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Abstract— Flowing bottom hole pressure (FBHP) is an important parameter during evaluation of conventional and unconventional oil 

and gas resources and is mainly used for production optimization, calculation of productivity index and assessment of well performance. 

FBHP in an oil well is a multifaceted parameter that has a number of factors affecting it. It is characterized by high stochasticity, non-

linearity and non-stationarity. Traditionally, production engineers rely on physics-based models and empirical correlations calibrated 

with measurements from offset wells to calculate FBHP. However, in recent times, there has been a significant shift towards the use of 

cutting-edge artificial intelligence (AI) algorithms. The present study is designed to provide a historical account of past and present 

models developed with AI algorithms for estimating FBHP. To achieve this, a deep bibliographic survey was conducted using various 

peer reviewed journals and relevant oil and gas conference papers. The results of the review have been presented in tables to avoid 

ambiguity. To make the review novel, the merits and demerits of each of the AI models for FBHP prediction are highlighted and 

discussed in detail.  In this direction 54 models were isolated from the literature. The findings indicate that artificial neural network is 

the preferred algorithm by several researchers. However, the transparency and interpretability issues associated with the neural 

network algorithm has propelled researchers to explore the possibility of deploying physics informed machine learning techniques to 

model FBHP. This review would serve as a valuable reference for production engineers seeking information on AI models for FBHP 

estimation.  
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I. INTRODUCTION

In evaluating the productivity of oil and gas wells, the 

flowing bottomhole pressure remains an indispensable 
parameter for this purpose [1]. For instance, production 

monitoring is possible using the FBHP [2]; the design of well 

facilities, such as tubing size and well head, can be assured 

using FBHP [3]; the operational management of downhole 

equipment is possible by the FBHP [4]; the reduction of oil 

cost per barrel [5], etc. Despite the significant role of FBHP 

in the production of oil and gas, its accurate determination 

from an engineering perspective remains unsatisfactory. This 

inadequacy can be attributed to the intricate interactions 

among numerous variables influencing FBHP. The 

complexity arises because hydrocarbons are rarely produced 

as single-phase fluids; instead, they exist as multiphase fluids 

consisting of oil, gas, and water. These multiphase fluids 

exhibit distinct flow regimes, rendering the entire flow 

process intricate and challenging to comprehend. Due to the 

complicated nature of multiphase flows, the computation of 

flowing bottom-hole pressure becomes a convoluted task.  

One method commonly utilized to evaluate bottom-hole 

pressure involves the utilization of down-hole gauges capable 
of recording vast quantities of bottom-hole pressure data. 

Despite the merits of this approach, two limitations arise the 

associated expenses that are prohibitively high and their poor 

performance in processing noisy data [2]. In practical terms, 

when a well is operated with deep-pumping equipment, the 

calculation of BHFP becomes the preferred method of 

determination [6]. To this end, production engineers utilize 

empirical correlations and physics-based models calibrated 

with real physical observations from offset wells to determine 
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FBHP [7]. It should be noted that these correlations and 

models were predominantly developed and validated within 

specific operating conditions. Consequently, their 

performance may be compromised when applied beyond 

these boundaries [8].  

In recent years, there has been a growing trend in the 

utilization of artificial intelligence (AI) based methods within 

the field of petroleum engineering [9]. These methods have 

successfully tackled various traditional and non-conventional 

problems, including FBHP. Given the difficulty faced by the 
mechanistic models and the deficiencies of downhole 

pressure gauges, the prediction of FBHP is more likely to be 

achieved using AI-based modeling frameworks capable of 

handling nonlinear relationships between FBHP and other 

wellbore parameters. While numerous AI-based models exist 

for predicting FBHP, there appears to be no universal model. 

Furthermore, it is observed that despite the avalanche of AI-

based predictive models for FBHP estimation, no work has 

yet done a comprehensive review and critique of these 

models. The current study is aimed at surveying past and 

recent literature on the applicability of AI methods for FBHP 
modeling with the primary aim of critiquing the models. 

To critique the models, the merits and demerits of each AI-

based FBHP model are highlighted, and recommendations for 

future research are made. These recommendations are 

necessary to help researchers break new ground that can 

advance past and current progress on AI-based models for 

FBHP estimation. To this end, this work is a veritable source 

of information regarding AI-based models for FBHP 

estimation. 

The remaining sections of this review are structured as 

follows: Section 2 describes the strategy adopted for the 

review. Subsequently, section 3 highlights the FBHP 

prediction models and provides a critical analysis of them. 

Section 4 highlights the review's main findings, and section 5 

offers conclusions and suggestions for further research based 

on those findings. 

II. MATERIALS AND METHODS 

Five databases were searched methodically to find the 

publications used for this review: Google Scholar, Scopus, 

SPE OnePetro, Web of Science, and ScienceDirect. Three 

primary themes were identified in this search process: (a) 

literature discovery and screening, (b) data extraction and 

analysis, and (c) Literature review creation. The literature 

search was carried out without regard to language, period, or 

publication kind by combining different phrases and free text 

words in the right order. The articles were chosen in two 
stages using a predefined set of inclusion and exclusion 

criteria. In addition to the electronic searches, manual 

screening of references discovered in the included studies was 

done to reduce the possibility of missing relevant studies that 

were not located during the original search. The number of 

studies found, screened, and approved or rejected at each 

stage of the study selection procedure is shown in the flow 

diagram in Fig. 1. 

 

 

 
Fig. 1  Literature search flowchart 
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III. RESULTS AND DISCUSSION 

This study section examines previous studies that deployed 
AI-based models for estimating FBHP. The summary is 

presented in Table I, which comprises 5 columns. Each 

column provides essential information about the respective 

models. The data in the table has been arranged 

chronologically based on the publication year to identify any 

trends in the modeling techniques over time. In total, 54 

papers focusing on FBHP modeling with AI algorithms were 

identified, and their attributes, including strengths and 

weaknesses, were documented in the table. A closer 

examination of the table reveals the following points, 

shedding further light on the characteristics of the models. 
Interpretability of the FBHP models: Of the 54 models 

isolated from the literature and presented in Table I, it is 

observed that about 91% of the models need more 

interpretability. But what exactly does machine model 

interpretability mean? Because of the subjective nature of 

interpretability, there is no consensus around its definition or 

its measure [10]. However, this work would stick to the 

definition of interpretability proposed by Murdoch et al. [11], 

wherein they asserted that interpretable machine learning is a 

vital generic terminology that expresses the “extraction of 

vital knowledge from an ML model about relationships either 

domiciled in data or learned by the model. According to 
Vellido et al. [12], interpretability is a crucial feature that AI 

methods should strive to gain for practical application. 

According to Molnar [13], the interpretation of machine 

learning models may be intrinsic or post hoc. On the one hand, 

inherent interpretability refers to AI models deemed 

interpretable arising from their non-complex structure 

achieved by limiting the complexity of the AI model. An 

example is the learned weights and biases of a neural network 

model. On the other hand, posthoc interpretability involves 

applying methods that evaluate the model post-training. An 

example is feature or parametric importance. 
The interpretability mechanisms used as a basis for the 

critique of the FBHP models in this work include:  

Model explicitness: This involves using internal weights 

and biases, kernels, support vectors, dual coefficients, etc., 
generated by the algorithm to write a visible equation relating 

the inputs and the outputs. By writing out a model explicitly, 

the model and its results can be reproduced. For the FBHP 

models in Table I, it is observed that about 91% of the models 

needed to be explicitly presented. The few that made their 

models explicit were Ayoub et al. [14], Tariq et al. [5], Al-

Shehri et al. [15], Zolfagharroshan and Khamehchi [16] 

developed with algorithms such as group method of data 

handling (GMDH), hybrid of neural network and particle 

swarm optimization (ANN-PSO), artificial neural network 

and genetic programming respectively. Furthermore, some of 
the models that showed some details, such as the weights and 

biases of the neural network model, were too complex in their 

network architecture that it was challenging to write the 

model to show the relationship between the inputs and the 

output, e.g., the models by Okoro et al. [17]; Nwanwe et al. 

[18] and Nwanwe and Duru [19], etc. 

Feature selection or parametric importance: Feature 

selection before training a model helps a modeler to forecast 

which inputs will have the most predictive power for the 

chosen label. Applying feature selection before training 

boosts the ML model's performance in efficient learning and 

accurate prediction [20]. Feature selection can equally be used 

after training a model to find which features the model learned 

to be most important. This review focuses on the latter and 

deals with feature selection after model training. This 

involves showing how each input affects the prediction of the 

output and in what manner and direction it does so. This tool 

can aid in reducing the dimensionality of the models if some 

of the inputs are observed to contribute infinitesimally to the 
output prediction. According to Molnar [13], feature 

importance is only meaningful if visualized, and a table would 

be a wrong choice. Examples of tools that can show the 

parametric importance of input variables to a machine 

learning model include partial dependence plots, the use of 

Garson’s or connection weights algorithm, etc. For the FBHP 

models in Table I, a large percentage of the models did not 

show the inputs' relative contribution or parametric relevance.   

Use of trend analysis: Trend analysis helps assess the 

physical validity of a developed model [21]. It also helps 

explain how well the developed machine-learning model 
conforms to the realities of a given phenomenon. With respect 

to the FBHP models in Table I, to the best of the authors' 

knowledge, none of the works carried out a trend analysis of 

the model they developed.  

Datasets size: Irrespective of the machine learning 

algorithm used for predictive modeling, data and lots of it are 

the basic raw material on which the robustness of the models 

thrives. This is why they are called data-driven methods. 

According to Althnian et al. [22], dataset size is crucial in 

determining how well or otherwise an ML model performs. A 

large dataset tends to guarantee a broader range of coverage 
by the developed model. In contrast, a small dataset tends to 

limit the application range of the model and may trigger 

overfitting [23]. In the review of FBHP models developed 

using machine learning algorithms, it is observed that the data 

sizes used varied from one researcher to the other.  For 

instance, the most extensive dataset size was 3,400,000 data 

points by Firouzi and Rathnayake [24], while the least was 16 

data points by Di et al. [25]. These data, as Table I shows, 

were obtained from different sources and are graphically 

presented in the funnel chart in Fig. 2. This figure shows the 

sources where the researchers' dataset for developing FBHP 

models was obtained and their respective percentages. It is 
observed that about 40% of the researchers failed to state the 

source of their data. 
 

 
Fig. 2  Sources of data used by researchers for FBHP model development 
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The computational cost burden of developed models: 

According to Gomez-Carmona et al. [26], the computational 

cost of machine learning models is essentially measured as the 

necessary time taken for the machine learning algorithm to 

perform the task for which it was deployed, e.g., classification 

or predictions. This time is essentially a function of the 

complexity or otherwise of the model architecture or design 

and the number of inputs to the model. For instance, a neural 

network with a single hidden layer would have a low 

computational cost compared to a deep neural network with 
many hidden layers. The model evolved eventually from a 

complex architecture would equally lead to higher 

computational cost when the model is deployed for practical 

use. A simple way of computing computational cost is the 

number of multiply add operations a model needs to carry out 

before producing an output. This is known as the MACCs 

number. It is observed that none of the FBHP models 

reviewed took into account the computational cost of the 

models they developed. 

Adaptability of developed FBHP models: The relationship 

between FBHP and its driving factors may change over time. 
This is primarily due to variations in downhole conditions that 

impact fluid flow. Consequently, the predictive model created 

using static historical data becomes outdated relatively 

quickly and begins to yield erroneous results. In such cases, 

periodic monitoring is advisable, although this necessitates 

additional resources and contributes to project management 

costs. Thus, there is a need to develop adaptable models.          

A machine learning model is considered adaptable if it can 

adapt and enhance its performance as it encounters more data. 

In recent years, the forward-rolling method has been 

employed to render AI prediction models adaptable to 
changes in the input-output relationship. Based on the review, 

it was found that 96% of the data used by researchers to 

develop AI-based FBHP models consisted of static historical 

data, resulting in the development of non-adaptable models. 

However, the studies conducted by Spesivtsev et al. [27] and 

Ignatov et al. [28] utilized time series data, to some extent 

enabling their models to adapt to parameter changes over 

time. 

Input variable selection: A multitude of factors impact 

FBHP. Consequently, the predictive modeler has access to 

numerous input variables. The wide range of factors 

influencing FBHP is illustrated by the diversity and number 
of input variables presented in column 4 of Table I. For 

instance, Li et al. [29] utilized 15 input variables, while Okoro 

et al. [17] and Zhang et al. [30] employed 12 input variables, 

each with their own unique set of input variables. Due to these 

variables' extensive and varied nature, selecting and 

combining them for FBHP modeling poses a challenge [31]. 

Additionally, some researchers resorted to using a limited 

number of input variables; for example, Memon et al. [32], 

Yin and Zhang [33], and Marfo et al. [34] relied on only three 

input variables. In contrast, about 7% of the researchers failed 

to disclose the inputs to the models they developed. This issue 

of selecting and combining input variables likely contributes 

to the absence of a universal model for FBHP estimation. 

Type of machine learning algorithm: Various researchers 

have adopted and used a wide array of machine learning 

algorithms for FBHP modeling, as shown in Table I. Fig. 3 
shows the distribution of these algorithms and how the 

researchers deployed them. It is observed from the figure that 

a more significant number of researchers used the single 

neural network. Hybrids of neural networks with evolutionary 

algorithms were also highly utilized. Still, there is an 

emerging trend towards the use of physics-informed neural 

networks due to the issues of interpretability and 

trustworthiness of conventional machine learning algorithms. 

It is also observed that algorithms that evolve mathematical 

relationships automatically and present them as explicit 

models, such as multivariate adaptive regression splines 
(MARS), multigene genetic programming (MGGP), and 

group method of data handling (GMDH), were sparingly 

used. This underscores the findings by Agwu et al. [35], 

wherein they asserted that algorithms such as MARS had yet 

to be widely adopted for predictive modeling purposes in 

petroleum engineering despite the numerous advantages it 

offers. Furthermore, it was also observed that newer 

algorithms, such as M5Prime, were also emerging. 

 

 
Fig. 3  Distribution of types of AI algorithms used for FBHP modeling 

 

TABLE I 

SNAPSHOT OF EXISTING AI BASED MODELS FOR FBHP ESTIMATION 

Reference AI algorithm Inputs Merits of model Demerits 

Ayoub  
[14] 

Neural Network 
[9-6-3-3-1] 

Gas flow rate, oil API gravity, oil 
flow rate, pipe length and diameter, 
surface temperature, water flow 
rate, WHP, WHT 

Ideal for vertically oriented 
wells with natural fluid flow. 

Lack of model 
explicitness  

Osman et al. [21] Neural Network 
[9-6-3-3-1] 

Gas flow rate, oil API gravity, oil 
flow rate, pipe length and diameter, 

surface temperature, water flow 
rate, WHP, WHT 

Applicable to naturally 
flowing, vertically orientated 

wells. 

Model lacks 
explicit 

presentation 
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Reference AI algorithm Inputs Merits of model Demerits 

Mohammadpoor 
et al. [36] 

Neural Network BHT, gas rate, hole diameter, oil 
API, oil rate, well depth, well 
location coordinates, WHP, WHT, 

Ideal for wells that are 
vertical. Model outperforms 
both mechanistic& empirical 
models. 

Model lacks 
explicit 
presentation 

Ashena et al. [37] Neural Network Not stated Ideal for slanted wells drilled 
in underbalanced situations 

Model lacks 
explicit 
presentation 

Salcedo et al. [38] Neural Network Not stated Beneficial for estimating 

FBHP in vertically oriented 
wellbores 

Lack of explicit 

model & 
sensitivity 
analysis 

Al-Shammari [39] Adaptive Neuro-Fuzzy 
Inference System 
(ANFIS) 

Flowing WHP, gauge depth, GOR, 
liquid rate, oil API, reservoir 
temperature, tubing ID diameter, 
water cut %, 

Beneficial for forecasting 
FBHP in two-phase flow in 
vertically oriented wells 
 

Dearth of explicit 
model & 
sensitivity 
analysis 

Ashena and 

Moghadasi[40] 

Hybrid of neural 

network and ant colony 
optimization (ANN-
ACO) 
[7 – 7 – 1]  

Casing pressure, injected gas and 

liquid flow rates, liquid density at 
surface, MD, Surface temperature, 
TVD 

Beneficial for forecasting 

BHP of two-phase drilling 
fluid in underbalanced 
drilling operations 

Model lacks 

explicit 
presentation 

Jahanandish et al. 
[41] 

Neural network 
[9-20-15-10] 

BHT, Gas rate, GOR, oil API 
gravity, Oil rate, pipe length, 
surface temperature, Water rate, 
WHP. 

Beneficial for FBHP 
forecasting in vertically 
oriented wells. Sensitivity 
analysis carried out. 

Model lacks 
explicit 
presentation 

Nasimi et al. [42] ANN-Ant colony 

optimization 
[7-5-1] 

Casing pressure, injected gas flow 

rate, liquid density at surface, liquid 
flow rates, MD, Surface 
temperature, TVD 

Appropriate for forecasting 

BHP during underbalanced 
drilling 
 

Model lacks 

explicit 
presentation 

Li [43] Neural network 
[10-28-1] 

Absolute roughness, BHT, gas rate, 
inclination angle, MD, oil API 
gravity, oil rate, separator pressure 
& temperature, specific gravity of 
produced gas, Tubing ID, water 

rate, water salinity, WHP, WHT, 

For easy FBHP computation, 
a Windows application with a 
graphical user interface was 
created. 

Model lacks 
explicit 
presentation 

Adebayo et al. 
[44] 

Neural network 
[8 – 30 – 1] 
Support vector machines 

Gas rate, oil API gravity, oil rate, 
reservoir temperature, tubing ID, 
TVD, water flow rates, WHP 

Applicable to predicting 
FBHP in conventional 
vertical wells  

Dearth of explicit 
model & 
sensitivity 
analysis 

Bello and Asafa 
[45] 

Neural network API gravity, depth, gas rate, GOR, 
oil rate, tubing pressure, tubing 
temperature 

Model works well with 
vertically producing wells. 

Model lacks 
explicit 
presentation 

Ayoub et al. [46] Group method of data 
handling (GMDH) 

Gas rate, oil gravity, oil rate, pipe 
length, surface temperature, tubing 
ID, water rate, WHP 

There is an explicit model 
provided. 

Model developed 
is complex  

Li et al. [29] Neural network 
Slug flow:  
[10-30-1] 
Mist flow: 
[10-28-1] 

Average pressure, average 
temperature, gas viscosity, gas-
liquid surface tension, inclination 
angle, liquid & gas superficial 
velocity, liquid density, liquid 

viscosity, specific gravity of free 
gas 

Model takes flow regime 
impacts into account. 
Independent field datasets 
were used to validate the 
model.  

 

Lack of an 
explicitly 
presented model. 
High model 
complexity 

Memon et al. [32] Radial basis neural 
network 

Permeability, porosity, productivity 
index 

Ideal for predicting dynamic 
FBHP 
 

Lack of explicit 
presentation of 
model 

Awad [47] Neurofuzzy algorithm BHT, gas rate, oil API, oil rate, 
surface temperature, tubing ID, 
tubing length, water rates, WHP 

Model exhibits more 
precision in predicting 
outcomes than both empirical 
& mechanistic models. 

Lack of explicit 
presentation of 
model 

Awadalla and 
Yousef [48] 

Neural network 
[12-68-1] 

BS&W, formation GOR, gas rate, 
liquid rates, motor current, oil rate, 
oil specific gravity, pump discharge 
pressure, pump intake, THP, TVD, 
water rate, water specific gravity 

Applicable to FBHP 
prediction in wells supported 
by ESPs. Analysis of input 
sensitivity is available 
 

Model lacks 
explicit 
presentation 

Di et al. [25] Support vector machines Gas compressibility factor, gas 
flow rate, gas relative density, mean 
wellbore temperature, well depth, 

WHP. 

Applicable to FBHP 
estimation in gas wells 

Model lacks 
explicit 
presentation 
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Reference AI algorithm Inputs Merits of model Demerits 

Antonelo et al. 
[49] 

Recurrent neural 
networks (RNN) trained 
with Echo state networks 

Gas lift flow rate, pressure before 
and after production choke, SDV, 
temperature before production 
choke, temperature before SDV 

Ideal for FBHP estimation in 
gas-lift wells. 
 

Model lacks 
explicit 
presentation 

Chen et al. [50] Support vector 
regression 

Average well temperature, casing 
pressure, gas compressibility factor, 
gas rate, gas relative density, water 
rate, well depth 

Ideal for estimating gas well 
FBHP. Field data is used to 
validate the model. 

No explicit 
model 

Spesivtsev et al. 
[27] 

Neural network 
[80-100-50-1] 
[80-500-150-1] 

Gas rate, MD close to surface, 
measured depth (MD), oil rate, time 
series of WHP, true vertical depth, 
water rate 

Applicable to diverse well 
trajectories 

Lack of an 
explicitly 
presented model. 
High model 
complexity 

Ignatov et al. [28] Extreme gradient 
boosting; Random forest 

Gas rate, MD close to the surface, 
measured depth (MD), oil rate, time 
series of WHP, true vertical depth, 

water rate 

Scalable system with a strong 
capacity to withstand noise 
 

Lack of an 
explicitly 
presented model 

Bahaa et al. [51] Neural network 
[7-6-2] 

Gas injection pressure, gas 
injection volume, GOR, reservoir 
pressure, water cut, WHP, WHT. 
 

The model can be utilized to 
establish an integrated 
production model. 

Lack of an 
explicitly 
presented model 

Tariq [52] A hybrid of neural 
network & particle 
swarm optimization 
(PSO-ANN) 

[9-20-1] 

BHT, depth, gas rate, oil API 
gravity, oil rate, perforation depth, 
surface temperature, tubing 
diameter, water rate, WHP  

An explicit model was 
presented. Applicable to 
vertical wells. The model was 
cross-validated using an 

“unseen” data set 

Complex model. 
Input sensitivity 
not done. 

Akinsete and 
Adesiji [53] 

Neural network Annulus pressure, BHT, bore oil 
volume, choke differential pressure, 
choke size, mean values of 
downhole pressure, tubing pressure 
differential, well depth, WHP, 
WHT. 

The model has a higher 
predictive capacity than 
mechanistic models 

Lack of an 
explicitly 
presented model 

Firouzi and 

Rathnayake [24] 

Neural network; Linear 

Regression (LR) 

Casing pressure, gas rate, pump 

speed, pump torque, tubing 
pressure, water rate from the 
separator, and water rate from the 
tubing. 

Applicable to FBHP 

forecasting in coal seam gas 
wells 

Lack of an 

explicitly 
presented model 

Ahmadi and Chen 
[8] 

Neural network Bottom hole temperature, depth, 
gas flow rate, oil API, oil rate, 
surface temperature, tubing 
diameter, water flow rates, WHP. 

Ideal for FBHP forecasting in 
vertical wells 

The model lacks 
explicit 
presentation 

Amar and Zeraibi 
[54] 

Hybrid of support vector 
regression (SVR) 
optimized with firefly 
algorithm 

Depth, gas gravity, gas rate, GOR, 
oil gravity, oil rate, tubing ID, 
water flow rate, WHP, WHT. 
 

Ideal for FBHP forecasting in 
vertical wells 

Model lacks 
explicit 
presentation 

Baryshnikov et al. 
[55] 

Neural network [11-32-
32-1] 

Diameter number, gas-to-liquid 
density ratio, inclination angle, 
non-slip liquid holdup, relative pipe 
roughness, Reynolds & Froude 

number, velocity & viscosity 
numbers for gas and liquid. 

Ideal for forecasting FBHP in 
deviated wellbores 

Model lacks 
explicit 
presentation 

Al-Shehri et al. 
[15] 

Artificial neural 
network; Functional 
Networks; Long short-
term memory (LSTM) 

Chloride content, fluid rates, fluid 
specific gravity, TVD, water cut, 
water gas ratio, WHP, WHT. 

The model was explicitly 
presented. Its applicability 
includes gas condensate, tight 
sand, and fractured wells. The 
model has been cross-
validated with an “unseen” 
dataset. 

Sensitivity 
analysis of input 
variables was not 
done 

Zhang et al. [56] Support vector 
regression 

Not stated Field and simulated data were 
used to validate the model. 

Lack of an 
explicit model 

Krishna et al. [57] Neural network 
[6-10-16-1] 

Hole diameter, mud weight, pipe 
OD, pipe velocity, plastic viscosity, 
yield point, 

Ideal model for forecasting 
surge & swab pressure while 
tripping 

A dearth of 
explicit model  

Tariq et al. [5] Hybrid of neural 
network & particle 
swarm optimization 

(PSO-ANN) [9-20-1] 

BHT, gas rate, oil API gravity, oil 
rate, perforation depth, surface 
temperature, tubing diameter, water 

rate, WHP 

The model was explicitly 
presented. Model fit for 
vertical well geometry. The 

model was cross-validated.  

Complex model. 
Lack of input 
sensitivity 

analysis  
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Reference AI algorithm Inputs Merits of model Demerits 

Khamehchi and 
Bemani [58] 

Extreme Learning 
Machine (ELM), 
Gradient tree boosting 
(GTB) 

Average angle, average deviation, 
gas rate, measured depth, oil rate, 
TVD, water flow rates, WHP 

Appropriate for estimating 
BHP in two-phase flow 
situations in vertical and 
deviated wells. Analysis of 
sensitivity is available. 

A dearth of 
explicit model 

Liang et al. [59] Support vector 
regression – simulated 
annealing (SVR-SA) 

Not stated Applicable for FBHP 
estimation in managed 
pressure drilling conditions 

A dearth of 
explicit model 

Marfo et al. [34] M5 prime Gas rate, oil flow rate, tubing head 
pressure, 

The model is robust enough 
to estimate FBHP 

The dearth of 
explicit model 

Yin and Zhang 
[33] 

Radial basis neural 
network 

Permeability, porosity, productivity Model appropriate for 
horizontal wells with 
fractures 

The dearth of 
explicit model  

Eltahan et al. [60] Support vector 
regression ensemble; 
Random Forest; Linear 

ensemble 

Empirical FBHP, gas rate, gas-lift 
injection rate, GLR, GOR, oil rate, 
surface flowing pressure, water 

flow rates, water oil ratio 

It is ideal for several 
fractured horizontal wells that 
flow naturally or with 

artificial lift. The model has 
high precision as a result of 
using multiple models 

The dearth of 
explicit model 

Molinari and 
Sankaran [61] 

Physics-augmented 
features, physics-
informed machine 
learning, residual model 
& domain knowledge-
based regularization 

Gas specific gravity, GLR, liquid 
rate, oil gravity, solution GOR, 
tubing depth (at MD, TVD), tubing 
head pressure, tubing ID, water cut, 
water salinity 

The model is interpretable as 
it combines the physics of the 
FBHP process with artificial 
intelligence algorithms 

The dearth of 
explicit model & 
sensitivity 
analysis 

Sami and Ibrahim 
[1] 

Random forest; K-
nearest neighbor; Neural 
network 

Oil gravity (API), oil rate, tubing 
ID, water rate, well perforation 
depth, WHP 

The model applies to FBHP 
prediction in vertically 
oriented wells 

The model lacks 
explicit 
presentation 

Gorbachev et al. 
[62] 

Support vector 
regression 

Casing pressure, fluid flow rates, 
fluid PVT properties, gas lift valve 
installation depth, gas lift flow rate, 
GOR, length & diameter of casing 
& tubing, water cut, WHP. 

Applicable to estimating 
FBHP in gas-lift wells 

The dearth of 
explicit model & 
sensitivity 
analysis 

Zolfagharroshan 
and Khamehchi 
[16] 

Neural network (Radial 
Basis); Least square 
support vector machines 
(LSSVM); Genetic 
Programming (GP) 

BHT, gas rate, gas specific gravity, 
oil API gravity, oil rate, surface 
temperature, tubing ID, water flow 
rate, well depth, WHP. 

The model developed using 
the GP algorithm was 
explicitly presented 

Models 
developed using 
ANN & LSSVM 
are not explicitly 
presented.  

Baki and Dursun 
[7] 

ANN; SVR; Extreme 
gradient boosting 

Basic sediments & water (BS&W), 
chlorine content, choke size, 
condensate gas ratio, downstream 

pressure, gas rate, condensate rate, 
water rate, WHP, WHT. 

FBHP model applicable to 
horizontal wells 

Lack of an 
explicitly 
presented model 

Rathnayake et al. 
[63] 

Multiple linear 
regression; Linear mixed 
effects modeling; 
Extreme gradient 
boosting 

Casing pressure, gas flow, pump 
torque, speed of pump, tubing 
pressure, water flow 

Ideal for forecasting FBHP in 
coal seam gas wells 

Lack of an 
explicitly 
presented model 

Olamigoke and 

Onyeali [64] 

Support vector 

regression; Random 
Forest; Long short-term 
memory (LSTM) 

Average oil rate, BHP, BHT, choke 

size, differential tubing pressure, 
gas rate, percentage of choke open, 
production hours, water flow rates, 
WHP, WHT. 

A variety of models have 

been provided so that users 
can make choices. 
 

Lack of an 

explicitly 
presented model 

Zhu et al. [65] Back propagation neural 
network (BPNN); Long 
short-term memory 
(LSTM); Convolutional 
Neural Network 

Back pressure pump flow rate, 
funnel viscosity, inlet flow rate, 
mud weight, outlet density, outlet 
flow rate, riser pressure, rotary 
speed, sand content, total pool 

volume, TVD, and well depth. 

Beneficial for predicting BHP 
in managed pressure drilling 
operations. 

Lack of an 
explicitly 
presented model 

Jin et al. [66] Physics-based neural 
network Data-based 
ANN 

Physics-based ANN inputs 
GLR, hydrocarbon fluid properties, 
liquid flow rate, temperature 
gradient, TVD, water-oil ratio, 
WHP, WHT. Inputs for data-based 
ANN GLR, liquid flow rate, TVD, 
water-oil ratio, WHP 

It is beneficial for estimating 
the FBHP of unconventional 
wells supported by gas lift. 

Lack of an 
explicitly 
presented model 
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Reference AI algorithm Inputs Merits of model Demerits 

Okoro et al. [17] A hybrid of neural 
network and Imperialist 
competitive algorithm 
(ANN-ICA) 

Average BHT, average WHP, bore 
gas volume & bore oil volume, 
bore water volume, mean annular 
pressure, mean choke size, mean 
tubing pressure differential, 
permeability, porosity, pressure 
differential in chokes, and stream 
hours. 

The model considers the 
impact of permeability and 
porosity on FBHP 

Lack of an 
explicitly 
presented model. 
High model 
complexity. 

Goliatt et al. [31] Extreme Learning 
Machine (ELM); 
Support vector 
machines; Extreme 
gradient boosting; 
Multivariate adaptive 
regression splines 

BHT, gas rate, oil API gravity, oil 
rate, surface temperature, tubing 
ID, water rates, well depth, WHP. 

Ideal for wells supported 
using artificial lift 
mechanisms 

Lack of an 
explicitly 
presented model 

Nwanwe et al. 

[18] 

Neural network 

[8-20-15-15-1] 

Gas rate, oil API gravity, oil flow 

rate, tubing ID, water rate, well 
BHT, well perforation depth, WHP. 

Availability of an explicit 

model. Ideal for FBHP 
prediction for vertically 
oriented wells. 

High model 

complexity  

Nwanwe and 
Duru [19] 

Adaptive neuro-fuzzy 
inference system 
(ANFIS) 

Gas rate, oil API gravity, oil flow 
rate, tubing ID, water rate, well 
BHT, well perforation depth, WHP. 

Availability of an explicit 
model. 

High model 
complexity 

Zhang et al. [30] Convolutional Neural 
Network & Gate 
Recurrent Unit 

[12 – 60 – 60 -1] 

Back pressure pump flow rate, 
funnel viscosity, inlet & outlet flow 
rate, mud weight, outlet density, 

riser pressure, rotary speed, sand 
content, total pool volume, TVD, 
and well depth. 

A large data size was used to 
develop the model. 

Lack of an 
explicitly 
presented model 

Sun et al. [67] Extreme Gradient 
Boosting algorithm 

Gas injection rate, gas rate, GOR, 
oil rate, water cut, water injection 
rate, water production rate. 

Ideal for FBHP forecasting in 
carbonate reservoirs 

Lack of an 
explicitly 
presented model 

Jin et al. [68] Neural network GLR, liquid production rate, water-
oil ratio, well depth, and wellhead 

pressure. 

It is beneficial for estimating 
FBHP for unconventional 

wells produced via gas lift. 

There is no 
explicit model. 

Complex 
network 
architecture 

 

The analysis in this section focuses on evaluating the 

performance of models developed using various AI 

algorithms. The models have been categorized based on the 

AI algorithms employed for their development to provide an 

objective assessment. The evaluation is conducted by 
considering the reported performances presented by each 

researcher in their respective studies. Three statistical error 

metrics have been selected for this assessment, namely the 

coefficient of determination (R2), the mean square error 

(MSE), and the average absolute percentage error (AAPE). 

The categorized groups include Artificial Neural Networks 

(ANN) and their hybrids and variants, Support Vector 

Machines (SVM) and their hybrids and variants, and tree-

based algorithms.  

Table II presents the FBHP models developed using 

artificial neural networks (ANN) and its various hybrids and 

variants. The table arrangement is based on the mean square 
error metric descending order. It is noteworthy to observe that 

the ANN models showcasing superior performance were the 

variants, including recurrent neural networks (RNN), 

convolutional neural networks (CNN), and hybrids, such as 

the neural network—ant colony optimization algorithm 

(ANN-ACO).  

TABLE II 

COMPARISON OF THE PERFORMANCE OF FBHP MODELS DEVELOPED USING ANN 

Reference AI Method R2 MSE AAPE 

Antonelo et al. [49] RNN Not available 9.48E-06 Not available 

Ashena and Moghadasi [40] ANN-ACO 0.9888 2.85E-04 Not available 

Nasimi et al. [42] ANN-ACO 0.9916 2.1E-04 Not available 

Mohammadpoor et al. [36] ANN Not available 0.00074 2.064 

Zhang et al. [30] CNN & Gate Recurrent Unit Not available 0.001444 0.025 

Nwanwe et al. [18] ANN 0.8154 0.0022 Not available 

Ahmadi and Chen [8] ANN-PSO 

ANN-HGAPSO 

0.9757 

0.9934 

0.0024275 

0.002982 

Not available 

Ashena et al. [37] ANN Not available 0.004 15.81% 

Akinsete and Adesiji [53] ANN 0.99997 0.00548 Not available 

Zhu et al. [65] BPNN 

LSTM 

CNN 

Not available Not available 

Not available 

0.013689 

0.011236 

0.065025 

0.156 

0.148 

0.27 

Sami and Ibrahim [1] ANN 0.8649 2.5% Not available 

Okoro et al. [17] ANN-ICA 0.9985 0.119 0.011 
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Reference AI Method R2 MSE AAPE 

0.9989 0.1347 

Awadalla and Yousef [48] ANN 0.994 1.96 Not available 

Awad [47] Neuro-fuzzy algorithm 0.9645 3.853 2.929 

Ayoub [14] ANN 0.9477 7.84 2.165 

Osman et al. [21] ANN 0.9477 7.84 2.165 

Bello and Asafa [45] ANN 0.99 13.54  

Spesivtsev et al. [27] ANN Not available 31.36 3.4 

Ayoub et al. [46] GMDH 0.923 34.34 4.46 

Yin and Zhang [33] RBNN Not available 42.25 13.6 

Jahanandish et al. [41] ANN 0.7378 46.7856 4.719 

Memon et al. [32] RBNN Not available 62.41 14.66 

Baki and Dursun [7] ANN 0.994 2937.64 Not available 

Khamehchi and Bemani [58] ELM 0.999 6556.14 Not available 

Firouzi and Rathnayake [24] ANN Not available 131044 Not available 

Zolfagharroshan and Khamehchi [16] ANN 0.8417 640,864.29 28.98 

 

Krishna et al. [57] ANN 0.987 2225765.61  

Al-Shehri et al. [15] ANN 

Functional Networks 

LSTM 

0.999 

0.9865 

0.9992 

Not available 0.09% 

0.4% 

0.07% 

Tariq [52] PSO-ANN 0.98 Not available 3.1% 

Li et al. [29] ANN Not available Not available 3.1% 

Table III showcases the FBHP models developed using 

support vector machines (SVM) and their various hybrids and 

variants. As in Table 2, the arrangement of the table is based 

on the mean square error metric descending order. Notably, 

the SVM models showcasing superior performance were the 

variants, including SVR ensemble and SVR-simulated 

annealing (SVR-SA). 

TABLE III 

COMPARISON OF THE PERFORMANCE OF FBHP MODELS DEVELOPED USING 

SVM 

Reference AI Method  R2 MSE AAPE 

Eltahan et al. [60] 
SVR 

Ensemble  
NA 0.000655 

Not 

available 

Liang et al. [59] 

SVR – 

Simulated 

Annealing 

0.9998 0.004624 
Not 

available 

Zhang et al. [56] SVR NA <0.01 < 0.2% 

Olamigoke and 

Onyeali [64] 
SVR 0.81 104.04 3.02 

Baki and Dursun 

[7] 
SVR 0.999 3003.04 26.45 

Zolfagharroshan 

& Khamehchi [16] 
LSSVM 0.9969 12,670.924 7.754 

Goliatt et al. [31] SVR 0.197 61,206.76 8.66% 

Amar and Zeraibi 

[54] 

SVR-firefly 

algorithm 
0.9917 

Not 

available 
6.65% 

*NA = Not Available 
 

Table IV shows the FBHP models developed using tree-

based algorithms such as random forest, extreme gradient 

boosting, M5 Prime etc. The table is arranged in decreasing 

order of the mean square error (MSE) metric. It is noteworthy 

to observe that the random forest algorithms performed better 

than extreme gradient boosting (XGBoost) in terms of the 

MSE metric but the XGBoost algorithm showcased superior 

performance when the R2 metric is used as basis. 

TABLE IV 

PERFORMANCE COMPARISON OF FBHP MODELS DEVELOPED WITH TREE 

BASED ALGORITHMS 

Reference 
AI 

Method 
 R2 MSE AAPE 

Eltahan et al. 

[60] 

 Random 

forest 

NA 0.00046 0.0183(MAE) 

Sami and 

Ibrahim [1] 

Random 

forest 

(RF) 

0.6889 4%  

Reference 
AI 

Method 
 R2 MSE AAPE 

Olamigoke and 

Onyeali [64] 

Random 

forest 

0.7 158.76 3.87 

Baki and Dursun 

[7] 

XGBoost 1 213.16  8.089 (MAE) 

Khamehchi and 

Bemani [58] 

Gradient 

Tree 

Boosting 

1 298.769 0.72 (MRE) 

Goliatt et al. 

[31] 

XGB 0.852 11,929.008 3.53% 

 

Rathnayake et 

al. [63] 

XGBoost MARE 

= 0.07 

13,225 11.7% 

Zolfagharroshan 

& Khamehchi 

[16] 

GP 0.9859 57,302.78 

 

12.458 

Marfo et al. [34] M5 

prime 

0.985 Not 

available 

0.3 

 
 

From this review, the following can be inferred there is no 

universally applicable artificial intelligence (AI) model 

capable of capturing all features related to the FBHP 

phenomenon. This limitation arises from the inherent 

constraints imposed by the algorithms employed and the 
specific input features related to FBHP. This assertion is 

substantiated by the vast array of input variables employed by 

different researchers in their respective studies. The issue of 

model interpretability remains a significant concern, as most 

of the FBHP models have yet to be explicitly presented. 

Moreover, most researchers have yet to conduct sensitivity 

and trend analysis, and the literature lacks a discussion of the 

computational cost burden. 

Unlike other AI algorithms such as ANN, SVR, and tree-

based algorithms, GMDH, Genetic Programming, and MARS 

can autonomously evolve explicit mathematical relationships 
between the factors that influence FBHP and FBHP. However, 

their accuracy is significantly lower when compared to other 

algorithms developed with hybrid systems (e.g., ANN-ACO, 

SVR-SA, ANN-PSO, etc.). The adoption of physics-informed 

machine learning algorithms is gradually gaining traction due 

to its ability to offer explanations to the developed models, 

unlike conventional machine learning algorithms. Though 

FBHP is a dynamic parameter that changes with time and 

conditions, it is observed that most of the data used by the 
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researchers to develop the FBHP models were static historical 

data. This may cause the models to become obsolete with time 

if conditions different from the one that was used to generate 

the data are presented to the model. 

IV. CONCLUSION 

The present study was undertaken to provide a 
comprehensive overview of the FBHP models developed 

using AI algorithms. Data was collected from peer-reviewed 

journals and SPE conference papers from 2004 to 2024. The 

bibliographic analysis revealed the utilization of numerous AI 

algorithms in the predictive modeling of FBHP, resulting in 

the identification of 54 models. While not exhaustive, the list 

of AI algorithms includes neural networks and their variants 

and hybrids, support vector machines and their variants and 

hybrids, genetic programming, tree-based algorithms, spline-

based algorithms, and fuzzy logic, among others. The review 

isolated key components within existing FBHP models, such 
as the algorithm type used for development, the dataset size 

and source, the input variables, and the strengths and 

limitations of each model.  

As part of the recommendations, Fig. 4 depicts the 

proposed research directions for FBHP modeling. The figure 

highlights five key areas of research concern. Firstly, the 

modeling process begins with data acquisition and the 

selection of inputs. As a diverse range of factors influences 

FBHP, a well-defined method for input selection should be 

outlined, and the relative importance of each input should be 

ranked. Generally, since a model is a simplified representation 

of reality, the FBHP model should be designed with readily 

obtainable inputs through sensors or surface facilities. 

Secondly, while conventional AI algorithms have been 

extensively tested, exploring the capabilities of different 

ensemble learning algorithms is essential. Thirdly, future 
research should focus on developing adaptable models, 

incorporating a dynamic data stream. This is crucial because 

well conditions change over time, and models should be able 

to adjust to new situations or datasets. Fourthly, models 

developed for FBHP estimation should be cross-validated 

using independent datasets to ensure their generalization 

ability. Fifthly, for a model to be helpful, it must be efficient 

regarding computational resources. Thus, future work should 

include determining the computational cost of the models 

relative to the scope of their studies. Finally, the utility of any 

model can only be ascertained when implemented in real-life 
conditions. Hence, future studies must provide clear proposals 

on how the model can be implemented in a real oil and gas 

production system. This final step provides a pathway to 

potential users for the model's field deployment. 

 

 
Fig. 4  Proposed future research framework for FBHP modelling studies 
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