
Vol.14 (2024) No. 5

ISSN: 2088-5334

Pod Placement Techniques to Avoid Job Failures Due to Low GPU

Memory in a Kubernetes Environment with Shared GPUs

Jihun Kang a, Hwamin Lee b Daewon Lee c,*
a Department of Computer Science, Korea National Open University, 86, Daehak-ro, Jongno-gu, Seoul, Republic of Korea

bDepartment of Biomedical Informatics, Korea University College of Medicine, 46, Gaeunsa 2-gil, Seongbuk-gu, Seoul, Republic of Korea
cDepartment of Electronics Computer Engineering, Seokyeong University, 124, Seogyeong-ro Seongbuk-gu, Seoul, Republic of Korea

*Corresponding author: daelee@skuniv.ac.kr

Abstract— In a container-based cloud environment, GPUs have the advantage of providing high-performance computation to multiple

users, and through GPU sharing, many GPU container users can be accommodated over the number of physical GPUs. This increases

resource utilization and minimizes idle time. However, extended resources used to share GPUs in Kubernetes do not partition GPU

resources or limit usage and only logically increase the number of GPUs that can be recognized. Therefore, usage limits and equal use

of GPU resources cannot be guaranteed among pods sharing GPUs. Additionally, GPU memory generally does not allow for overuse.

As a result, if a pod with high GPU memory usage runs a GPU task, it will be unable to limit GPU memory usage and free up available

GPU memory. Data must be loaded into the GPU memory to perform the GPU task. However, if the data to be used for computation

cannot be loaded into the GPU memory due to insufficient GPU memory, the pod will not be able to start the task and will fail to execute.

This paper proposes a pod placement technique to avoid GPU memory shortage when sharing GPUs between pods in the Kubernetes

environment. The proposed technique monitors the GPU memory usage and usage frequency of each worker node that makes up the

cluster and places the pod on the worker node with the most available GPU memory based on the monitoring information.

Keywords— Cloud; GPU computing; resource management; pod placement.

Manuscript received 11 Dec. 2023; revised 29 Mar. 2024; accepted 18 Aug. 2024. Date of publication 31 Oct. 2024.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In a GPU-based high-performance cloud environment, the

environment has the advantage of providing high-

performance computing services to users over a network.

Based on the characteristics of cloud environments where

multiple users share computing resources, sharing GPUs with

multiple users enables a single GPU to be provided to various

users, thereby increasing the resource utilization rate of the

GPU and minimizing idle time. In container-based cloud

environments [1], containers sharing a GPU can utilize the

full capabilities of the GPU simultaneously without the need

for additional commercial technology.
In a container environment, the ability of each container to

utilize the full capabilities of the GPU provides the advantage

of not being limited in the use of GPU resources. However, in

a GPU-sharing environment, it is not possible to limit the

GPU resource usage of each container resulting in resource

contention. GPUs have minimal resource scaling, unlike

CPUs and memory. Because the number of GPUs that can be

installed on a server is physically restricted, it is relatively

complex to acquire additional resources, sometimes requiring

the addition of the server itself.

When performing GPU computations, GPU tasks can be
waited by the scheduler if no GPU cores are available, but

GPU memory is generally not allowed to be overused [2].

Also, due to the nature of using GPU cores to process tasks,

data must be ready in GPU memory, so if a new task runs out

of GPU memory, it will fail to load data into GPU memory,

and the task will fail to run. When sharing GPU resources,

Kubernetes [3], a container-based cluster system that manages

available GPUs as a virtual number of resources through

extended resources manages GPUs as a virtual number of

resources without partitioning them, and places pods on

servers with the highest number of available virtual resources.
In Kubernetes, when a Pod is allocated resources, it can be

logically partitioned to allocate only a portion of the

resources, such as CPU or memory. GPUs, however, can only

be allocated on a per-device basis unless use a separate

commercial technology, and it is not possible to partially

1626

allocate a single GPU a fraction of its total resources. Virtual

GPUs recognized as multiple via extended resources do not

logically partition resources and allocate a portion of the

GPU's resources but only provide the ability to limit the

number of pods that can share the GPU simultaneously. This

method alone cannot limit each Pod's GPU usage or allocate

only a portion of GPU resources. As a result, if a particular

Pod uses most of the GPU memory, new Pods can still be

deployed if there are enough extended resources. However,

the Pods deployed on the server will fail to execute GPU jobs
because no actual GPU memory is available.

In this paper, we propose a pod placement technique that

determines the server where a pod is placed based on the GPU

memory usage of each server in the cluster and the frequency

of GPU usage when placing a pod requesting GPU resources

in a Kubernetes environment. The proposed technique solves

the GPU memory shortage problem caused by the existing

pod placement technique in Kubernetes, which only considers

the number of extended resources without considering the

GPU memory usage. It prevents the pods from failing to

perform GPU tasks.

II. MATERIAL AND METHOD

A. Motivation

With extended resources, Kubernetes recognizes a single

GPU as if it were multiple GPUs. GPU sharing technology

allows multiple users to use a GPU simultaneously, and users

using the GPU concurrently share GPU resources to

accomplish their tasks. However, unlike CPUs or main

memory, GPUs cannot partition their resources logically. As

a result, each user sharing a GPU is not allocated a portion of
the GPU's resources but instead uses the entire GPU without

limits. Limiting each user's GPU usage in a cloud

environment requires the use of commercial products, which

have limitations that only work with specific GPUs. These

characteristics can lead to job failures due to contention for

GPU resources, depending on the size of the jobs of the users

sharing the GPU.

As explained earlier, extended resources are used when

sharing GPUs in the Kubernetes environment. Extended

resources do not divide the GPU but increase the number of

devices recognized by the system and, as a result, only limit
the maximum number of pods that can be used simultaneously

by sharing the GPU. Because of this, even if a specific pod

sharing the GPU uses most of the GPU resources, a new pod

can be deployed if the number of resources divided as

extended resources remains. Because of this, if the pod

deployed first uses most of the GPU, a new pod can be

deployed. Even if we try to run a task using GPU, the task

execution will fail because there are no available GPU

resources.

GPU task execution failures due to insufficient GPU

resources occur primarily due to inadequate GPU memory.
GPU cores, where multiple tasks can be executed

simultaneously, and their execution order can be adjusted by

the GPU's internal scheduler depending on the availability of

GPU cores. GPU memory does not operate in the same way.

To perform computations using GPU cores, the data to be

processed must be loaded into GPU memory. Additionally,

GPU memory typically does not allow for overuse. While

primary memory may utilize secondary storage in case of

overuse, GPU memory does not have this capability.

While there exists functionality to utilize main memory as

auxiliary storage to expand GPU memory, this feature needs

to be added at the level of GPGPU programming code for

allocating GPU memory [4]. However, AI frameworks like

TensorFlow, which provides GPU computation capabilities,

typically do not offer this feature by default. As a result, if a

new GPU task is initiated while GPU memory is already in

use beyond capacity, the task execution fails due to the
inability to allocate GPU memory.

Fig. 1 shows the performance of the inference task on the

pods. The experiments measured the performance and success

of task execution of inference tasks implemented with

TensorFlow [5]. The dataset was MNIST with a batch size set

to 32, and 60,000 data points were used for inference tasks. In

Fig. 1, the leftmost bar shows the performance of a single run

for performance comparison. As shown in Fig. 1, as the

number of pods running inference tasks increases, the

performance of inference tasks deteriorates. The inference

task in the experiment causes performance degradation when
run simultaneously on up to 23 pods but can be completed

typically.

Fig. 1 Task failure due to insufficient GPU memory.

If the number of pods running inference tasks increases and

available GPU memory becomes insufficient, multiple pods

will fail to execute the task. When each inference task starts

simultaneously, some containers cannot input all data into the

GPU memory due to competition for GPU memory input
tasks, the libraries to be executed on the GPU are not

initialized, and the task fails to start.

Fig. 2 shows the individual performance when inference

tasks are run simultaneously in 23 pods. As shown in the

experimental results, when the number of concurrently

running containers increases, tasks with large performance

deviations occur due to competition for GPU resources. up to

23 pods executing inference tasks result in some degree of

performance degradation while completing the inference

tasks successfully. However, if the number of concurrently

executing tasks increases, some tasks fail to execute. Table 1

1627

shows the task execution failure when 24 and 25 pods are

running inference tasks.

Fig. 2 Individual performance on inference tasks.

TABLE I

TASK EXECUTION FAILS DUE TO INSUFFICIENT GPU MEMORY

Number

of tasks

Number of concurrently running tasks

24 25

run

time

Execution

completion

run

time

Execution

completion

1 11.728 x 13.8 o
2 15.662 o 13.788 o
3 24.017 o 11.044 x

4 15.65 o 13.413 o
5 15.126 o 11.322 x
6 18.208 o 11.187 x
7 24.174 o 13.022 o
8 13.838 o 11.118 x
9 14.322 o 11.209 x
10 15.724 o 11.149 x
11 13.803 o 12.993 o

12 15.354 o 11.169 x
13 15.305 o 11.507 x
14 15.756 o 11.366 x
15 25.498 x 13.452 o
16 18.147 o 11.089 x
17 25.678 x 11.287 x
18 13.992 o 11.068 x
19 25.569 x 13.365 o
20 15.81 o 13.182 o

21 25.592 x 11.027 x
22 15.74 o 10.75 x
23 15.447 o 13.924 o
24 25.606 x 13.847 o
25 - - 11.385 x

As shown in the experimental results in Table 1, the

number of pods executing inference tasks increased by only

one and two, respectively. Still, a much larger number of pods

terminated without completing execution. This is because, as

competition for GPU memory intensifies, the number of tasks

where only part of the data has been uploaded to GPU

memory and the data upload required for the task cannot be

completed due to lack of available capacity increases. As a
result, some containers continue to compete for GPU memory

while uploading only part of the data to GPU memory, and

due to insufficient GPU memory, the GPU library used in

TensorFlow cannot be initialized, and the task fails to start.

In this paper, we aim to prevent excessive use of GPU

memory and the resulting task execution failure caused by the

increase in the number of GPUs that can be recognized

through extended resources without considering the actual

GPU memory usage in the existing Kubernetes environment.

To this end, we propose a pod placement technique based on

each worker node's GPU memory usage and GPU usage
frequency. The method proposed in this paper recognizes the

availability of GPU resources based on information about

actual GPU memory usage and GPU usage frequency and

manages a list of candidates for servers where new pods can

be deployed.

B. Implementation

The technique proposed in this paper utilizes extended

resources to increase the number of virtual GPUs. However,
the number of extended resources is independent of the

decision of which server a pod will be placed on. In traditional

Kubernetes, pods were placed on servers with the highest

available GPUs based on the number of extended resources.

However, as described earlier, the available number of

extended resources is unrelated to the available ones.

Therefore, the decision of where a new pod will be placed is

based on the actual GPU memory usage and usage frequency

rather than the number of available extended resources.

The technique proposed in this paper involves obtaining

information from monitoring GPU resources on each server

and the execution status of tasks. Based on this information,
the least busy server is selected. To minimize transmission

overhead, monitoring information is not transmitted

periodically but rather tracked based on the execution status

of GPU tasks using an event-based monitoring approach.

In our approach, the most critical information is the GPU

memory and the execution status of tasks on each server. As

described earlier, the technique proposed in this paper uses an

event-based monitoring approach rather than the conventional

method of periodically sending monitoring information to

control nodes, commonly used in cloud environments.

Initially, each worker node minimizes computing resource
usage due to monitoring tasks by detecting only the start of

GPU tasks. When the control node deploys a new pod, and

GPU tasks commence, it verifies the execution of GPU tasks

and monitors the GPU memory usage of those tasks. If the

GPU memory usage of the pod remains constant after

increasing GPU task execution, it is assumed that the input

tasks for GPU memory have been completed. Subsequently,

the control node sends the server's GPU memory usage

information.

When a new GPU task is initiated, the worker node sends

3 pieces of information regarding that task: 1) when the GPU
task starts, 2) when GPU memory input is completed, and 3)

when the task is completed. Suppose the GPU memory usage

for the specific GPU task remains constant and does not

increase after the task has started. In that case, it is considered

that the data input operation into the GPU memory has been

completed. Therefore, monitoring information is transmitted

when the GPU task starts and when GPU resource occupancy

is completed. The control node receiving the GPU memory

1628

usage information selects the most suitable worker node based

on the GPU memory usage information and the frequency of

GPU usage when deploying the next new pod. The

operational mechanism of the monitoring technique proposed

in this paper is shown in Fig. 4.

Fig. 3 Proposed GPU memory and task monitoring system

As shown in Fig. 3, sending monitoring information to the

control node starts after initiating a new GPU task.

Additionally, since our approach utilizes information

regarding GPU memory usage and usage frequency, there is

no need to know which task each pod executes and how much

GPU memory it uses. It is sufficient only to monitor the

current GPU memory usage and how frequently the GPU is

being used. Therefore, no separate collection of information

about the pods is conducted.

Algorithm 1: Pod placement

1 if (monitoring information has been transmitted) {

2 gpu_memory_usage = memory_usage;

3 gpu_idle_time = idle_time;

4 for (0 < node_info[n])

5 node_score = (1 - gpu_memory_usage /
total_gpu_memory) * (1 - gpu_idle_time / 100);

6 node_info[n] = node_score;

7 }

8 sorted_node[n] = sorted (node ID, node_score);

9 if (Pod creation requested);

10 for (0 < sorted_node[n])

11 select_node(sorted_node[0]);

12 if (node satisfies the CPU and memory required)

13 select_node_for_pod

14 break;

15 else
16 wait_for_pod_scheduling

The control node asynchronously receives monitoring

information from each worker node and manages the node list

in the order of nodes most suitable for deploying new pods

based on this information. When deploying pods, it is

necessary to check the available CPU and memory capacity,

GPU memory usage, and use frequency to identify suitable

nodes in two steps. The node list is sorted based on available

GPU memory capacity in the first step. In the second step, a

node with appropriate CPU and main memory requirements
is selected and determined as the node for deploying the pod.

Our proposed pod placement technique is described in

Algorithm 1.

As shown in Algorithm 1, the approach proposed in this

paper manages the node list based on current GPU memory

usage information and GPU usage frequency. A high GPU

usage frequency on a worker node implies that the pod

frequently utilizes the GPU. We do not differentiate between

pods that repeatedly execute GPU tasks over an extended

period on worker nodes and those that execute GPU tasks only

once and then terminate; instead, we assess the busy state of
worker nodes based on GPU usage frequency. GPU usage

frequency is determined by the number of times GPU tasks

are executed and by GPU idle time. Since GPU tasks executed

on worker nodes have varying execution times, a GPU task

with a longer execution time will result in a lower GPU usage

frequency measurement.

In the implementation of this paper, the idle time of the

GPU is measured for 1 minute for each worker node, the

weight of the previous information is calculated as half of the

latest information, the average idle time information is

managed, and monitoring information is delivered to the
control node whenever a GPU task is executed. do. When the

creation of a new pod is requested, the node list is checked

from the beginning, and the worker node that matches the

CPU and memory requirements is selected among the worker

nodes with the lowest GPU memory usage and GPU usage

frequency.

In this paper, we modify the existing Kubernetes pod

placement technique and propose a method to solve the

problem of not being able to limit GPU memory usage in

Extended Resources used when sharing GPUs. Our approach

considers the characteristics of GPU devices, where it is
impossible to allocate only a portion of resources and uses a

method to select worker nodes with the lowest probability of

failing to execute tasks based on GPU memory usage and

GPU usage frequency information. In particular, the proposed

technique suggests that the node with the lowest GPU

memory usage obtains the highest score, thus increasing the

likelihood of having sufficient available GPU resources on the

worker node even if the resource demands of newly launched

GPU tasks are high.

Additionally, since monitoring information is transmitted

only when the GPU task starts and when GPU memory

allocation is completed, unnecessary transmission can be
minimized. In addition, this method requires monitoring

information to be transmitted more frequently when GPU

tasks are commonly executed and terminated. Still, it has the

advantage of checking the execution status of tasks in real-

time that cannot be detected by sending monitoring

information periodically. The efficiency of the technique

proposed in this paper is verified through experiments in the

next chapter.

III. RESULTS AND DISCUSSION

A. Evaluation

In this chapter, an experiment is performed to verify the

efficiency of the technique proposed in this paper. Our

experiments use an inference task using the MNIST data set.

Each pod that performs inference tasks performs inference

tasks using a different amount of data. Because the number of

1629

data used in inference tasks differs, GPU memory usage is

also different. The inference task used in the experiment was

implemented in TensorFlow, and the inference task prevents

a single task from occupying the entire GPU through a

TensorFlow function [6] that limits GPU memory usage to

actual usage.

In the experiments in this chapter, we use the proposed

technique in an environment where multiple inference tasks

are executed simultaneously to check whether newly executed

inference tasks are placed on appropriate worker nodes and
completed without task failure. Also, measure the resource

usage of proposed monitoring techniques and analyze their

impact on the overall system. The experimental environment

is shown in Table 2.

TABLE II

EXPERIMENT ENVIRONMENT

Type Control node Worker node × 2

CPU AMD Ryzen 9 7900X
Memory 128 GB

GPU - RTX 4090
OS Ubuntu 20.04

Kubernetes
version

1.24

The first experiment verifies the efficiency of deploying

pods using the technique proposed in this paper when pods

using various capacities of GPU memory are executed

simultaneously. In the experiment, pods were divided into two

groups to vary the GPU memory usage, and each group used
20000 and 60000 data when performing inference tasks. Table

3 shows GPU memory usage and individual execution

performance depending on the number of data to be used in

the inference task.

TABLE III

INDIVIDUAL PERFORMANCE OF TASKS BASED ON THE NUMBER OF DATA

Number

of data
execution time(sec)

GPU memory usage

(MB)

40,000 5.09 821
60,000 8.632 1,205

When a pod is created, it is placed on one of three worker

nodes. In the case of existing Kubernetes, pods are placed

based only on the number of extended resources regardless of

GPU memory usage, so if pods with high GPU memory usage

are concentrated in a specific worker node, the probability of

job execution failure increases.
To create a situation where GPU memory is insufficient in

the experiment, the extended resource was set to 30, and 23

inference tasks using 60,000 pieces of data were placed on

worker node 1, and 25 inference tasks using 40,000 pieces of

data were placed on worker node 2. The inference task was

arranged to run repeatedly and continuously occupy the GPU

memory. In this situation, two new pods were created for the

inference task using 60,000 pieces of data, and task failure due

to the new pods was confirmed.

As shown in Table 4 in the experimental results, in the

existing environment, the node on which a new pod is to be
placed is selected based only on the available number of

expansion resources, so when pods that use a lot of GPU

memory are concentrated, pods that fail to execute tasks

occur.

TABLE IV

TASK EXECUTION FAILS DUE TO NEW PODS WHEN GPU MEMORY IS LOW

Node

Number

Number of pods

placed

Number of pods that

failed to run tasks

1 2 14
2 0 0

Table 5 shows the results when using the pod placement

technique proposed in this paper in the same situation.

TABLE V

POD PLACEMENT USING THE PROPOSED TECHNIQUE

Node

Number

Number of pods

placed

Number of pods that

failed to run tasks

1 0 0
2 2 0

As shown in the experimental results in Table 5, the

technique proposed in this paper deploys pods using GPU

based on GPU memory usage regardless of the available
number of extended resources. As a result, new pods are not

placed on worker nodes that have more available extended

resources but use more GPU memory, but new pods are

placed on worker nodes that have fewer available extended

resources but lower GPU memory usage.

Due to this way of working, even without knowing the

GPU memory usage of the newly created pod, the pod is

placed on the worker node with the least busy GPU, so there

is a low probability of job failure due to insufficient GPU

memory. However, our approach does not fundamentally

solve the GPU memory shortage problem. Because our

approach is to place new pods on the least busy worker nodes,
we are limited in our ability to respond to tasks that require

full GPU memory. However, for GPU tasks with a relatively

small computational amount, such as inference tasks or

transfer learning used in the experiment, new pods are placed

based on the GPU memory usage of the worker node, so the

probability of task failure due to insufficient GPU memory

can be reduced.

Fig. 5 The resource usage of the proposed monitoring technique

1630

In this experiment, we measure the resource usage of the

proposed GPU monitor to collect basic information when

selecting a node to deploy a pod and analyze the impact of the

proposed monitoring technique on the overall system. The

experimental results are shown in Fig. 5. As shown in Fig. 5,

the monitoring technique proposed in this paper uses very

little CPU and main memory. For monitoring information

collection work, the CPU uses only about 1 to 2%, and in the

case of main memory, only a small, fixed capacity is used.

The proposed monitoring technique runs inside a worker node
and uses the level of computing resources that do not affect

the performance of the pod that performs actual user tasks.

The pod placement technique proposed in this paper solves

the GPU memory overuse problem that can occur in

Kubernetes, which only checks the available number of

extended resources without considering the available GPU

memory capacity when allocating GPU resources to pods. As

explained earlier, Kubernetes does not provide isolation for

the GPU allocated to each pod when managing GPU

resources, so it is not possible to limit the GPU resource usage

of each pod. Because of this, if a specific pod uses a lot of
GPU memory, available resources for actual GPU work may

not be secured even if the number of expansion resources is

sufficient. This leads to execution failure of GPU tasks due to

insufficient GPU memory. However, in this paper, new pods

are placed based on the actual amount of available GPU

memory and GPU usage frequency regardless of the number

of expansion resources, thereby alleviating the problem of

insufficient GPU memory and preventing execution failure of

GPU tasks.

The technique proposed in this paper targets tasks that

require relatively small GPU resource usage, such as
inference tasks or transfer learning. In the case of large-scale

tasks that fully use the GPU, such as learning tasks, the GPU

must be allocated exclusively, but the proposed technique

evenly distributes pods to multiple worker nodes based on

GPU memory usage and GPU usage frequency. For jobs that

use all of them, there is a high probability that the batch will

fail. This limitation will be addressed through future research

to develop pod relocation techniques to prevent partial

fragmentation of GPU memory. In future research, we will

extend the technique proposed in this paper to secure available

GPUs through relocation technology, enabling scalability to

handle large-scale computations.

B. Related Works

Various research has been conducted to manage GPU

resources in the Kubernetes environment. Existing research

focuses on managing device-level GPU resources in a multi-

GPU environment where two or more GPUs exist on a single

node in a cluster environment. Existing research on managing

GPUs on a per-device basis deploys tasks in a cluster

environment and manages GPU devices for large-scale tasks
using multiple GPUs. The main goal of existing research is to

propose techniques for scheduling between each task and

preventing fragmentation of available GPU resources

scattered throughout the cluster [7], [8], [9], [10].

Additionally, to alleviate performance degradation due to

GPU resource competition, a technique was also proposed to

improve throughput in an environment where multiple GPU

tasks share the GPU by pausing and then restarting the GPU

task. These techniques typically support pausing and

restarting tasks and reallocating GPUs through framework-

level modifications for GPU tasks [11], [12], [13]. Another

method of managing GPU resources in a container-based

environment is a technique that dynamically allocates

resources by analyzing and predicting the completion time

and pattern of tasks [14], [15], [16], [17], [18], [19], [20], [21].

These techniques collect runtime information of tasks and

achieve optimization of task placement based on this. To

improve the performance of tasks running on GPUs, a
technique was also proposed to dynamically select the GPU

access method of a virtual instance according to resource

requirements and container parameters [22]. This method

optimizes GPU resources by selecting various GPU resource

access technologies, such as passthrough and API forwarding,

according to requirements.

A technique was also proposed to optimize data

communication for tasks by caching models used when

multiple containers perform AI tasks simultaneously in GPU

memory [23]. This method proposes a locality-aware

scheduler using global management techniques of GPU
memory. In addition, in order to reduce fragmented GPUs

scattered in the cluster, a technique for scheduling tasks based

on GPU fragmentation measurement technique was proposed

[24]. To efficiently allocate GPUs when performing

distributed learning, a technique was also proposed that uses

AI to select nodes that satisfy multiple conditions [25]. This

technique uses an AI-based scheduling technique to

determine which nodes to place tasks in the Kubernetes

environment.

There is existing research on priority-based management of

GPU resources. The proposed research prioritizes GPU jobs
based on user-specific job deadlines [26], [27] or QoS [28]

and provides GPUs based on priority. In addition, methods

proposed for providing GPUs that exist on other servers in the

cluster based on GPU usage information [29] and techniques

for finding idle GPUs and placing [30].

IV. CONCLUSION

In this paper, we propose a pod placement technique that

can select appropriate worker nodes to prevent task failure due
to insufficient GPU memory when multiple pods share GPUs

in a Kubernetes environment. The extended resource used to

support GPU sharing among multiple pods in existing

Kubernetes makes it appear that there are multiple GPUs, but

the GPU resources are not divided. Because of this, the GPU

resource usage of each pod cannot be limited. In a situation

where a specific pod uses most of the GPU memory if the

number of available extended resources of the worker node is

large, a new pod is deployed regardless of the actual GPU

memory usage. In this paper, to solve this problem, worker

nodes where new pods will be placed are selected based on
actual GPU memory usage and GPU resource usage

frequency rather than the number of extended resources. This

allows newly created pods to be placed on worker nodes

where the GPU is not busy, alleviating GPU memory

contention and preventing tasks from executing due to

insufficient GPU memory. As confirmed through

experiments, the proposed technique effectively solves the

GPU memory shortage problem caused by the existing

method of placing pods by considering only the number of

1631

available extended resources. Even if it does not know the

GPU memory usage of a newly executed pod, when selecting

a worker node on which a new pod will be placed, the least

busy worker node is selected, thereby preventing task failure

with a high probability.

Our proposed method effectively prevents task execution

failure due to GPU memory contention in situations where

different GPU memory usage of simultaneously running pods.

However, the technique proposed in this paper determines the

worker node where the GPU is least busy as the placement
node for the new pod, so it operates using a bean-packing

method based on the state of GPU resources. As a result, there

is an extremely high probability that pods using GPUs are

evenly distributed to each worker node. Because of this, when

a pod is created that runs a task that requires all GPU

resources, such as an AI learning task, it is hard to prevent

task failure even if the most appropriate worker node is

selected in the current situation. To solve this problem, this

paper plans to study a pod relocation technique based on the

status of GPU memory I/O operations of other pods sharing

the GPU as a future study.

ACKNOWLEDGMENT

This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

funded (NRF) by the Ministry of Education

(2022R1I1A1A01063551 and NRF-2021R1F1A1063121).

REFERENCES

[1] Docker, Docker engine [Online]. Available:

https://docs.docker.com/engine/

[2] CUDA C Programming Guide, NVIDIA Corporation, CA, USA, 2024.

[3] Linux Foundation, Kubernetes, [Online]. Available:

https://kubernetes.io/docs/setup/

[4] CUDA API Reference Manual, CA, USA, pp. 59, 2012.

[5] M. Abadi et al., TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems, arXiv preprint arXiv:1603.04467,

2016.

[6] TensorFlow, Use GPU, [Online]. Available:

https://www.tensorflow.org/guide/gpu.

[7] T.-A. Yeh, H.-H. Chen, and J. Chou, “KubeShare: A Framework to

Manage GPUs as First-Class and Shared Resources in Container

Cloud,” Proceedings of the 29th International Symposium on High-

Performance Parallel and Distributed Computing, vol. 2014, pp. 173–

184, Jun. 2020, doi: 10.1145/3369583.3392679.

[8] I. Harichane, S. A. Makhlouf, and G. Belalem, “KubeSC‐RTP: Smart

scheduler for Kubernetes platform on CPU‐GPU heterogeneous

systems,” Concurrency and Computation: Practice and Experience,

vol. 34, no. 21, Jun. 2022, doi: 10.1002/cpe.7108.

[9] G. El Haj Ahmed, F. Gil‐Castiñeira, and E. Costa‐Montenegro,

“KubCG: A dynamic Kubernetes scheduler for heterogeneous clusters,”

Software: Practice and Experience, vol. 51, no. 2, pp. 213–234, Sep.

2020, doi: 10.1002/spe.2898.

[10] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and C.

R. Das, “Kube-Knots: Resource Harvesting through Dynamic

Container Orchestration in GPU-based Datacenters,” 2019 IEEE

International Conference on Cluster Computing (CLUSTER), Sep.

2019, doi: 10.1109/cluster.2019.8891040.

[11] S. Wang et al., “An Efficient and Non-Intrusive GPU Scheduling

Framework for Deep Learning Training Systems,” SC20:

International Conference for High Performance Computing,

Networking, Storage and Analysis, pp. 1–13, Nov. 2020,

doi:10.1109/sc41405.2020.00094.

[12] N. Zhou et al., “Container orchestration on HPC systems through

Kubernetes,” Journal of Cloud Computing, vol. 10, no. 1, Feb. 2021,

doi: 10.1186/s13677-021-00231-z.

[13] J. Shi, D. Chen, J. Liang, L. Li, Y. Lin, and J. Li, “New YARN sharing

GPU based on graphics memory granularity scheduling,” Parallel

Computing, vol. 117, p. 103038, Sep. 2023,

doi:10.1016/j.parco.2023.103038.

[14] T.-T. Hsieh and C.-R. Lee, “Voda: A GPU Scheduling Platform for

Elastic Deep Learning in Kubernetes Clusters,” 2023 IEEE

International Conference on Cloud Engineering (IC2E), vol. 27, pp.

131–140, Sep. 2023, doi: 10.1109/ic2e59103.2023.00023.

[15] H. Albahar, S. Dongare, Y. Du, N. Zhao, A. K. Paul, and A. R. Butt,

“SchedTune: A Heterogeneity-Aware GPU Scheduler for Deep

Learning,” 2022 22nd IEEE International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), May 2022,

doi:10.1109/ccgrid54584.2022.00079.

[16] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P.

Garraghan, “Horus: Interference-Aware and Prediction-Based

Scheduling in Deep Learning Systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 1, pp. 88–100, Jan. 2022,

doi: 10.1109/tpds.2021.3079202.

[17] J. Gu, Y. Zhu, P. Wang, M. Chadha, and M. Gerndt, “FaST-GShare:

Enabling Efficient Spatio-Temporal GPU Sharing in Serverless

Computing for Deep Learning Inference,” Proceedings of the 52nd

International Conference on Parallel Processing, pp. 635–644, Aug.

2023, doi: 10.1145/3605573.3605638.

[18] Z. Liu, C. Chen, J. Li, Y. Cheng, Y. Kou, and D. Zhang, “KubFBS: A

fine‐grained and balance‐aware scheduling system for deep learning

tasks based on kubernetes,” Concurrency and Computation: Practice

and Experience, vol. 34, no. 11, Jan. 2022, doi: 10.1002/cpe.6836.

[19] I. Harichane, S. A. Makhlouf, and G. Belalem, “A Proposal of

Kubernetes Scheduler Using Machine-Learning on CPU/GPU Cluster,”

Intelligent Algorithms in Software Engineering, pp. 567–580, 2020,

doi: 10.1007/978-3-030-51965-0_50.

[20] L. Liu, J. Yu, and Z. Ding, “Adaptive and Efficient GPU Time Sharing

for Hyperparameter Tuning in Cloud,” Proceedings of the 51st

International Conference on Parallel Processing, pp. 1–11, Aug. 2022,

doi: 10.1145/3545008.3545027.

[21] J. Lou, Y. Sun, J. Zhang, H. Cao, Y. Zhang, and N. Sun, “ArkGPU:

enabling applications’ high-goodput co-location execution on

multitasking GPUs,” CCF Transactions on High Performance

Computing, vol. 5, no. 3, pp. 304–321, May 2023,

doi:10.1007/s42514-023-00154-y.

[22] W. Shen, Z. Liu, Y. Tan, Z. Luo, and Z. Lei, “KubeGPU: efficient

sharing and isolation mechanisms for GPU resource management in

container cloud,” The Journal of Supercomputing, vol. 79, no. 1, pp.

591–625, Jul. 2022, doi: 10.1007/s11227-022-04682-2.

[23] M. Zhao, K. Jha, and S. Hong, “GPU-enabled Function-as-a-Service

for Machine Learning Inference,” 2023 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), vol. 11, pp. 918–928,

May 2023, doi: 10.1109/ipdps54959.2023.00096.

[24] Q. Weng, L. Yang, Y. Yu, W. Wang, X. Tang, G. Yang, et al., "Beware

of Fragmentation: Scheduling GPU-Sharing Workloads with

Fragmentation Gradient Descent", 2023 USENIX Annual Technical

Conference (USENIX ATC 23), pp. 995-1008, 2023, [online] Available:

https://www.usenix.org/conference/atc23/presentation/weng.

[25] D. Jorge-Martinez et al., “Artificial intelligence-based Kubernetes

container for scheduling nodes of energy composition,” International

Journal of System Assurance Engineering and Management, Jul. 2021,

doi: 10.1007/s13198-021-01195-8.

[26] M. Saravanan and R. Vignesh, “DSTS: A hybrid optimal and deep

reinforcement learning for dynamic scalable task scheduling on

container cloud environment,” Mar. 2022, doi: 10.21203/rs.3.rs-

1431790/v1.

[27] Y. Mao et al., “Differentiate Quality of Experience Scheduling for

Deep Learning Inferences With Docker Containers in the Cloud,”

IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp. 1667–1677,

Apr. 2023, doi: 10.1109/tcc.2022.3154117.

[28] A. Zou, J. Li, C. D. Gill, and X. Zhang, “RTGPU: Real-Time GPU

Scheduling of Hard Deadline Parallel Tasks With Fine-Grain

Utilization,” IEEE Transactions on Parallel and Distributed Systems,

vol. 34, no. 5, pp. 1450–1465, May 2023,

doi:10.1109/tpds.2023.3235439.

[29] Z. Chen, X. Zhao, C. Zhi, and J. Yin, “DeepBoot: Dynamic Scheduling

System for Training and Inference Deep Learning Tasks in GPU

Cluster,” IEEE Transactions on Parallel and Distributed Systems, vol.

34, no. 9, pp. 2553–2567, Sep. 2023, doi: 10.1109/tpds.2023.3293835.

[30] J. Kennedy, V. Sharma, B. Varghese, and C. Reaño, “Multi-Tier GPU

Virtualization for Deep Learning in Cloud-Edge Systems,” IEEE

Transactions on Parallel and Distributed Systems, vol. 34, no. 7, pp.

2107–2123, Jul. 2023, doi: 10.1109/tpds.2023.3274957.

1632

