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Abstract— In a container-based cloud environment, GPUs have the advantage of providing high-performance computation to multiple 

users, and through GPU sharing, many GPU container users can be accommodated over the number of physical GPUs. This increases 

resource utilization and minimizes idle time. However, extended resources used to share GPUs in Kubernetes do not partition GPU 

resources or limit usage and only logically increase the number of GPUs that can be recognized. Therefore, usage limits and equal use 

of GPU resources cannot be guaranteed among pods sharing GPUs. Additionally, GPU memory generally does not allow for overuse. 

As a result, if a pod with high GPU memory usage runs a GPU task, it will be unable to limit GPU memory usage and free up available 

GPU memory. Data must be loaded into the GPU memory to perform the GPU task. However, if the data to be used for computation 

cannot be loaded into the GPU memory due to insufficient GPU memory, the pod will not be able to start the task and will fail to execute. 

This paper proposes a pod placement technique to avoid GPU memory shortage when sharing GPUs between pods in the Kubernetes 

environment. The proposed technique monitors the GPU memory usage and usage frequency of each worker node that makes up the 

cluster and places the pod on the worker node with the most available GPU memory based on the monitoring information.  
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I. INTRODUCTION

In a GPU-based high-performance cloud environment, the 

environment has the advantage of providing high-

performance computing services to users over a network. 

Based on the characteristics of cloud environments where 

multiple users share computing resources, sharing GPUs with 

multiple users enables a single GPU to be provided to various 

users, thereby increasing the resource utilization rate of the 

GPU and minimizing idle time. In container-based cloud 

environments [1], containers sharing a GPU can utilize the 

full capabilities of the GPU simultaneously without the need 

for additional commercial technology. 
In a container environment, the ability of each container to 

utilize the full capabilities of the GPU provides the advantage 

of not being limited in the use of GPU resources. However, in 

a GPU-sharing environment, it is not possible to limit the 

GPU resource usage of each container resulting in resource 

contention. GPUs have minimal resource scaling, unlike 

CPUs and memory. Because the number of GPUs that can be 

installed on a server is physically restricted, it is relatively 

complex to acquire additional resources, sometimes requiring 

the addition of the server itself.  

When performing GPU computations, GPU tasks can be 
waited by the scheduler if no GPU cores are available, but 

GPU memory is generally not allowed to be overused [2]. 

Also, due to the nature of using GPU cores to process tasks, 

data must be ready in GPU memory, so if a new task runs out 

of GPU memory, it will fail to load data into GPU memory, 

and the task will fail to run. When sharing GPU resources, 

Kubernetes [3], a container-based cluster system that manages 

available GPUs as a virtual number of resources through 

extended resources manages GPUs as a virtual number of 

resources without partitioning them, and places pods on 

servers with the highest number of available virtual resources. 
In Kubernetes, when a Pod is allocated resources, it can be 

logically partitioned to allocate only a portion of the 

resources, such as CPU or memory. GPUs, however, can only 

be allocated on a per-device basis unless use a separate 

commercial technology, and it is not possible to partially 
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allocate a single GPU a fraction of its total resources. Virtual 

GPUs recognized as multiple via extended resources do not 

logically partition resources and allocate a portion of the 

GPU's resources but only provide the ability to limit the 

number of pods that can share the GPU simultaneously. This 

method alone cannot limit each Pod's GPU usage or allocate 

only a portion of GPU resources. As a result, if a particular 

Pod uses most of the GPU memory, new Pods can still be 

deployed if there are enough extended resources. However, 

the Pods deployed on the server will fail to execute GPU jobs 
because no actual GPU memory is available. 

In this paper, we propose a pod placement technique that 

determines the server where a pod is placed based on the GPU 

memory usage of each server in the cluster and the frequency 

of GPU usage when placing a pod requesting GPU resources 

in a Kubernetes environment. The proposed technique solves 

the GPU memory shortage problem caused by the existing 

pod placement technique in Kubernetes, which only considers 

the number of extended resources without considering the 

GPU memory usage. It prevents the pods from failing to 

perform GPU tasks. 

II. MATERIAL AND METHOD 

A. Motivation 

With extended resources, Kubernetes recognizes a single 

GPU as if it were multiple GPUs. GPU sharing technology 

allows multiple users to use a GPU simultaneously, and users 

using the GPU concurrently share GPU resources to 

accomplish their tasks. However, unlike CPUs or main 

memory, GPUs cannot partition their resources logically. As 

a result, each user sharing a GPU is not allocated a portion of 
the GPU's resources but instead uses the entire GPU without 

limits. Limiting each user's GPU usage in a cloud 

environment requires the use of commercial products, which 

have limitations that only work with specific GPUs. These 

characteristics can lead to job failures due to contention for 

GPU resources, depending on the size of the jobs of the users 

sharing the GPU. 

As explained earlier, extended resources are used when 

sharing GPUs in the Kubernetes environment. Extended 

resources do not divide the GPU but increase the number of 

devices recognized by the system and, as a result, only limit 
the maximum number of pods that can be used simultaneously 

by sharing the GPU. Because of this, even if a specific pod 

sharing the GPU uses most of the GPU resources, a new pod 

can be deployed if the number of resources divided as 

extended resources remains. Because of this, if the pod 

deployed first uses most of the GPU, a new pod can be 

deployed. Even if we try to run a task using GPU, the task 

execution will fail because there are no available GPU 

resources. 

GPU task execution failures due to insufficient GPU 

resources occur primarily due to inadequate GPU memory. 
GPU cores, where multiple tasks can be executed 

simultaneously, and their execution order can be adjusted by 

the GPU's internal scheduler depending on the availability of 

GPU cores. GPU memory does not operate in the same way. 

To perform computations using GPU cores, the data to be 

processed must be loaded into GPU memory. Additionally, 

GPU memory typically does not allow for overuse. While 

primary memory may utilize secondary storage in case of 

overuse, GPU memory does not have this capability. 

While there exists functionality to utilize main memory as 

auxiliary storage to expand GPU memory, this feature needs 

to be added at the level of GPGPU programming code for 

allocating GPU memory [4]. However, AI frameworks like 

TensorFlow, which provides GPU computation capabilities, 

typically do not offer this feature by default. As a result, if a 

new GPU task is initiated while GPU memory is already in 

use beyond capacity, the task execution fails due to the 
inability to allocate GPU memory. 

Fig. 1 shows the performance of the inference task on the 

pods. The experiments measured the performance and success 

of task execution of inference tasks implemented with 

TensorFlow [5]. The dataset was MNIST with a batch size set 

to 32, and 60,000 data points were used for inference tasks. In 

Fig. 1, the leftmost bar shows the performance of a single run 

for performance comparison. As shown in Fig. 1, as the 

number of pods running inference tasks increases, the 

performance of inference tasks deteriorates. The inference 

task in the experiment causes performance degradation when 
run simultaneously on up to 23 pods but can be completed 

typically. 

 

 
Fig. 1  Task failure due to insufficient GPU memory. 

 

If the number of pods running inference tasks increases and 

available GPU memory becomes insufficient, multiple pods 

will fail to execute the task. When each inference task starts 

simultaneously, some containers cannot input all data into the 

GPU memory due to competition for GPU memory input 
tasks, the libraries to be executed on the GPU are not 

initialized, and the task fails to start. 

Fig. 2 shows the individual performance when inference 

tasks are run simultaneously in 23 pods. As shown in the 

experimental results, when the number of concurrently 

running containers increases, tasks with large performance 

deviations occur due to competition for GPU resources. up to 

23 pods executing inference tasks result in some degree of 

performance degradation while completing the inference 

tasks successfully. However, if the number of concurrently 

executing tasks increases, some tasks fail to execute. Table 1 
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shows the task execution failure when 24 and 25 pods are 

running inference tasks. 

 

 
Fig. 2  Individual performance on inference tasks. 

TABLE I 

TASK EXECUTION FAILS DUE TO INSUFFICIENT GPU MEMORY 

Number 

of tasks 

Number of concurrently running tasks 

24 25 

run 

time 

Execution 

completion  

run 

time 

Execution 

completion  

1 11.728 x 13.8 o 
2 15.662 o 13.788 o 
3 24.017 o 11.044 x 

4 15.65 o 13.413 o 
5 15.126 o 11.322 x 
6 18.208 o 11.187 x 
7 24.174 o 13.022 o 
8 13.838 o 11.118 x 
9 14.322 o 11.209 x 
10 15.724 o 11.149 x 
11 13.803 o 12.993 o 

12 15.354 o 11.169 x 
13 15.305 o 11.507 x 
14 15.756 o 11.366 x 
15 25.498 x 13.452 o 
16 18.147 o 11.089 x 
17 25.678 x 11.287 x 
18 13.992 o 11.068 x 
19 25.569 x 13.365 o 
20 15.81 o 13.182 o 

21 25.592 x 11.027 x 
22 15.74 o 10.75 x 
23 15.447 o 13.924 o 
24 25.606 x 13.847 o 
25 - - 11.385 x 

 

As shown in the experimental results in Table 1, the 

number of pods executing inference tasks increased by only 

one and two, respectively. Still, a much larger number of pods 

terminated without completing execution. This is because, as 

competition for GPU memory intensifies, the number of tasks 

where only part of the data has been uploaded to GPU 

memory and the data upload required for the task cannot be 

completed due to lack of available capacity increases. As a 
result, some containers continue to compete for GPU memory 

while uploading only part of the data to GPU memory, and 

due to insufficient GPU memory, the GPU library used in 

TensorFlow cannot be initialized, and the task fails to start. 

In this paper, we aim to prevent excessive use of GPU 

memory and the resulting task execution failure caused by the 

increase in the number of GPUs that can be recognized 

through extended resources without considering the actual 

GPU memory usage in the existing Kubernetes environment. 

To this end, we propose a pod placement technique based on 

each worker node's GPU memory usage and GPU usage 
frequency. The method proposed in this paper recognizes the 

availability of GPU resources based on information about 

actual GPU memory usage and GPU usage frequency and 

manages a list of candidates for servers where new pods can 

be deployed. 

B. Implementation 

The technique proposed in this paper utilizes extended 

resources to increase the number of virtual GPUs. However, 
the number of extended resources is independent of the 

decision of which server a pod will be placed on. In traditional 

Kubernetes, pods were placed on servers with the highest 

available GPUs based on the number of extended resources. 

However, as described earlier, the available number of 

extended resources is unrelated to the available ones. 

Therefore, the decision of where a new pod will be placed is 

based on the actual GPU memory usage and usage frequency 

rather than the number of available extended resources. 

The technique proposed in this paper involves obtaining 

information from monitoring GPU resources on each server 

and the execution status of tasks. Based on this information, 
the least busy server is selected. To minimize transmission 

overhead, monitoring information is not transmitted 

periodically but rather tracked based on the execution status 

of GPU tasks using an event-based monitoring approach.  

In our approach, the most critical information is the GPU 

memory and the execution status of tasks on each server. As 

described earlier, the technique proposed in this paper uses an 

event-based monitoring approach rather than the conventional 

method of periodically sending monitoring information to 

control nodes, commonly used in cloud environments. 

Initially, each worker node minimizes computing resource 
usage due to monitoring tasks by detecting only the start of 

GPU tasks. When the control node deploys a new pod, and 

GPU tasks commence, it verifies the execution of GPU tasks 

and monitors the GPU memory usage of those tasks. If the 

GPU memory usage of the pod remains constant after 

increasing GPU task execution, it is assumed that the input 

tasks for GPU memory have been completed. Subsequently, 

the control node sends the server's GPU memory usage 

information. 

When a new GPU task is initiated, the worker node sends 

3 pieces of information regarding that task: 1) when the GPU 
task starts, 2) when GPU memory input is completed, and 3) 

when the task is completed. Suppose the GPU memory usage 

for the specific GPU task remains constant and does not 

increase after the task has started. In that case, it is considered 

that the data input operation into the GPU memory has been 

completed. Therefore, monitoring information is transmitted 

when the GPU task starts and when GPU resource occupancy 

is completed. The control node receiving the GPU memory 
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usage information selects the most suitable worker node based 

on the GPU memory usage information and the frequency of 

GPU usage when deploying the next new pod. The 

operational mechanism of the monitoring technique proposed 

in this paper is shown in Fig. 4. 

 

 
Fig. 3  Proposed GPU memory and task monitoring system 

 

As shown in Fig. 3, sending monitoring information to the 

control node starts after initiating a new GPU task. 

Additionally, since our approach utilizes information 

regarding GPU memory usage and usage frequency, there is 

no need to know which task each pod executes and how much 

GPU memory it uses. It is sufficient only to monitor the 

current GPU memory usage and how frequently the GPU is 

being used. Therefore, no separate collection of information 

about the pods is conducted. 
 

Algorithm 1: Pod placement 

1 if (monitoring information has been transmitted) { 

2 gpu_memory_usage = memory_usage; 

3 gpu_idle_time =  idle_time; 

4 for (0 < node_info[n]) 

5      node_score = (1 - gpu_memory_usage /  
total_gpu_memory) * (1 - gpu_idle_time / 100); 

6     node_info[n] = node_score; 

7 } 

8 sorted_node[n] = sorted (node ID, node_score); 

9 if (Pod creation requested); 

10 for (0 < sorted_node[n]) 

11 select_node(sorted_node[0]); 

12 if (node satisfies the CPU and memory required) 

13             select_node_for_pod 

14             break; 

15         else 
16             wait_for_pod_scheduling 

 

The control node asynchronously receives monitoring 

information from each worker node and manages the node list 

in the order of nodes most suitable for deploying new pods 

based on this information. When deploying pods, it is 

necessary to check the available CPU and memory capacity, 

GPU memory usage, and use frequency to identify suitable 

nodes in two steps. The node list is sorted based on available 

GPU memory capacity in the first step. In the second step, a 

node with appropriate CPU and main memory requirements 
is selected and determined as the node for deploying the pod. 

Our proposed pod placement technique is described in 

Algorithm 1. 

As shown in Algorithm 1, the approach proposed in this 

paper manages the node list based on current GPU memory 

usage information and GPU usage frequency. A high GPU 

usage frequency on a worker node implies that the pod 

frequently utilizes the GPU. We do not differentiate between 

pods that repeatedly execute GPU tasks over an extended 

period on worker nodes and those that execute GPU tasks only 

once and then terminate; instead, we assess the busy state of 
worker nodes based on GPU usage frequency. GPU usage 

frequency is determined by the number of times GPU tasks 

are executed and by GPU idle time. Since GPU tasks executed 

on worker nodes have varying execution times, a GPU task 

with a longer execution time will result in a lower GPU usage 

frequency measurement. 

In the implementation of this paper, the idle time of the 

GPU is measured for 1 minute for each worker node, the 

weight of the previous information is calculated as half of the 

latest information, the average idle time information is 

managed, and monitoring information is delivered to the 
control node whenever a GPU task is executed. do. When the 

creation of a new pod is requested, the node list is checked 

from the beginning, and the worker node that matches the 

CPU and memory requirements is selected among the worker 

nodes with the lowest GPU memory usage and GPU usage 

frequency. 

In this paper, we modify the existing Kubernetes pod 

placement technique and propose a method to solve the 

problem of not being able to limit GPU memory usage in 

Extended Resources used when sharing GPUs. Our approach 

considers the characteristics of GPU devices, where it is 
impossible to allocate only a portion of resources and uses a 

method to select worker nodes with the lowest probability of 

failing to execute tasks based on GPU memory usage and 

GPU usage frequency information. In particular, the proposed 

technique suggests that the node with the lowest GPU 

memory usage obtains the highest score, thus increasing the 

likelihood of having sufficient available GPU resources on the 

worker node even if the resource demands of newly launched 

GPU tasks are high. 

Additionally, since monitoring information is transmitted 

only when the GPU task starts and when GPU memory 

allocation is completed, unnecessary transmission can be 
minimized. In addition, this method requires monitoring 

information to be transmitted more frequently when GPU 

tasks are commonly executed and terminated. Still, it has the 

advantage of checking the execution status of tasks in real-

time that cannot be detected by sending monitoring 

information periodically. The efficiency of the technique 

proposed in this paper is verified through experiments in the 

next chapter. 

III. RESULTS AND DISCUSSION 

A. Evaluation 

In this chapter, an experiment is performed to verify the 

efficiency of the technique proposed in this paper. Our 

experiments use an inference task using the MNIST data set. 

Each pod that performs inference tasks performs inference 

tasks using a different amount of data. Because the number of 
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data used in inference tasks differs, GPU memory usage is 

also different. The inference task used in the experiment was 

implemented in TensorFlow, and the inference task prevents 

a single task from occupying the entire GPU through a 

TensorFlow function [6] that limits GPU memory usage to 

actual usage. 

In the experiments in this chapter, we use the proposed 

technique in an environment where multiple inference tasks 

are executed simultaneously to check whether newly executed 

inference tasks are placed on appropriate worker nodes and 
completed without task failure. Also, measure the resource 

usage of proposed monitoring techniques and analyze their 

impact on the overall system. The experimental environment 

is shown in Table 2. 

TABLE II 

EXPERIMENT ENVIRONMENT 

Type Control node Worker node × 2 

CPU AMD Ryzen 9 7900X 
Memory 128 GB 

GPU - RTX 4090 
OS Ubuntu 20.04 

Kubernetes 
version 

1.24 

 

The first experiment verifies the efficiency of deploying 

pods using the technique proposed in this paper when pods 

using various capacities of GPU memory are executed 

simultaneously. In the experiment, pods were divided into two 

groups to vary the GPU memory usage, and each group used 
20000 and 60000 data when performing inference tasks. Table 

3 shows GPU memory usage and individual execution 

performance depending on the number of data to be used in 

the inference task. 

TABLE III 

INDIVIDUAL PERFORMANCE OF TASKS BASED ON THE NUMBER OF DATA 

Number 

of data 
execution time(sec) 

GPU memory usage 

(MB) 

40,000 5.09 821 
60,000 8.632 1,205 

 

When a pod is created, it is placed on one of three worker 

nodes. In the case of existing Kubernetes, pods are placed 

based only on the number of extended resources regardless of 

GPU memory usage, so if pods with high GPU memory usage 

are concentrated in a specific worker node, the probability of 

job execution failure increases. 
To create a situation where GPU memory is insufficient in 

the experiment, the extended resource was set to 30, and 23 

inference tasks using 60,000 pieces of data were placed on 

worker node 1, and 25 inference tasks using 40,000 pieces of 

data were placed on worker node 2. The inference task was 

arranged to run repeatedly and continuously occupy the GPU 

memory. In this situation, two new pods were created for the 

inference task using 60,000 pieces of data, and task failure due 

to the new pods was confirmed. 

As shown in Table 4 in the experimental results, in the 

existing environment, the node on which a new pod is to be 
placed is selected based only on the available number of 

expansion resources, so when pods that use a lot of GPU 

memory are concentrated, pods that fail to execute tasks 

occur. 

TABLE IV 

TASK EXECUTION FAILS DUE TO NEW PODS WHEN GPU MEMORY IS LOW 

Node 

Number 

Number of pods 

placed 

Number of pods that 

failed to run tasks 

1 2 14 
2 0 0 

 

Table 5 shows the results when using the pod placement 

technique proposed in this paper in the same situation. 

TABLE V 

POD PLACEMENT USING THE PROPOSED TECHNIQUE 

Node 

Number 

Number of pods 

placed 

Number of pods that 

failed to run tasks 

1 0 0 
2 2 0 

 

As shown in the experimental results in Table 5, the 

technique proposed in this paper deploys pods using GPU 

based on GPU memory usage regardless of the available 
number of extended resources. As a result, new pods are not 

placed on worker nodes that have more available extended 

resources but use more GPU memory, but new pods are 

placed on worker nodes that have fewer available extended 

resources but lower GPU memory usage. 

Due to this way of working, even without knowing the 

GPU memory usage of the newly created pod, the pod is 

placed on the worker node with the least busy GPU, so there 

is a low probability of job failure due to insufficient GPU 

memory. However, our approach does not fundamentally 

solve the GPU memory shortage problem. Because our 

approach is to place new pods on the least busy worker nodes, 
we are limited in our ability to respond to tasks that require 

full GPU memory. However, for GPU tasks with a relatively 

small computational amount, such as inference tasks or 

transfer learning used in the experiment, new pods are placed 

based on the GPU memory usage of the worker node, so the 

probability of task failure due to insufficient GPU memory 

can be reduced. 

 

 
Fig. 5  The resource usage of the proposed monitoring technique 
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In this experiment, we measure the resource usage of the 

proposed GPU monitor to collect basic information when 

selecting a node to deploy a pod and analyze the impact of the 

proposed monitoring technique on the overall system. The 

experimental results are shown in Fig. 5. As shown in Fig. 5, 

the monitoring technique proposed in this paper uses very 

little CPU and main memory. For monitoring information 

collection work, the CPU uses only about 1 to 2%, and in the 

case of main memory, only a small, fixed capacity is used. 

The proposed monitoring technique runs inside a worker node 
and uses the level of computing resources that do not affect 

the performance of the pod that performs actual user tasks. 

The pod placement technique proposed in this paper solves 

the GPU memory overuse problem that can occur in 

Kubernetes, which only checks the available number of 

extended resources without considering the available GPU 

memory capacity when allocating GPU resources to pods. As 

explained earlier, Kubernetes does not provide isolation for 

the GPU allocated to each pod when managing GPU 

resources, so it is not possible to limit the GPU resource usage 

of each pod. Because of this, if a specific pod uses a lot of 
GPU memory, available resources for actual GPU work may 

not be secured even if the number of expansion resources is 

sufficient. This leads to execution failure of GPU tasks due to 

insufficient GPU memory. However, in this paper, new pods 

are placed based on the actual amount of available GPU 

memory and GPU usage frequency regardless of the number 

of expansion resources, thereby alleviating the problem of 

insufficient GPU memory and preventing execution failure of 

GPU tasks. 

The technique proposed in this paper targets tasks that 

require relatively small GPU resource usage, such as 
inference tasks or transfer learning. In the case of large-scale 

tasks that fully use the GPU, such as learning tasks, the GPU 

must be allocated exclusively, but the proposed technique 

evenly distributes pods to multiple worker nodes based on 

GPU memory usage and GPU usage frequency. For jobs that 

use all of them, there is a high probability that the batch will 

fail. This limitation will be addressed through future research 

to develop pod relocation techniques to prevent partial 

fragmentation of GPU memory. In future research, we will 

extend the technique proposed in this paper to secure available 

GPUs through relocation technology, enabling scalability to 

handle large-scale computations. 

B. Related Works 

Various research has been conducted to manage GPU 

resources in the Kubernetes environment. Existing research 

focuses on managing device-level GPU resources in a multi-

GPU environment where two or more GPUs exist on a single 

node in a cluster environment. Existing research on managing 

GPUs on a per-device basis deploys tasks in a cluster 

environment and manages GPU devices for large-scale tasks 
using multiple GPUs. The main goal of existing research is to 

propose techniques for scheduling between each task and 

preventing fragmentation of available GPU resources 

scattered throughout the cluster [7], [8], [9], [10]. 

Additionally, to alleviate performance degradation due to 

GPU resource competition, a technique was also proposed to 

improve throughput in an environment where multiple GPU 

tasks share the GPU by pausing and then restarting the GPU 

task. These techniques typically support pausing and 

restarting tasks and reallocating GPUs through framework-

level modifications for GPU tasks [11], [12], [13]. Another 

method of managing GPU resources in a container-based 

environment is a technique that dynamically allocates 

resources by analyzing and predicting the completion time 

and pattern of tasks [14], [15], [16], [17], [18], [19], [20], [21]. 

These techniques collect runtime information of tasks and 

achieve optimization of task placement based on this. To 

improve the performance of tasks running on GPUs, a 
technique was also proposed to dynamically select the GPU 

access method of a virtual instance according to resource 

requirements and container parameters [22]. This method 

optimizes GPU resources by selecting various GPU resource 

access technologies, such as passthrough and API forwarding, 

according to requirements. 

A technique was also proposed to optimize data 

communication for tasks by caching models used when 

multiple containers perform AI tasks simultaneously in GPU 

memory [23]. This method proposes a locality-aware 

scheduler using global management techniques of GPU 
memory. In addition, in order to reduce fragmented GPUs 

scattered in the cluster, a technique for scheduling tasks based 

on GPU fragmentation measurement technique was proposed 

[24]. To efficiently allocate GPUs when performing 

distributed learning, a technique was also proposed that uses 

AI to select nodes that satisfy multiple conditions [25]. This 

technique uses an AI-based scheduling technique to 

determine which nodes to place tasks in the Kubernetes 

environment. 

There is existing research on priority-based management of 

GPU resources. The proposed research prioritizes GPU jobs 
based on user-specific job deadlines [26], [27] or QoS [28] 

and provides GPUs based on priority. In addition, methods 

proposed for providing GPUs that exist on other servers in the 

cluster based on GPU usage information [29] and techniques 

for finding idle GPUs and placing [30]. 

IV. CONCLUSION 

In this paper, we propose a pod placement technique that 

can select appropriate worker nodes to prevent task failure due 
to insufficient GPU memory when multiple pods share GPUs 

in a Kubernetes environment. The extended resource used to 

support GPU sharing among multiple pods in existing 

Kubernetes makes it appear that there are multiple GPUs, but 

the GPU resources are not divided. Because of this, the GPU 

resource usage of each pod cannot be limited. In a situation 

where a specific pod uses most of the GPU memory if the 

number of available extended resources of the worker node is 

large, a new pod is deployed regardless of the actual GPU 

memory usage. In this paper, to solve this problem, worker 

nodes where new pods will be placed are selected based on 
actual GPU memory usage and GPU resource usage 

frequency rather than the number of extended resources. This 

allows newly created pods to be placed on worker nodes 

where the GPU is not busy, alleviating GPU memory 

contention and preventing tasks from executing due to 

insufficient GPU memory. As confirmed through 

experiments, the proposed technique effectively solves the 

GPU memory shortage problem caused by the existing 

method of placing pods by considering only the number of 
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available extended resources. Even if it does not know the 

GPU memory usage of a newly executed pod, when selecting 

a worker node on which a new pod will be placed, the least 

busy worker node is selected, thereby preventing task failure 

with a high probability. 

Our proposed method effectively prevents task execution 

failure due to GPU memory contention in situations where 

different GPU memory usage of simultaneously running pods. 

However, the technique proposed in this paper determines the 

worker node where the GPU is least busy as the placement 
node for the new pod, so it operates using a bean-packing 

method based on the state of GPU resources. As a result, there 

is an extremely high probability that pods using GPUs are 

evenly distributed to each worker node. Because of this, when 

a pod is created that runs a task that requires all GPU 

resources, such as an AI learning task, it is hard to prevent 

task failure even if the most appropriate worker node is 

selected in the current situation. To solve this problem, this 

paper plans to study a pod relocation technique based on the 

status of GPU memory I/O operations of other pods sharing 

the GPU as a future study. 
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