more adaptable to the density of stands in the study 

area. In this study, it was found that for stands with different 

densities, by adjusting the CHM resolution to make it more 

adaptable to the density of the stands in the study area, when 

the density of the stand was ≤3,600 plants/hm2 (sample plots 

1-17) and the canopy height resolution was 0.3 m, the best 

effect was achieved in the extraction of single logs, and when 

the density was ≥3,700 plants/hm2 (sample plots 18-30), the 

crown height resolution was 0.2 m. The best effect was 

achieved in the extraction of single logs. The best results were 

obtained when the canopy height resolution was 0.2 m. The 
resolution varied with stand density because the resolution 

would directly affect how well the interpolated canopy height 

model (CHM) matched the real situation of the stand. When 

the density was ≤3,600 plants/hm2 and the canopy height 

resolution was 0.2 m, many pits and bumps did not match the 

actual situation of the sample plot due to the high resolution, 

which led to an increase in the number of over-segmentation; 

when the canopy height resolution was 0.4 m, the resolution 

was low, the number of missing segmentation increased, and 

the overall segmentation precision declined; when the density 

was ≥3,700 plants/hm2, the canopy height resolution was 0.3, 
0.4 m, and 0.4 m. The resolution varied with the stand density 

because the interpolated values would directly affect the 

agreement between the canopy height model (CHM) and the 

real situation of the stand. 0.3, 0.4 m, the low resolution 

causes the generated CHM to be too smooth and cannot 

accurately capture the details, resulting in an increase in 

omissions. Peng et al. suggested that the choice of spatial 

resolution is different for different scenes, and the resolution 

is not as small as the segmentation effect [9], but close to 1/10 

of the canopy diameter when the segmentation effect is the 

best. In this study, the canopy diameter of sample plots 1-17 

was closer to 3 m, and the canopy diameter of sample plots 
18-30 was closer to 2 m, which verified that the appropriate 

canopy height resolution for stand density could improve the 

segmentation precision of single trees. 

According to the point cloud distance clustering 

discriminant algorithm and the watershed algorithm, the 

height of single trees was extracted from 30 sample plots, and 

the watershed segmentation algorithm had a higher precision 

of extracting the height of oil pine trees in the study area. The 

precision of the point cloud clustering algorithm is related to 

the density of the point cloud of the single tree, due to the high 

density of the oil pine forest in the study area, the point cloud 
cannot completely penetrate the forest, so it is more difficult 

to obtain the information of the low trees, which ultimately 

led to the estimated tree height values are higher than the 

actual values. As the top of the oleander canopy is more 

obvious, the combination of identifying local maxima through 

adaptive windowing and suitable CHM resolution improves 

the tree height extraction precision. The heights of individual 

trees extracted by the watershed segmentation algorithm 

ranged from 6.75 to 11.92 m, which was consistent with the 

manually measured heights of Pinus sylvestris samples in the 

similar area, as shown by Wang [27] et al. In this paper, the 

coefficient of determination (R2) of the average tree height 

precision of the ground-measured tree height combined with 

the LiDAR point cloud data was 0.88, and the root mean 

square error was 0.93 m. The results were better than those of 

Wang et al [27]. who estimated the height of single trees in 
natural forests (R2=0.77), and were slightly lower than those 

of Reckziegel et al. [28] who fused the data from the airborne 

radar and the backpack Lidar data and estimated the heights 

of single trees in the four artificial eucalyptus forests 

(R2=0.77), which were lower than those of Liu et al. [29] who 

estimated the height of single trees in four artificial eucalyptus 

forests by combining the data from the airborne radar and the 

backpack Lidar data. (R2=0.895). The variability in estimation 

precision mainly originated from the forest structure, 

geographical features, and point cloud data collection, 

classification, and density of the study area [30], [31]. 
Therefore, more data are needed to verify whether the key 

parameters for single tree partitioning of planted oil pine 

forests in Chongli District are applicable to other planted 

forests and other regions according to the appropriate 

parameters set for different stand densities. 

Through this study, we found that for individual-tree 

extraction from LiDAR point cloud data, the initial setting of 

different grid values and resolutions has a significant impact 

on segmentation precision. It is essential to design tailored 

approaches for processing point cloud data under varying 

environmental conditions to achieve optimal results and 
precision. 
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