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Abstract—Recent years have seen a rise in interest among statisticians in spatial data analysis, which is unsurprising given the 

detrimental effects on results and information loss that can occur from ignoring the spatial dimension in statistical analyses.  Because 

the components of the phenomenon under study are spatially dependent, researchers have utilized spatial regression models to examine 

the impact of the explanatory variables on the dependent variable. The simulation method is used when challenges or difficulties are 

complex to address numerically. It entails creating a system for the actual model and then performing experiments on this model. 

Consequently, the researchers estimated the spatial autoregressive model (SAR) using the maximum likelihood (MLE) method. The 

SAR included the researchers' proposed weight matrix, which was built using the Rock adjacency criterion and the Euclidean distance, 

as well as a modified spatial weight matrix built using the Rock adjacency criterion.  The suggested weight matrix was appropriate for 

model estimation after comparing the spatial weight matrices using the mean absolute relative error (MAPE) criterion.  By utilizing the 

maximum likelihood approach (MLE) with the modified spatial weight matrix and the proposed spatial weight matrix, we were able to 

examine the relationship between the dependent variable, which represents the number of patients in each governorate, and the selected 

explanatory variables, which include tumor size, age average, and the number of areas contaminated with uranium in the governorate. 

This study utilized the spatial model to examine real-world cancer data. Based on the pollution levels caused by uranium and other 

pollutants from oil refineries and other industries, the governorates of Basra and Baghdad had the highest number of cancer patients, 

indicating a clear spatial dependence between the location of the governorate and the increase in cancer cases. 
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I. INTRODUCTION

Spatial econometrics is one of the most essential branches of 

econometrics, and its importance comes from the fact that it 

deals with spatial data that are characterized by containing the 

characteristics of spatial dependence (spatial correlation) and 

the characteristics of spatial heterogeneity [1]. The researchers 
have discussed this matter regarding two factors that make it 

inappropriate to deal with spatial data using traditional 

econometric techniques. The models are concerned with the 

dependence among observations during a specific period 

without considering spatial dependence. This leads to 

inefficient estimates due to the failure to achieve the analysis 

hypotheses and the neglect of much spatial information related 

to the data. It is because of the inability to employ and benefit 

from it when using non-spatial econometric models by [2]. 

In 2019, Rüttenauer [3] has presented "Spatial Regression 

Models," where the researchers compared spatial regression 

models using Monte Carlo experiments. The researchers also 

used several types of simulations. The researchers concluded 

through the Monte Carlo results that the spatial autoregressive 

model SAR and the spatial error model SEM contain many 

defects in the applied experiments. In contrast, the spatial 

Durbin model SDM was more flexible than them. Previous 
studies by [4] have presented the impact of economic, spatial, 

educational and material factors on the industrial development 

of 26 cities in China to reach the main factor that makes the 

industrial development of some cities faster than others and 

the factor that causes the concentration of highly skilled 

expertise in some cities. As for the spatial weight matrix, the 

spatial adjacency matrix was used, which depends on the 

adjacent borders between cities and the spatial distance-

common border matrix, in which each weight was built based 

on the length of the common border between the two 

neighboring cities and the distance between the centers of the 
two cities. 
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II. MATERIALS AND METHODS 

A. Spatial Dependence  

When two sets of sample data are spatially dependent, an 

observation at point (i) depends on an observation at point (j). 

The following equation explains this case [5]: 

 Y� = f�Y��,   i = 1,2, … , L   i ≠ j … … ..  (1) 

Since the process of data collecting is related to spatial units 

such as cities, counties, and postal codes, it is reasonable to 

anticipate that sample data obtained in one area will depend on 

values recorded in other locations [6]. Another reason is that 

any value of L can be used in the above formula so that the 

dependence can be between several observations. Measurement 

mistakes in nearby spatial units might cause this, as could a lack 

of accuracy in the administrative boundaries of the data 
acquired from the sample, not reflecting the true nature of the 

underlying process. Secondly, the spatial component of socio-

demographic, regional, or economic activity, which can be the 

most crucial part of the modeling issue, makes us anticipate the 

presence of data reliance. 

B. Spatial Heterogeneity  

The term spatial heterogeneity indicates the variation in 

relationships within the sample space, and the researchers 

must take into consideration that in most general cases it is 
possible to expect different relationships between 

observations to include all points in the sample space, and 

linear relationships can be expressed in general through the 

following formula [7]: 

 Y� = X�B� + u� (2) i: denotes the location of the observations collected at any 

location in the sample space where�� = 1,2, … , � �. X�: vector 

of explanatory variables (1xk). B�: vector of parameters with 

dimensions (Kx1). Y�: vector of the dependent variable at 

location (observation) i. u�: vector of random error in the 

linear relationship [8]. A slightly more complicated way to 

express this idea is to allow the function f(.) in the form (2) to 

vary with the position of observation i as follows [9]. 

 Y� = f�X�B� + u�� (3) 

By looking at formula (3), the researchers believe that it is 

not possible to estimate n of the vector parameters B�by giving 

a sample of n observation data, because there is not enough 
information about the entire sample data to estimate every point 

in the sample space, this phenomenon is referred to as the 

problem of "degrees of freedom" [10]. To continue the analysis, 

the researchers must provide characteristics or conditions for 

variation across space. These conditions must be scarce so that 

the researchers can estimate more than a few parameters. 

C. Spatial Weight Matrix 

The spatial relationships between observations are entered 
into the spatial model through the spatial weight matrix, also 

called the "spatial correlation matrix, " symbolized by the 

symbol W. It is a positive matrix, its main diagonal elements 

are zeros, and its dimensions are (n x n), where n represents 

the number of observations used in the spatial model, and the 

general formula for the spatial weight matrix can be written 

as follows [11]:  

 � = ���� ⋯ ���⋮ ⋱ ⋮��� ⋯ ���"  

There are many spatial weight matrices due to the different 

methods used in constructing them [12]. We will mention the 

following:   

D. Spatial Contiguity Matrices 

It is one of the spatial weight matrices built based on the 

contiguity criterion between spatial units. If the two spatial 

units are contiguous, they are given the value (1). However, 

they are given the value (0) if they are not contiguous. 

Likewise, if the spatial unit is not contiguous, it is given the 

value (0) in the spatial weight matrix when built. There are 

several criteria for building the spatial contiguity matrix [1] 

The researchers used Rock's contiguity criterion to construct 

the spatial contiguity matrix for this research. The example 

and hypothetical figure below explain how Rock's criterion 
was used [13]. 

 

 
Fig. 1. A diagram showing hypothetical locations of spatial units 

 

The figure above shows eight hypothetical locations of 

spatial units that share certain boundaries and points. The 

following spatial adjacency matrix was constructed by 

observing the typical boundaries that each spatial unit has 

with the other units. We noticed from Figure 1 that spatial unit 

A has a common boundary with spatial units BC and B but 

does not have a common boundary with the rest of the spatial 

units. Therefore, the WR adjacency matrix's first row (A) was 

built in the following way. 
The spatial unit (A) that is in the neighborhood with the 

spatial units C and B was given the spatial value 1 (WR 13, WR 

12=1) while the rest of the spatial units (E, F, G, D, M) in the 

first row do not have a common boundary with the spatial unit 

A and therefore were given the value 0 (W R1j=0) and also that 

the spatial unit A is not adjacent to itself and hence takes the 

spatial value 0 (W R11=0), and the rest of the rows for the other 

spatial units in the adjacency matrix (4) were built in the same 

way [14]. 

 #$ =
. % & ' ( ) * + ,%&'()*+, ⎣⎢⎢

⎢⎢⎢
⎢⎡0 1 11 0 1 0 00 0 0 0 00 1 01 1 00 0 0 0 00 0 0 0 00 1 00 0 0000

010
000

0 0010
101

1 0 1001
000

100⎦⎥⎥
⎥⎥⎥
⎥⎤

 (4) 
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E. Adjust Weights Matrix 

This matrix was called the adjusted matrix because it 

consists of the spatial adjacency matrix, but after performing 

some operations on it so that the sum of each row in it equals 

the correct one, that is: 

 ∑ #56786�69� = 1  

The modified weight matrix is constructed by applying the 

following formula to the values of the adjacent matrix 

weights.  

 #56786 = : ;<=∑ ;<=        �>         #56 = 10                �>         #56 = 0 (5) 

F.  Proposed Matrix 

The matrix proposed by the researchers was built based on 

the proximity factor and the distance between the spatial units, 

as the spatial weights will consist of the distance between the 

centers of the adjacent spatial units (governorates) according 
to Rock’s criterion for proximity. The spatial weights of the 

proposed matrix were built according to the following 

formula [15], [16]: 

 w56 $8 = @
AABC<=∑ �D<EA AABC<=�  if    i ≠ j                                            (6) 

Where: 

 F56 = G�H5 − H6�J + �K5 − K6�J (7) �ℎMNM F56  Euclidean distance, H5 Longitude coordinate of the 

first spatial unit I, H6  Longitude coordinate of the second 

spatial unit j, K5 Latitude coordinates of the first spatial unit I, K6 Latitude coordinate of the second spatial unit j . 

G. Spatial Autoregressive Model (SAR) 

Anselin [17] has proposed the general spatial 

autoregressive model (SAC), of which this model is a subset 

known as the Mixed Spatial Autoregressive Model. This is the 

mathematical expression of the spatial autoregressive model. 

 K = λ#K + P&  + Q (8) 

The dependent variable, y, is represented by a vector with 

dimensions (nx1), the spatial dependence parameter, λ, the 
explanatory variables, X, the error vector, u, is a normally 

distributed vector with dimensions (nx1), a mean of zero, and 

a variance of σ^2 I_n. W, the spatial weight matrix, is fixed 

and predetermined, and it has dimensions (nxn) [18]. 

H.   Maximum Likelihood Method (MLE)  

Ord [19] was the first to employ the maximum likelihood 

technique when estimating the spatial autoregressive model. 

This approach is essential for estimation since it provides the 

most accurate estimates of the model parameters out of all the 
available options. We updated the model in formula (8) to 

estimate the parameters since the least squares approach, 

which is used in the estimation of spatial regression models, 

results in biased and inconsistent estimates, which render the 

model inefficient. 

 u = y − λWy − XB (9) 

 u = �I − λW�y − XB (10) 

The formula for the maximum likelihood function of the 

spatial autoregressive model is as follows [20]: 

 L�B, σJ, λ� = � 2π σJ�WD   X + | I − λW| exp ]�1 2σJ⁄ �u_u` (11) 

where 

u_u = a�I − λW�y − XBb_ a�I − λW�y − XBb  

u_u = ]K_�I − λW�′ − B′P′`  a�I − λW�y − XBb   

u_u = K_�I − λW�_�defg�h − K_�I − λW�_XB − B_P_�defg�h+ B′P′XB 

 u_u = K_�I − λW�′�I − λW�y − 2B′P′�I − λW�y   + B′P′XB 

To simplify the maximum likelihood function, we will take 

the natural logarithm of the formula (10) to obtain the 

following formula [21]: 

LnL�B,  σJ, λ� = −n2  Ln2π − n2  Ln σJ+ Ln |I − λW|− a 12σJb   K_�I − λW�′�I− λW�y − 2B′P′�I − λW�y  + B′P′XB   
(12) 

To estimate the model parameters, we derive the maximum 

likelihood function in formula (12) as follows: 

 
jklk�m, nX,f�om = − ] �JnX` 2P′�I − λW�y   + 2P′X Bpqrs (13) 

By making formula (13) equal to zero and simplifying it, 

we get [22]: 

  Bpqrs = �P_X�e� P′�I − λW�y (14) 

  σJt qrs = uvu�  (15) 

  σJt qrs = �y − λWy − X Bpqrs�′�y − λWy − X Bpqrs� w⁄  (16) 

It is noted in the above formulas that it is not possible to 

find all of the model parameters  Bpqrs ,  σJt qrs  if the spatial 

dependence parameter λ is unknown. Therefore, Ord 

proposed a formula for calculating the determinant |I − λW|as 

follows [23]:  

 |I − λW| = ∏ �1 − λ y5�59� � (17) 

 Ln |I − λW| = ∑ Ln �1 −l�9� λω�� (18) 

where y5 are the eigenvalues of the spatial weight matrix W. 

A nonlinear function called the concentrated likelihood 
function is obtained by plugging the values of the following 

formulas—14, 16, and 18—into the formula of the maximum 

likelihood function (12). Formula 19 follows the iterative 

approaches of the concentrated likelihood function to obtain 
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the spatial dependency parameter λ for the spatial 

autoregressive model (SAR) [24]. 

 Lf = elJ Ln {�|}ef|~�_��|}ef|~�l � +  ∑ Ln �1 −l�9� λω�� (19) e� = y − XBp� ek = Wy − XBpk Bp� = �X_X�e� X′y Bpk = �X_X�e� X′Wy 

where Bp� vector of parameters of the regression model y on X, Bpk vector of parameters of the regression model Wy on X, e� vector of residuals of the regression model y on X, ek vector 

of residuals of the regression model Wy on X. 

I.  Moran's coefficient test 

Moran's coefficient is a statistical tool that may be utilized 

to quantify the degree of similarity and geographical 

dependence in the data of the phenomenon that will be 

investigated.  One approach to describe it uses the I_Mc 

method, analogous to the Durbin-Watson test for time series 
data (20). It is noteworthy to observe that as the coefficient 

comes closer to 1, the data spreads out, and as it gets closer to 

0, the data is geographically dispersed randomly [25]. This is, 

although the value of Moran's coefficient can take on a range 

that extends from 1+ to 1. To calculate Moran's coefficient, 

the following formula is used [26]: 

 Iq� = ���v� ������v��  (20) 

 �� = ∑ ∑ #���69��59�   

Let S_Θ represent the sum of the elements in the matrix W, 

where n represents the sample size, w represents the weight 

matrix (adjacencies) with dimensions of n x n, and u 

represents the error vector (residuals) with dimensions of n x 
1. Since it agrees with the conventional normal distribution, 

researchers [27], [28] arrived at the asymptotic distribution of 

Moran's statistic. Furthermore, the Z test for Moran may be 

carried out by utilizing the following formula [29]:  

 �d�� = d��e��d���G��d�  (21) 

 E�I��� = E�I��� = �� ��  g�le�   

 V�I��� = ����g�gv������g�X������g��X
�le���le���� − �E�I����J

  

 M = �Il − X�X_X�e�X_�  

where, tr sum of the elements of the main diagonal, k 

represents the number of explanatory variables, M represents 

a square and symmetrical null matrix [30], [31]. 

J. Mean Absolute Percentage Error Criteria (MAPE) 

The MAPE criterion compares the methods of estimating 
the parameters of the spatial model and was calculated using 

the following mathematical formula [32], [33]. 

 MAPE = �l ∑ �h�eh��h� �l�9�  (22) 

Estimating the smallest value will be the best model 

parameter estimation method [34]. 

III. RESULTS AND DISCUSSION  

A.  Simulation technique 

By employing various techniques, the simulation approach 

is a procedure that involves collecting samples from a 

hypothetical community that is analogous to the actual 

community [35]. This approach is distinguished by the 

frequency with which it employs repetition in the random 

analysis of the model being investigated, followed by 

comparing the outcomes of the repetition to arrive at findings 
that may be generalized. By estimating the spatial 

autoregressive model with the maximum likelihood method 

using the modified rock adjacency matrix first, and then using 

the proposed adjacency matrix to show the extent of the 

impact of each matrix through the mean absolute percentage 

error (MAPE) criterion, the simulation technique was utilized 

to compare the modified rock adjacency matrix with the 

proposed adjacency matrix to arrive at the best matrix to 

measure the extent of the impact of adjacency between 

regions [36], [37]. This was accomplished by comparing the 

proposed adjacency matrix with the modified rock adjacency 

matrix with the proposed adjacency matrix. 
In this direction, simulation experiments were carried out.  

There were four distinct sample sizes (45, 90, and 150), and 

the values of the dependent variable y were produced for each 

case. The estimation of the spatial autoregressive model 

(SAR) was performed by employing the maximum likelihood 

approach (MLE) in conjunction with the modified spatial 

weight matrix (w^RAdj) as indicated in Tables (1) to (3), the 

matrix that the researchers proposed (w^Rd) is available for 

viewing.  

 

TABLE I 

THE VALUES OF THE DEPENDENT VARIABLE Y GENERATED USING SIMULATION AND THE ESTIMATED VALUES (Y) ̂ USING THE MLE METHOD IN LIGHT OF THE 

MODIFIED SPATIAL K� , 
^Rdw  

K� , 
^RAdjw  

Y  T  K� , 
^Rdw  

K� , 
^RAdjw  

K   K� , 
^Rdw  

K� , 
^RAdjw 

y  T  

99 90 88 33  88 86 86 17  90 94 96 1  

97 102 102 34  92 97 98 18  92 90 91 2  

87 85 87 35  78 69 70 19  81 79 79 3  

105 93 94 36  75 92 92 20  81 68 67 4  

92 95 93 37  81 95 95 21  97 89 88 5  

89 99 98 38  53 93 93 22  80 78 79 6  

89 80 79 39  78 97 98 23  83 97 96 7  

73 90 89 40  86 90 89 24  100 95 95 8  

90 92 91 41  96 93 92 25  106 103 105 9  

89 80 80 42  94 94 95 26  89 94 93 10  
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K� , 
^Rdw  

K� , 
^RAdjw  

Y  T  K� , 
^Rdw  

K� , 
^RAdjw  

K   K� , 
^Rdw  

K� , 
^RAdjw 

y  T  

87 80 80 43  103 85 84 27  83 80 80 11  

90 102 102 44  92 82 82 28  77 89 89 12  

96 88 87 45  83 85 84 29  100 81 81 13  

        100 77 77 30  79 89 88 14  

        84 87 87 31  95 89 87 15  

        89 91 91 32  86  89 89 16  

TABLE II 

THE VALUES OF THE DEPENDENT VARIABLE Y GENERATED USING SIMULATION AND THE ESTIMATED VALUES (Y) ̂ USING THE MLE METHOD IN LIGHT OF THE 

MODIFIED SPATIAL WEIGHT MATRIX ROC (W^RADJ) AND THE PROPOSED SPATIAL MATRIX (W^RD) WHEN THE SAMPLE SIZE IS 90. ¡�¢ 
^Rdw 

¡�¢ 

^RAdjw  

¡ T  ¡�¢ 
^Rdw  

¡�¢ 

^RAdjw  

¡ T  ¡�¢ 
^Rdw  

¡�¢ 

^RAdjw  

¡ T  ¡�¢ 
^Rdw 

¡�¢ 

^RAdjw 

¡ T  

¡�¢ 87 86 70  104 91 90 47  88 81 81 24  89 99 99 1  

90 94 93 71  85 95 96 48  79 99 98 25  78 76 77 2  

91 92 92 72  74 87 89 49  92 98 98 26  82 88 88 3  

87 90 90 73  82 88 87 50  87 78 79 27  82 81 82 4  

71 107 107 74  84 83 84 51  73 95 97 28  79 97 94 5  

96 87 87 75  80 84 85 52  83 97 97 29  73 87 86 6  

81 102 104 76  105 96 96 53  85 81 80 30  90 90 91 7  

81 86 86 77  91 72 74 54  101 89 90 31  88 89 87 8  

79 76 75 78  99 90 91 55  98 91 91 32  91 81 81 9  

117 90 90 79  77 87 87 56  101 96 96 33  87 95 94 10  

93 78 78 80  71 92 91 57  94 84 85 34  83 69 69 11  

106 78 78 81  80 81 81 58  97 95 95 35  103 82 83 12  

89 101 100 82  85 77 76 59  103 77 77 36  84 93 93 13  

108 99 100 83  82 102 103 60  84 80 81 37  107 94 94 14  

84 96 98 84  102 108 108 61  96 89 90 38  94 86 86 15  

85 92 92 85  82 82 81 62  75 95 93 39  92 71 70 16  

95 84 83 86  98 91 92 63  88 87 87 40  72 82 81 17  

98 103 102 87  71 81 82 64  85 77 78 41  84 74 73 18  

112 84 84 88  94 96 96 65  84 67 65 42  107 79 79 19  

93 88 89 89  88 92 93 66  90 98 97 43  100 82 81 20  

87 74 74 90  97 75 74 67  95 95 95 44  101 91 92 21  

        83 94 95 68  75 90 89 45  100 87 86 22  

        78 93 93 69  87 86 87 46  83 82 81 23  

TABLE III 

THE VALUES OF THE DEPENDENT VARIABLE Y GENERATED USING SIMULATION AND THE ESTIMATED VALUES (Y) ̂ USING THE MLE METHOD IN LIGHT OF THE 

MODIFIED SPATIAL WEIGHT MATRIX ROC (W^RADJ) AND THE PROPOSED SPATIAL MATRIX (W^RD) WHEN THE SAMPLE SIZE IS 150. ¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T ¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T ¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T ¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T 

82 117 117 70 82 88 88 47 82 99 97 24 91 113 111 1 

84 88 88 71 84 113 113 48 84 83 83 25 94 87 87 2 

87 95 94 72 87 102 101 49 87 84 83 26 91 86 87 3 

89 101 102 73 89 85 84 50 89 88 90 27 81 93 94 4 

92 95 94 74 92 91 90 51 92 102 104 28 74 94 94 5 

79 91 90 75 79 82 82 52 79 86 85 29 79 94 94 6 

107 90 90 76 107 85 84 53 107 90 90 30 71 84 85 7 

81 81 82 77 81 77 77 54 81 81 79 31 84 93 93 8 

98 97 96 78 98 95 95 55 98 88 89 32 86 83 83 9 

96 88 88 79 96 91 92 56 96 94 96 33 80 70 71 10 

96 109 109 80 96 81 80 57 96 86 86 34 87 78 77 11 

86 88 88 81 86 83 84 58 86 96 97 35 87 85 83 12 

91 93 92 82 91 89 90 59 91 67 68 36 90 93 91 13 

98 93 93 83 98 81 82 60 98 89 90 37 105 94 92 14 

87 90 92 84 87 89 90 61 87 95 95 38 92 89 91 15 

69 88 89 85 69 85 85 62 69 81 81 39 69 75 75 16 

62 93 95 86 62 92 94 63 62 77 77 40 88 90 91 17 

93 96 96 87 93 79 79 64 93 98 98 41 86 83 83 18 

89 90 90 88 89 91 91 65 89 106 106 42 77 89 89 19 

73 90 90 89 73 78 76 66 73 97 99 43 98 106 105 20 

101 95 96 90 101 78 76 67 101 98 97 44 92 98 97 21 

74 106 105 91 74 85 85 68 74 92 91 45 92 81 80 22 

99 73 74 92 99 81 81 69 99 88 88 46 86 79 80 23 

97 93 90 138 90 92 93 123 86 85 86 108 90 82 82 93 

91 92 93 139 88 91 90 124 94 92 90 109 82 94 94 94 

83 95 94 140 74 97 98 125 95 77 77 110 88 83 81 95 

98 88 87 141 71 108 107 126 93 112 112 111 78 88 88 96 

88 87 87 142 90 85 86 127 73 83 84 112 84 89 88 97 

84 107 108 143 100 88 89 128 78 73 72 113 88 93 92 98 

98 81 82 144 106 98 99 139 97 99 100 114 95 83 82 99 

98 90 91 145 70 96 94 130 76 91 90 115 103 81 80 100 

99 89 89 146 94 79 78 131 92 109 108 116 92 91 92 101 

94 88 88 147 93 77 76 132 83 83 83 117 88 100 100 102 
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¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T ¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T ¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T ¡�¢ 
^Rdw 

¡�¢ 

w^RAdj 

¡ T 

92 92 91 148 92 87 87 133 96 115 114 118 99 90 90 103 

99 93 94 149 75 86 85 134 73 91 93 119 95 103 103 104 

98 101 102 150 83 83 82 135 55 80 77 120 97 103 103 105 

    87 93 94 136 91 94 95 121 85 94 93 106 

    98 91 91 137 90 108 106 122 86 99 100 107 

It is important to note that the outcomes of the maximum 

likelihood approach MLE, which was used to estimate the 

value of the dependent variable ŷ, are fascinating. It is nearly 

impossible to distinguish them from the value produced by the 

simulation y. This can be seen in the graphs in Figure 2, which 

are presented in the following manner. 

 

 
Fig. 2  Generated and the estimated values based on the modified Rock 

matrix, first column, and the proposed adjacency matrix, second column, for 

the sample set (45, 90, 150) 

B.   Comparison between the Two Methods of Estimating the 

Parametric Spatial Autoregressive Model (SAR) 

According to the Presence of the Modified Spatial Weight 

Matrix (wRAdj) and (wRd) 

After the spatial autoregressive model was estimated using 

the maximum likelihood method (MLE), the comparison 

criterion (MAPE) was calculated for the parametric spatial 

autoregressive model (SAR) for three different sizes of data n 

and at three different values for each of λ and σ^2 in light of the 

modified spatial weight matrix (wRAdj) and (wRd). The results 

were presented in Tables 4 and 5. 

Through tables (4) and (5), and depending on the lowest 

value of the (MAPE) criterion for each of the modified spatial 

weight matrices and the proposed matrix, and for different 

values of the model parameters, λ  £J  B, and for each sample 

size n, it was concluded that the MLE method under the 

modified ROC matrix is better than the proposed matrix in 

estimating the spatial autoregressive model (SAR)) for all 
sample sizes and for different values of the model parameters, , λ  £J B,.  

This can also be observed in Figure 3, which shows the 

illustrative drawing of the MAPE values for each matrix used 

in the estimation. 

 

 

Fig. 3  MAPE criterion values for the three sample sizes n and for the MLE 

methods, using the two spatial weight matrices  � w¤¥¦�� and (w^Rd) with B1 

respectively 

TABLE IV 

AVERAGE RESULTS OF THE MAPE CRITERION VALUES FOR THE THREE SAMPLE SIZES N AND FOR THE MLE METHODS AND USING THE TWO SPATIAL WEIGHT 

MATRIX  � W¤¥§¨� AND (WRD) WITH B1(79.8, 2.6, 45.7, 7.2) 

TABLE V 

THE AVERAGE RESULTS OF THE MAPE CRITERION VALUES FOR THE THREE SAMPLE SIZES N AND FOR THE MLE METHODS AND USING THE TWO SPATIAL WEIGHT 

MATRIX  � W¤¥§¨� AND (W^RD) WITH B2(56.7, 0.24, 1.04, 3.06) 
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n=90 MLE WRADJ 0.00980 0.00474 0.00143 0.01696 0.00477 0.00133 0.01206 0.00654 0.00130 

MLE WRd 0.24981 0.79708 0.94152 0.24290 0.84799 0.99751 0.70249 1.06707 1.00217 

n=150 MLE WRADJ 0.00852 0.00536 0.00090 0.01464 0.00530 0.001004 0.01679 0.01228 0.00096 

MLE WRd 0.00951 0.00460 0.00103 0.01313 0.00484 0.00100 0.01554 0.00635 0.00135 

B(2)       
£J1=.5 £J2=1.0 £J3=1.5 

λ 1=0.2 λ 2=0.5 λ 3=0.9 λ 1=0.2 λ 2=0.5 λ 3=0.9 λ 1=0.2 λ 2=0.5 λ 3=0.9 

n=45 
MLE WRADJ 0.0079 0.00479 0.00146 0.01177 0.00733 0.00203 0.01533 0.00883 0.00099 

MLE WRd 0.00960 0.00479 0.00144 0.01498 0.00432 0.00173 0.01948 0.00513 0.00128 

n=90 
MLE WRADJ 0.00845 0.00461 0.00135 0.01903 0.00708 0.00103 0.02650 0.0122 0.00113 

MLE WRd 0.03081 0.76922 0.99044 0.54527 0.87074 0.99212 0.51676 1.86773 1.00288 

n=150 
MLE WRADJ 0.00842 0.00520 0.00108 0.01245 0.00515 0.00098 0.03918 0.01128 0.00138 

MLE WRd 0.00813 0.00521 0.00116 0.01534 0.0055 0.00101 0.03576 0.00610 0.00103 
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C. The Applied Aspect 

To study the impact of certain variables on cancer 
prevalence and the degree to which spatial adjacencies 

between the data affect the disease, a method was used to 

estimate the spatial autoregressive model SAR on real data 

representing cancer patients' records for all governorates in 

Iraq. The data in question is from the geographical 

information system (GIS), which is data about cancer spread 

over Iraq's eighteen governorates. The explanatory variables 

include average age, average tumor size, and the number of 

uranium-contaminated areas. The dependent variable is the 

number of cancer cases, and it takes into account 90 

observations chosen randomly from each of Iraq's 

governorates, representing the most common cancer types in 
each. The researchers' proposed matrix relies on both the 

neighborhood factor and distance. The distance matrix, which 

was derived from the Ministry of Planning - Central Agency 

for Statistics, measures the distance between the centers of 

neighboring governorates using the coordinates of the points 

(x, y) unique to each governorate's center. 

D. Estimating the Spatial Autoregressive Model SAR Using 

the Maximum Likelihood Method MLE under the Spatial 

Weight Matrix (w^RAdj). 

Using the MLE method, the SAR model was calculated 

with an estimated value of (0.286949098) for the model's 

spatial dependence parameter (λ). Table 6 displays the 

estimated values of the dependent variable ŷ, which comprises 

both the real and estimated values, based on the modified 

Rock spatial weight matrix and the proposed matrix. 

Regarding the outcomes of Moran's Z_Mtest, they were 

4.28324906 when the updated spatial weight matrix w^RAdj 

was utilized. At a significance level of 0.05, the calculated 

value is 1.96; however, when we compare the tabular value, 
which is smaller, we find that the tabular value is less yet, 

suggesting that the data exhibit geographical dependency. The 

mean absolute relative error (MAPE) for the spatial 

autoregressive model SAR was determined by utilizing the 

modified Rock spatial weight and the proposed matrix, which 

were found to be (1.0472) and (1.0535), respectively, after the 

estimated values ŷ for the dependent variable were obtained.  
 

 
Fig. 4  Methods of estimating the spatial autoregressive model in light of the 

two spatial weight matrices. wRAdj, wRd 

 

TABLE VI 

THE ACTUAL AND ESTIMATED VALUES OF THE DEPENDENT VARIABLE Y USING THE MAXIMUM LIKELIHOOD METHOD MLE IN LIGHT OF THE WEIGHT MATRIX W¤¥§¨ AND WRD. ¡� 

wRd 

¡� wRAdj ¡ T ¡� wRd ¡� wRAdj ¡ T ¡� 

wRd 

¡� wRAdj ¡ T ¡� wRd ¡� wRAdj ¡ T 

68 69 39 70 64 64 67 47 69 65 96 24 77 77 157 1 
51 52 118 71 65 64 45 48 68 64 21 25 70 72 20 2 
53 54 29 72 63 62 46 49 66 62 60 26 72 74 136 3 
54 54 194 73 67 65 34 50 63 60 16 27 78 78 162 4 
59 57 54 74 66 65 44 51 67 63 16 28 75 75 27 5 
57 56 63 75 57 56 31 52 67 63 18 29 78 78 103 6 

55 54 51 76 55 54 20 53 77 78 176 30 78 78 84 7 
57 56 70 77 50 52 164 54 80 81 63 31 80 80 144 8 
57 56 38 78 49 52 77 55 82 82 31 32 77 77 83 9 
55 54 46 79 53 54 52 56 78 79 43 33 77 77 9 10 
54 53 32 80 52 54 71 57 64 64 75 34 71 72 34 11 
51 51 6 81 53 55 33 58 64 64 26 35 79 79 180 12 
53 53 9 82 48 51 40 59 64 65 20 36 77 77 151 13 
54 54 5 83 78 77 85 60 64 65 19 37 78 78 174 14 

56 56 155 84 80 79 24 61 49 51 96 38 77 77 83 15 
56 56 45 85 80 79 29 62 49 51 54 39 74 75 27 16 
52 53 41 86 81 80 19 63 49 51 42 40 56 59 114 17 
52 53 35 87 67 69 121 64 52 52 72 41 58 60 44 18 
58 57 60 88 69 70 115 65 50 51 179 42 55 58 44 19 
49 50 43 89 69 71 95 66 51 51 46 43 55 58 40 20 
51 52 19 90 67 69 55 67 53 53 74 44 65 64 121 21 
    65 67 53 68 50 51 42 45 66 65 54 22 

    68 69 36 69 63 62 152 46 66 65 17 23 

Table 6 shows the estimated values of the number of people 

infected with cancer based on the modified Rock matrix and 

the proposed matrix. There is a minimal difference between 

them, indicating the proposed method's effectiveness in 

estimating the spatial autoregressive model. The Moran 

coefficient also showed that the place affects the incidence of 

cancer due to the large number of infections in both Basra 

Governorate and Baghdad Governorate, in particular, as a 
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result of the pollution of these two governorates with uranium 

on the one hand and the presence of oil refineries and the 

pollution they cause, which affects the increase in cancerous 

diseases. 

IV. CONCLUSION 

A modified spatial weight matrix (wRAdj) based on the 

Rock adjacency criterion is better than a proposed spatial 

weight matrix (wRd) that combines the adjacency factor using 

the Rock criterion and the distance factor using the Euclidean 

distance. This conclusion was reached after performing 

simulation experiments on the parametric spatial 

autoregressive (SAR) model and estimating the model 

parameters using the maximum likelihood (MLE) method 
based on the values of the mean absolute relative error 

(MAPE) criterion. The weight matrix (wRAdj) had the lowest 

value for the comparison criterion (MAPE). When the sample 

size was 45 or 90 and the parameter value was 〖(σ〗
^2=1,λ=0.9), the best estimate for the spatial autoregressive 

model was obtained. On the other hand, when the sample size 

was 150 and the variance value was 〖(σ〗^2=1), the best 

estimate for the model could be obtained.  Considering the 

suggested spatial weight matrix (wRd), it was determined that 

the optimal estimation for the spatial autoregressive model 

can be achieved with the following parameter values: 〖(σ』

^2=0.5,λ=0.9) for a sample size of 90, 〖(σ』^2=1,λ=0.9) for 

a sample size of 150, and 〖(λ=0.9) for a sample size of 45. 

The data is found to be spatially dependent when applying 

the spatial weight matrix (wRAdj). This was determined after 

estimating the spatial regression model with real data for the 

number of infected people distributed throughout 18 

governorates in Iraq, using the findings of the Moran 
coefficient test. In other words, the tumor rate and the 

presence of uranium-rich sites determine the cancer incidence 

in each governorate. The highest cancer incidence was in 

Baghdad and Basra, followed by Najaf and Karbala, then Dhi 

Qar, Nineveh, and Anbar. Among the cancer types with the 

highest incidence, breast cancer was among the least 

common. 
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