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Abstract—A separate-lift-and-thrust hybrid is a modified fixed-wing drone which includes quadcopter rotors. This results in the 

combined capability of forwarding flight as well as vertical take-off and landing (VTOL), making it a low-cost method that can deliver 

substantial gains in utility. Though this is a strong point compared to other types of VTOL drones, the hybrid design may incur a 

significant trade-off because added weight and drag can severely reduce the drone's flight endurance. This study attempts to mitigate 

the impact by improving the configuration of the selection and positioning parameters. Since drag estimations are costly, a Gaussian 

process optimization method was performed, as it is economical with respect to the required number of iterations. A set of arbitrarily 

selected components was prepared for use with the optimization method, recording the relevant performance data and constructing the 

CAD models of the components for use in simulations. The optimization method was able to increase the estimated flight endurance to 

27.99 minutes, a significant improvement compared to a set of random configurations, which only yielded 9.54 minutes at best. The 

respectable result was obtained even though difficulties were experienced regarding the infeasible regions that arise from the many 

constraints. Future implementation of this optimization approach can be further improved. It may be worthwhile to utilize a low-fidelity 

model from the base fixed-wing drone simulations, in contrast with using an initial zero mean for the prior of the Gaussian process. 
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I. INTRODUCTION

Unmanned aerial vehicles (UAV), also known as drones, 

are aircraft which do not require any pilot on board. This fact 

makes it quite versatile and opens the possibilities for many 

applications since it can economically carry small packages 

or lightweight instrumentation. Currently, two common drone 

types are the quadcopter and fixed-wing drones. 
With four rotors that provide vertical thrust, the quadcopter 

may be tilted to move horizontally as well. The quadcopter's 

design makes it capable of vertical take-off and landing 

(VTOL), and it can also hover over a location. In most cases, 

though, the quadcopter drones are limited by energy concerns. 

On average, electrically-powered multi-copters only last for 

10 to 30 minutes [1]. There has been research trying to utilize 

alternative energy sources such as gasoline engines [2] to 

increase flight endurance and allow for more useful 

applications. Alternatively, research has also been done to 

improve the quadcopter's performance efficiency by using 
variable-pitch propellers instead of traditional fixed-pitch 

propellers, but this increases the complexity of the control [3]. 

Meanwhile, maximizing the deployment of multiple drones to 

an environment would also be a useful management approach 

to this energy problem [4]. 

The energy-efficiency problem is less pronounced in the 

other type of UAV, the fixed-wing drone, which has relatively 

more payload capacity and flight range. Nonetheless, efforts 

have also been made regarding their power optimization [5]. 

Moreover, unlike the quadcopter, which is unstable in the 

event of a motor malfunction, the fixed-wing can still be 

safely landed like a glider. However, take-off and landing is 

generally more challenging as it requires a sufficiently long 
stretch of flat terrain, as well as reliable control. Another 

drawback of fixed-wing drones is the requirement to 

continuously move forward, meaning it cannot hover in place. 

A clear approach to solve the deficiencies in the quadcopter 

and fixed-wing UAVs would be the deployment of a hybrid 

design which combines the good aspects of each, thus 

dramatically increasing the functionality of the drone. 

Multiple approaches exist like the tilt-rotor [6] where the 

rotors can rotate between vertical and forward thrust and the 

tilt-wing [7] where the wings rotate along with the rotors. The 

tail-sitter [8] may also be considered, though it only 
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incorporates the forward thrust motors of the fixed-wing, 

meaning that it is capable of VTOL but lacks any hover 

capability. Other unique placements of vertical thrust rotors 

may also be possible such as in [9]. Nevertheless, the most 

simple and straightforward hybridization approach is the 

separate-lift-and-thrust (SLT) hybrid, as shown in Fig. 1, 

wherein the rotors are directly augmented to the fixed-wing to 

provide quadcopter functionality [10]. 

Despite the scarcity of research undertaken compared to 

the other drone hybrid types, the SLT hybrid is the most 

feasible hybridization attempt because it combines pre-
existing technology. SLT hybrid usage is certainly attainable 

as it can be implemented using currently available drone 

hardware and software. In fact, there is already an open-

source control software called Ardupilot [11] that can be used 

to control this type of hybrid. The main concern now would 

be the development of the hardware itself, highlighting that 

greater weight and drag relative to the base fixed-wing drone 

may reduce the flight endurance. 

This study aims to mitigate the flight endurance impact of 

hybridization through an improvement of the configuration. 

The parameters include the selection of components and the 
positioning of the rotor attachment on the drone. Ensuring 

competent flight times for the SLT hybrid will allow it to be 

the top choice in many drone applications. 

 

 
Fig. 1 Separate-lift-and-thrust hybrid drone 

II. MATERIAL AND METHOD 

The flight endurance is basically the endurance, E, of the 

battery. However, it is not merely proportional to the battery 

capacity, C, but also dependent on the empirical Peukert 

exponent, n. It is likewise important to consider the discharge 

time for which the capacity was tested, known as the battery 

hour rating, R. For the context of fixed-wing drones, the 

endurance calculation is shown in Eq. 1 [12]. It considers the 

efficiency of the propulsion system, , and the power 

expended, equal to the product of the drag, D, and the flight 

speed, U. Since R is typically equivalent to one hour for small 

rechargeable batteries [12] it is possible to simplify the 
equation. Nevertheless, the main challenge for evaluating 

flight endurance is the high cost for obtaining the drag value. 

  (1) 

The methodology of the study is encapsulated in Fig 2. 

Since the drone will be hybridized, there are various 

alternative choices for the add-on components and many 

possible positions for attaching them. These parameters are to 

be manipulated to obtain configurations with enhanced flight 

endurance. To arrive at this, an optimization cycle is 

developed comprising of three phases: (i) the computer-aided 

design (CAD) where the 3D geometries are set up, (ii) the 

computational fluid dynamics (CFD) where the drag force is 

calculated, and (iii) the metamodel-based optimization (MBO) 

that identifies which configurations are worth exploring based 
on the expected improvement. 

 

 
Fig. 2 Illustration of the optimization process. 

A. CAD Modeling 

The CAD is important because this enables the assimilation 

of real-life components into the optimization cycle, 

particularly in the CFD simulations which would follow. In 

the initialization, the various components are recreated. For 

this study, Volantex Ranger 2000 is the fixed-wing drone 

considered for hybridization, and it has been meticulously 

modeled using T-splines. It has a 2-meter wingspan with a 

recommended center of gravity (CG) at  from the 

wing's leading edge where it connects to the fuselage. This 

CG requirement is used as the basis for the midpoint of the 

quadcopter beam attachment. 

Most drone components are housed within the fuselage, so 
these are not important to consider in the CAD setup. Rather, 

the focus is on the exterior components, which are the beam 

support, the motors, and the propellers. The former is simply 

modelled directly in the software while the latter two are more 

intricate. Thus, photogrammetry is utilized for improved 

results. Essentially, photogrammetry uses a set of images 

from various angles to reconstruct a 3D object. This is quite 

helpful for recreating the propellers given their unique twists 

which cannot simply be reverse engineered using parametric 

CAD. Further discussion on the implementation of 

photogrammetry for this purpose can be found in another 
research [13]. 

Moreover, to efficiently assemble the individual CAD 

models into whatever configuration is desired, an API script 

is constructed in Fusion 360 [14], the CAD software utilized 

for the study. The script essentially loads the selected 

components and references a dataset of joint locations to 

make proper connections. The script also handles other 

parameters used to configure the assembly, namely the beam 

length, the beam placement along the wing, and the drone's 

pitch angle. Afterwards, the assembly is exported after 

combining all the components into a single body. This 

prevents interference issues in the next phase, the CFD. 
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B. CFD Simulations 

Various parameters were applied in CAD to yield different 

configurations; with these, drag estimates will be obtained 

through CFD. However, the option of whether the propellers 

have an upward (pull) or downward (push) configuration has 
already been fixed. It has been argued by [15] that the latter 

option does not influence the airflow above the wing, so it is 

simply the superior option. This reduces the complexity of the 

problem and hence increases the focus in investigating the 

other parameters. 

In conducting the flow simulation, Autodesk CFD [16] was 

the software of choice. This is from the same company as 

Fusion 360, and both are free for academic use. However, the 

main feature which makes the CFD software unique is the 

cloud processing capability where it outsources the simulation 

task to cloud servers. This typically comes with a hefty price, 
but fortunately, it is also free to use for academics. As such, 

this allows multiple simulations to be done in parallel without 

too much investment in computer hardware. 

As recommended for use with the shear stress transport 

(SST) k-omega turbulence model, the simulations are set to 

have ten wall layers, a layer factor of 0.6, and a 1.25-layer 

gradation. This chosen turbulence model is more suitable for 

the task compared to the default general-purpose k-epsilon 

model. Essentially, it is better for flow separation predictions 

as it provides more accurate results at the boundary layer [17]. 

Another parameter in the CFD is the size adjustment which 

ranges from 0.2 to 5, reflecting the size factor compared to the 
default mesh size. Unlike the wall layer settings where 

recommended values are available, this is more dependent on 

the specific simulation task. Therefore, a mesh independence 

test is performed on the base fixed-wing drone, where a value 

of 0.3 was found to provide a decent trade-off between 

accuracy and computational cost. 

Targeting a particular flight speed for all simulations would 

be necessary so that improving the flight endurance will also 

equate to an improvement in the flight range. As the hybrid 

drone would be expected to perform similarly to the base 

fixed-wing drone, the latter serves as a standard for 
comparison to determine the target airspeed. 

For a given aircraft, the most efficient state is when the 

angle of attack (AOA) maximizes the lift-to-drag ratio 

 (Fig. 3) [18]. Identically, this corresponds to where 

the total drag is minimized (Fig. 4) [18]. Constructing a plot 

like Fig. 4 from simulation data on the base fixed-wing drone, 

the relative wind is fixed at 0° so that the angle of attack (AOA) 

is simply the drone's pitch angle. Then, a lift requirement must 

be determined. With a reasonable 25% payload fraction for 

the drone that has a battery weight of around 300 g, the total 

weight becomes 20 N. 

Since it is not possible to identify beforehand the 
appropriate combinations of AOA and airspeed that could 

generate the needed lift, multiple simulations at each AOA 

must be done, and the drag then interpolated from the data.  

The resulting plot in Fig. 5 is the basis for setting the target 

speed of all simulations at 44 kph. 

Moreover, a  plot was likewise constructed (Fig. 6) 

and in accordance with theory, the maximum point of 5° 

matched with the interpolation data behind Fig. 5. As these 

were separate sets of simulations, this agreement attests to the 

reliability of the result. As such, Fig. 6 was also used for 

estimating the required pitch angles of the hybrid 

configurations. 

 
Fig. 3 Aircraft performance versus angle of attack [18].  

 

Fig. 4 Drag versus airspeed at constant lift [18]. 

 

Fig. 5 Total drag versus airspeed of the fixed-wing drone at 20N of lift. 

 
Fig. 6 Lift-to-drag ratio versus airspeed of the fixed-wing drone. 
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A final consideration for the CFD is the possibility that 

during the forward flight of the hybrid drone, rotation may be 

induced on the quadcopter propellers. This has been 

investigated in [13], and it was concluded that no continuous 

rotation would result from the relative wind. This means that 

costly transient simulations are not necessary to determine the 

impact of the propellers on the drag as steady-state 

simulations would suffice. It has been identified that for a 

two-blade propeller, the steady-state position is at roughly 90° 

to the relative wind, with a small angular deviation that may 

be attributed to the propeller design. For this study, however, 
the minor deviation is neglected, so the orientation is 90° for 

all propellers. 

C. Gaussian Process Optimization 

The metamodel-based optimization method chosen for the 

study uses the GPyOpt package [19] in Python. The method 

utilizes a stationary Gaussian process with mean 0, variance 

, and a covariance-based on the correlation function 

 where  is a vector of covariance parameters [20]. 
The stationarity assumption merely asserts that the correlation 

is a function of the difference between inputs therefore 

 [21]. The behavior of the Gaussian 

process is defined through the correlation function, also 

known as the kernel, for which the  kernel is 

typically used. With , a 1-dimensional version of 
this kernel used in the study is shown in Eq. 2 [20]. 

  (2)  

Fig. 7 illustrates a simple example of a 1-dimensional 

Gaussian process being used for optimization. The dashed 

curve indicates an unknown true model while the solid curve 

depicts the metamodel which is constructed from the 

observations. In the efficient global optimization (EGO) 

framework [22], an expected improvement (EI) acquisition 

function can be obtained, and this is maximized to determine 

the point of interest for future exploration.  

 
Fig. 7 Optimization using Gaussian process in the EGO framework [20]. 

The method is useful when the EI is significantly cheaper 

to evaluate compared to the actual function. This is quite 

appropriate for this study since CFD evaluations are very 

costly. Furthermore, batch iterations are done to leverage the 

parallel cloud simulation capability of the CFD software. 

Multiple points for evaluation are generated according to the 

local penalization method where the acquisition function 

undergoes a maximization-penalization loop (Fig. 8) [23]. 

This parallelization effectively reduces the timeframe and 

oversight required to conduct the simulations. 
 

 
Fig. 8 Local penalization used to yield multiple suggested evaluations [23]. 

Even though the goal of improving component selection 

and positioning may seem simple, this requires handling a mix 

of categorical and continuous variables, unlike typical 

problems which only handle numerical values. For this 

purpose, it is necessary to apply the Gower kriging method by 

[20]. The existence of categorical variables also makes the 

constraints more difficult. So instead of a box-constrained 

problem with inequality constraints that apply to the entire 

domain, the problem requires inequalities that adapt to the 

categorical choices. For instance, the current draw and 
maximum recorded thrust will depend on the particular 

motor-propeller combination. Also, the minimum beam 

length and placement to avoid physical clashing are defined 

by the propeller diameter. In general, the constraints deal with 

physical clashing, thrust estimates, and battery compliance. 

Since the CFD evaluations are the costliest step in the 

optimization cycle, constraints are pre-estimated to select 

which evaluations may return valid results. To obtain 

dependable calculations, performance data of all the motor-

propeller combinations were obtained. But for constraints 

directly relating to the flow simulation results, it is necessary 
to rely on estimates, and these are sourced from the CFD 

results of the unhybridized drone. Thus, the constraints must 

be reevaluated afterwards to account for the hybrid 

configurations' simulation results. A penalty function is 

constructed to aggregate the percent violation for all 

constraints, assuming that each constraint is equally important. 

It is also illustrated in Fig. 7 that Gaussian process 

optimization requires a starting set of samples to be able to 

suggest subsequent evaluations. Hammersley sequence 

sampling (HSS) was favored over Latin hypercube design 

(LHD) to generate the initial set of points. According to [24], 

HSS provides good uniformity for up to 40 dimensions while 
LHD is limited to one-dimensional uniformity due to random 

pairing for multiple dimensions. Moreover, HSS is not 

dependent on random permutations meaning that it generates 

the same configurations when parameters are maintained, 

reducing variability in the program, and enabling the easier 

isolation of mistakes during development. 

III. RESULTS AND DISCUSSION 

A. Challenges in Implementation 

Applying constraints on the initial set of configurations 

significantly reduced the points for evaluation. For a sample 

size of 100 and 1000, there were 82 and 783 invalid 

configurations, respectively. Since the samples are distributed 
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uniformly, this suggests that only roughly 20% of the entire 

domain is feasible for exploration. 

The scarcity of feasible space renders it practically 

unattainable to avoid infeasible regions by means of penalty 

functions. An accurate metamodel would be useful, but this is 

not the aim of the optimization approach, but rather the 

exploration for expected improvement of objective values. 

Hence, the metamodel in use will not have a high enough 

resolution to identify the regions of feasibility. 

Given this difficulty, the approach undertaken was to 

generate a larger HSS sampling and filter it through the 
constraint estimates. The exploration of the design space is 

then limited to the valid configurations identified through this 

procedure. This has the disadvantage of restricting the degree 

of freedom of the configurations, particularly in discretizing 

the continuous variables. It may be possible that a more robust 

approach can be used when faced with a domain that is 

dominated by infeasibility. Yet, the employed approach can 

still provide useful results, especially with large sampling 

sizes. Moreover, the best results may have feasible localities 

such that a non-discretized approach may be used to refine the 

optimization. However, this significantly increases the 
computational cost, so the possibility has not been explored 

and is left open for future investigation. 

B. Analysis of Performance 

An unhybridized fixed-wing drone is evaluated with 

varying battery selections, and the endurance values are 

plotted in the graph on Fig. 9. This serves as a point of 

comparison for the endurance enhancement of the hybrid 

drone. Given the trade-off of increased weight and drag for a 

VTOL-capable hybrid, the maximum endurance will be lower 
than the longest flight time estimate of 49.69 minutes, though 

it is not certain how closely it can meet this value. 

 

 

Fig. 9 Flight endurance of fixed-wing drone based on battery selection. 

The optimization process resulted in a significant 

enhancement of endurance, as shown in Fig. 10. A respectable 

flight time of 27.99 minutes is estimated to be achieved given 

the best configuration found so far. Additional improvement 

might still be obtained based on the trend in the figure, but 

due to the limited computational effort allotted for the study, 

only three optimization batches were done. Nevertheless, the 
utility of this methodology has already been demonstrated as 

a batch of random configurations was found only to give 9.54 

minutes at best. The method can certainly be further improved, 

but this is left as a topic of further study. 

 

 
Fig. 10 Progression of batch optimization. 

A significant issue with the execution of the Gaussian 

process optimization method is that the metamodel's 
prediction accuracy is quite low, having a surprisingly large 

value of 0.807 for the in-sample root-mean-square (RMS) 

error. This might be due to the high dimensionality of the 

problem, which has 6 input variables, four of which are 

categorical. Other than increasing the sample size, another 

strategy is needed to improve the prediction. Also, it could be 

beneficial to address the problem of the large extent of 

invalidity in the design space. Future study to handle both 

issues is recommended as this would surely boost the decent 

performance displayed by the current implementation. 

IV. CONCLUSIONS 

Metamodel-based optimization, specifically Gaussian 

process optimization, has been employed to improve the 

separate-lift-and-thrust hybrid drone. With modifications 

made for using the Gower kriging method, the optimization 

can effectively operate on the component selection and 

positioning parameters, which are respectively categorical 

and continuous variables. 

For obtaining sensible results, alternative components were 
arbitrarily selected, and their characteristic data were obtained. 

These were then modelled using CAD assisted by 

photogrammetry. Moreover, preliminary CFD analyses were 

done to set up the flight scenario of the SLT hybrid properly. 

In the optimization, the design space was dominated by 

infeasible regions due to the various constraints. By 

restricting the search to pre-checked points generated from a 

space-filling design, the optimization was able to proceed. 

Cloud computing was leveraged to process multiple batches 

of simulations in parallel. Even though parallelization is less 

efficient than sequential sampling, a proper result was still 

obtained after a few iterations. The resulting configuration has 
almost 60% the endurance of the pure fixed-wing, which is 

significantly larger than the 20% obtained from an unplanned 

configuration. The metamodeling prediction quality is low, 

given the complexity of the design space but with insights 

from the results, a more effective MBO implementation can 

be done in the future. 
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The optimization method performed well in this study, but 

to increase the utility of MBO, it would be better to yield a 

useful metamodel for predicting the performance of any 

configuration. A good approach to accomplish this would be 

to add a preliminary step to condition the design space. In 

contrast to an initial zero mean throughout, a far better prior 

for the Gaussian process can be constructed by using a low-

fidelity model based on the lift and drag simulations of the 

base fixed-wing drone. A concluding step may also be 

considered where wind tunnel experiments further explore the 

promising optimization results, reducing the impact of 
numerical errors in the CFD simulations. 

To increase the SLT hybrid drone's flight endurance, it can 

be better to also hybridize its power system. By utilizing 

combustion engines, high energy-density fuel can 

significantly improve the performance when the UAV is 

properly designed, with the electrical system still being used 

for redundancy, quick response, and possible solar power 

integration. Also, variable-pitch propellers may be used to 

increase the efficiency of the aircraft. By leveraging multiple 

ways to increase the endurance, a drone can remain in flight 

for exceptionally long periods of time. 
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