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Abstract—The issue of unemployment is one of the most prominent challenges facing the growth and development of the Iraqi economy 

due to its profound repercussions on the economic and social conditions. What exacerbates the severity of the unemployment problem 

is its prolonged existence and recurring nature, as well as its manifestation in various forms, including disguised unemployment, over 

recent years. It is noteworthy that unemployment is no longer limited to uneducated or moderately educated youth, but has also 

extended to those with higher degrees. Although the state has taken the initiative to employ youth with educational degrees, 

unemployment rates have not shown an apparent decrease due to the large number of unemployed people in Iraq. In this research, the 

best model was chosen from among the non-linear time series models to predict unemployment rates in Iraq, which included the Logistic, 

Gompertz, and Chapman-Richard models. It was found that the best model for predicting unemployment rates in Iraq is the Chapman-

Richard model. Consequently, we suggest leveraging this research to develop future strategies that address the unemployment issue in 

Iraq and expand job opportunities in both the public and private sectors to meet the growing number of unemployed individuals. We 

propose applying the best model from this study to explore other economic and social issues. We advise enhancing efforts to accurately 

gather and record data so that it can be utilized by researchers in subsequent studies. 
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I. INTRODUCTION

The issue of unemployment is considered one of the most 

significant challenges that Iraq currently faces. This is 

because the high number of unemployed individuals 

symbolizes a waste of the energy of the youth who are jobless, 

in addition to the significant impact that unemployment has 
on the country's political, economic, and social situations [1], 

[2]. Despite Iraq's possession of natural, financial and 

agricultural resources, there is a deficiency in the possibility 

of exploiting those resources in a way that works on the 

optimal use of the energies of the youth, and the phenomenon 

of unemployment has worsened as a result of economic 

policies focused on military spending in previous periods. To 

accomplish this, it is necessary to have the appropriate 

foundations for developing a policy that ensures employment 

opportunities to meet the country's needs.  

Additionally, it is essential to pay attention to the problem 
of anticipating unemployment rates [3], [4], [5]. We made use 

of non-linear time series models because these models made 

a significant contribution to the accurate description of the 

characteristics from which the time series of the phenomenon 

that was being studied is generated, as well as to the 

interpretation of the behavior of that phenomenon and the 

utilization of the results to predict the future values of that 

phenomenon [6], [7], [8]. By employing several nonlinear 

time series models, the research aims to statistically model the 

series of unemployment rates in Iraq, with the ultimate goal 

of selecting the most suitable model for forecasting 

unemployment rates in Iraq. Linear models are used to 

represent the changes that occur in time series and to 

determine the general trend of the series.  
However, there are situations in which data follows a non-

linear trend, which means that linear methods or models 

cannot be utilized. In such situations, we turn to other models 

that are suitable for the data, known as non-linear models [9]. 

There are numerous nonlinear time series models, such as 

exponential, quadratic, and logarithmic models, among 

others. Some of these nonlinear models are not convertible, 

which means that they cannot be converted into linear 

formulas. On the other hand, some nonlinear models are 

convertible, which means that they can be converted into 

linear formulas [10]. These linear formulas are often used 

because they produce accurate results [11]. This investigation 
utilizes four nonlinear models that can be transformed into 

linear models.  
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II. MATERIALS AND METHODS 

A.  Logistic Model 

The model was first used by the Belgian scientist Verhuist 

in 1845. What distinguishes this model is that it is 

symmetrical around the turning point. This property indicates 

that the process that occurs after the turning point is the same 

as the process that occurred after it [12], [13]. The model is 

expressed according to the following formula:  

 �� = �
����	
� + 
� (1) 

Since: ��: Dependent variable �: Independent variables. (�, �, �): Model parameters 
�: random error 

Based on the maximum likelihood (MLE) method, the model 

parameters were estimated in Equation (1) [14]: 

 �(��) = ��
�����	
 ∑�� �� + ∑�� �
� (2) 

 �� �(��)! = ���(�) − �� #1 + �%
&' ∑�( )�* (3) 

Taking the derivative in equation (3) for the parameters (a, β, 

k), and setting it equal to zero: 

 
+,% ,(-�)!

.(�,�,') = 0 (4) 

We obtain a set of equations with the number of 
coefficients in the model, and since these equations are 

nonlinear, it is challenging to estimate them using 

conventional methods. Therefore, we resort to using one of 

the iterative methods to estimate these coefficients, such as 

the Newton-Raphson iterative method [15], [16]. 

B. Gompertz Model 

This model was introduced by Benjamin Gompertz in 1825 

to fit mortality tables, and the Gompertz function is a sigmoid 
function, a type of mathematical model commonly used for 

time series analysis. The Gompertz model is slow at the 

beginning and end of the period. The right curve of the 

function approaches the left or lower curve of the function 

more closely. In contrast to the logistic function, the two 

variables approach the curve symmetrically. The Gompertz 

model is a special case of the four-parameter Richards model, 

and it belongs to the Richards family of three-parameter 

sigmoidal growth models along with the exponential models, 

the logistic model, and the von Bertalanffy model  [17]. The 

general formula for the Gompertz model is: 

 �� = �
&��	
� + 
� (5) 

Since: (a,β,k) represent the model parameters, and the value 

of the response variable (Z) changes with time (t). To estimate 

the parameters of the Gompertz model, the maximum 

likelihood (MLE) method was used as follows: 

 �0�1�2 = �%
&��3	
 ∑�( (�
 (6) 

 ��4�0�1�25 = ���(�) − �%3&' ∑�( 6�
 (7) 

The model equation is still non-linear, so we take (Ln) 

again as follows. 

 �� #��4�0�1�25* = �� ���(�)! − ���(�) − � ∑�� 7� (8) 

�
�: �� 4�� �(�)!5 = :;�∗   , ��(�) = =∗   , ��(�) = �∗ 

Substituting the hypotheses into the above equation, we 

get the following: 

 �1�∗ = ���(�∗) − ��∗ − � ∑�� 7� (9) 

We derive the model in Equation (9) for the parameters (�, 
β, k) and set the derivative equal to zero to obtain a set of 

nonlinear equations that are difficult to estimate using 

conventional methods. Therefore, we resort to using one of 

the iterative methods to estimate these parameters, such as the 

Newton-Raphson iterative method, which was relied upon in 

the research [18], [19]. 

C. Chapman-Richard Model 

Considered universal for various nonlinear models, such as 
the logistic model and the Chapman-Richard model, this 

approach serves to provide an accurate and more realistic 

depiction of many events. Many research studies, including 

those on the elements influencing animal growth—that of 

fish, cows, horses, etc.—have utilized the Chapman-Richard 

model [20]. Selected to explain the law of the transmission of 

infectious diseases, this model is known by the formula: 

 �� = �(1 − �
&'�)> + 
� (10) 

Since: ��: The response variable represents. (�, �, �): Model parameters represent 

Following this formula will help one estimate the model 

parameters using the maximum likelihood (MLE) approach: 

 �(��) = �% ∑�6 �(1 − �
&'�)> + ∑�? @
� (11) 

�� �(��)! = ���(�) − A B
�

@��(1 − �
&'�)

+ B
6

�
���(
�) 

(12) 

Since: �: Maximum limit of (MLE). 

From equation (12), we take the derivative of the 

parameters and set it to zero: 

 
+,% ,(-�)!

.(�,�,') = 0 (13) 

We thus derive a set of equations. As these equations are 

nonlinear and challenging to estimate using standard 

approaches, we turn to using one of the iterative methods to 

estimate these coefficients, such as the Newton-Raphson 

iterative method. 

D. Richard Model  

This model was used by the scientist Richard [12], and the 

mathematical formula for the model is [21], [22], [23]:  

 �(�) = �
(����CD�CD (&'�) ) ��

+  
� (14) 
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Since: � :. Response variable � :. independent variable �, �, �, @ : Parameters to be estimated 
�  : Random error 

The parameter estimates are found using the maximum 

likelihood (MLE) method for the following model [24]: 

 �(�) = �(1 + � 
EF 
EF (−��) ) �
�  + 
� (15) 

By entering ln into both sides of the model and taking the 

derivatives concerning the parameters and setting them equal 

to zero, we get the following [25]: 

 (1 + � 
EF0(−��)2 �
� (16) 

 (−�(1 + � 
EF 
EF (−��) )�

&�(
EF 
EF (−��) ) (17) 

 (���/@)  (1 + � 
EF 
EF (−��) )�

&�(
EF 
EF (−��) ) (18) 

  (1 + � 
EF 
EF (−��) )�

0(−��) 2 @&H (19) 

We use one of the iterative methods—such as the Newton-

Raphson iterative method—to estimate these coefficients 

since the equations above are nonlinear equations that are 

challenging to estimate with traditional approaches [26], [27].  

E. Selecting the Ideal Model 

Following one of the estimation techniques—the 

maximum likelihood method—the estimated parameters of 

the nonlinear models utilized in the research and the models' 

fit to their data were acquired. The subsequent step involves 

selecting the most suitable model from among the nonlinear 

models being investigated [28]. Among the many criteria that 

can be used to choose the best model, Bayesian Information 

Criteria and Akaike's Information Criteria are two examples. 

Based on these criteria, nonlinear models are evaluated, and 

the model that is deemed to be the most optimal is chosen 

based on the lowest value for each of these criteria [29].  

F.  Akanke's Information Criterion 

Akaike's Information Criterion (AIC) is a standard tool for 

modeling time series data to measure the fit of a statistical 

model for M parameters. It can be written as follows. 

 IJK(L) = ���MN�H +  2L  (20) 

Since: L: number of model parameters. �: number of views 

The ideal rank of the model is chosen by the value M, 
which corresponds to the lowest value of the criterion, and the 

model that gives the lowest value of the AIC criterion is the 

best model [30]. 

G.  Bayesian Information Criterion 

One of the criteria for determining the model rank is the 

Bayesian information criterion (BIC) [31]. The Bayesian 

information criterion gives a consistent estimate of the true 

rank, unlike the Akaike criterion (AIC), which often gives an 
estimate with a higher rank than the true rank. It takes the 

following formula: 

PJK(@) = ���(MN�H) − (� − @)�� Q1 − @
� R @���

+ @�� S 1
@ TMNUHMN�H

− 1VW  (21) 

Since:  

MX�H  : the greatest possible estimator of MX�H  @. : the number of parameters in the model MXUH : the sample variance of the time series. 

The model that corresponds to the lowest value of 

the (BIC) criterion is the best model. 

H.  Root Mean Square Error 

It is one of the measures of predictive power and can be 
written in the following formula: 

 YLZ[ = \∑�]^� ���_
%  (22) 

Since:  �: Sample size 

III. RESULTS AND DISCUSSION  

A.  Predictive Accuracy Metrics 

When it comes to selecting the most suitable method for 

prediction, the most important factor to consider is the 

predictive accuracy. The majority of forecasts have a 

tendency to have a certain error rate, or, to put it another way, 

inaccuracy in prediction.  As a result, it is necessary to 

conduct studies to determine the prediction accuracy of these 

values by investigating a selection of the measures, which are 

as follows:  

B.  Mean Squared Errors 

One of the measures of predictive power, the MSE is 

calculated by squaring the sum of the errors and then taking 

the average of the squares of the errors, and dividing it by the 

number of observations (n) As in the following equation: 

 LZ[ = �
% ∑%�`� @
�   H   (23) 

The best model is the one is the one that yields the lowest 

mean squared error. 

C. Root Mean Square Error 

It is the square root of the mean square error. The following 

formula represents it: 

 YLZ[ = \�
% ∑%�`� [
�   H   (24) 

The best model that gives the lowest root mean square errors. 

D.  Time Series Analysis  

To achieve the research objective, we selected a time series 

of unemployment rates in Iraq for the period from 1990 to 

2022 from the Central Statistical Organization/Annual 

Statistical Collection, and Figure (1) shows a graph of the time 
series of unemployment rates. 
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Fig. 1  Time series diagram of unemployment rates in Iraq 

 

To test the stationarity of the time series of unemployment 

rates, we studied the Augmented Dickey-Fuller Test. One 

finds whether a time series is stationary using the Augmented 

Dickey-Fuller (ADF) test. At certain lag levels, the table 

shows ADF test results for two scenarios: (1) without trend 

and drift, and (2) with trend and drift. Both times, the ADF 

test statistic (ADF) and p-values are stated. Regarding the 

situation without trend and drift, the ADF values span -0.0379 
to -0.3899 over lag levels 0 through 3. Since the related p-

values are all over 0.5, it is impossible to refute the null 

hypothesis of a unit root-non-stationarity. This implies that in 

its natural form, the time series is probably non-stationary.  

Concerning trend and drift, the ADF values are more 

negative, ranging from -1.87 to -2.59. The null hypothesis 

cannot be disproved, so the p-values remain high, between 

0.611 and 0.335. Though it somewhat increases stationarity 

properties, the presence of a trend and drift does not render 

the series stationary. The results generally show that, under 

both criteria, the time series is non-stationary. Before using 
time series models like ARIMA, additional modifications, 

such as differencing, may be necessary to achieve stationarity. 

TABLE I 

AUGMENTED DICKEY-FULLER TEST 

 
We note from Table 1 that the time series of unemployment 

rates has a unit root but is not stable, as indicated by the p-

value, which is greater than 0.05. 

E.  Application for Mann-Kendall Test 

To apply non-linear time series models, the linearity of the 

time series of unemployment rates was tested using the Mann-

Kendall Test, as shown in Table 2 and Figure 2. The p-values 

shown in the table correspond to various lag values in a 

statistical test—likely the Augmented Dickey-Fuller (ADF) 
test—that examines the stationarity of a time series. More 

substantial evidence against the null hypothesis of a unit root 

suggests a stationary time series by a lower p-value. 

The p-values for delays 1 through 7 run from 5 × 10 − 7, 

5×10 −7 to 5.4×10 – 8. Strong rejection of non-stationarity is 

shown by 5.4×10 −8. The p-value decreases as the latency 

increases, thereby strengthening stationarity at larger lags. 

The p-values for lags 8 through 14 keep decreasing; at lag 14, 

they reach 1.9 x 10 − 15. This confirms stationarity even 

more, as the likelihood of a unit root presence approaches 

zero. The consistently declining p-values imply that adding 

higher-order lag factors enhances the evidence of dataset 

stationarity. 

TABLE II 

MANN-KENDALL TEST 

Lag 1 2 3 4 5 6 7 

p-
value 

5e-
07 

2.1e-
09 

8.5e-
10 

2.2e-
09 

7.7e-
09 

2.4e-
08 

5.4e-
08 

Lag 8 9 10 11 12 13 14 

p-
value 

4.8e-
08 

9.8e-
09 

4.4e-
10 

8.3e-
12 

1.5e-
13 

7.7e-
15 

1.9e-
15 

 

The results generally indicate that the time series is likely 

to be stationary at all stated lag levels. The declining trend in 

p-values suggests that adding more lags enhances the test's 
capacity to detect stationarity. As such, the dataset is suitable 

for time series modeling, without requiring additional 

treatment, as shown in Figure 2.  
 

 
Fig. 2  Mann-Kendall test graph 

 

We note from Table 2 that the p-values are smaller than the 

significance level of 0.05, which indicates the presence of a 

general trend in the time series, as well as the non-linearity of 

the series. Graph (2) confirms this statement, as it shows that 

the p-value falls in the zero region.  

F.  Homogeneity Test  

To test the homogeneity of the time series data for 

unemployment rates, the von Neumann Test was conducted, 

and the p-value was found to be 2.923e-07, which is less than 

the significance level of 0.05, indicating heterogeneity in the 

time series data for unemployment rates in Iraq. An R version 

3.6.1 program was used to estimate the parameters of 

nonlinear time series models, determining the best model for 

predicting unemployment rates in Iraq, as shown in Table 3.  

TABLE III  

ESTIMATION OF NONLINEAR TIME SERIES MODELS 

 

Table 4 presents the Gompertz model estimation findings, 

which are widely used in various disciplines, including 

population dynamics, economics, and biomedical sciences, to 

predict growth processes. Estimated coefficients, standard 

deviations (SD), t-statistics (t-stat), and p-values are among 

the outputs. With a standard deviation of 3.5625 and a t-

statistic of 5.789474, the first expected parameter is 20.625. 

With no trend and no drift With trend and drift 

Lag ADF p-value Lag ADF p-value 

0 -0.0379 0.626 0 -1.87    0.611 
1 -0.1873 0.583 1 -2.09    0.523 
2 -0.3899    0.524 2 -2.59    0.335 
3 -0.1644    0.589 3 -2.31    0.438 

Logistic 

par estimate sd t stat p-value = 22.935 7.0650   3.24629 * 

� 0.8525 0.1475 5.77992 ** 

� - - - - 
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The high t-statistic points to rather substantial statistical 

significance. Analogously, the second parameter estimate, 

0.2842, indicates its significance in the model with a t-statistic 

of 4.874665 and a standard deviation of 0.00583. Highly 

significant is likewise the third parameter, 0.07164, with a 
standard deviation of 0.0119 and a t-statistic of 6.018203. The 

existence of "" in the p-value column implies that, at 

conventional significance levels (e.g., p < 0.01 or p < 0.05), 

the Gompertz model efficiently captures the fundamental 

trend in the data. These findings enable the model to be 

regarded as reliable for characterizing the observed 

occurrence; however, for greater robustness, further 

validation using other models or additional data could be 

advantageous. 

TABLE IV 

ESTIMATION OF NONLINEAR TIME SERIES FOR GOMPERTZ MODELS 

Gompertz 

Estimate sd t stat p-value 

20.625 3.5625   5.789474 ** 

0.02842 0.00583 4.874665 ** 
0.07164 0.0119   6.018203 ** 

 

Similar to the first parameter estimate, the second 

parameter estimate, which is 0.2842, indicates that it is 

significant in the model with a t-statistic of 4.874665 and a 
standard deviation of 0.00583. With a standard deviation of 

0.0119 and a t-statistic of 6.018203, the third parameter, 

which is 0.07164, is also highly significant when compared to 

the other parameters. It can be inferred from the presence of 

the symbol in the p-value column that, when considering 

traditional significance levels, such as p < 0.01 or p < 0.05. 

The Gompertz model can effectively capture the fundamental 

trend present in the data. In light of these findings, the model 

can be considered trustworthy for describing the observed 

occurrence; however, to ensure its robustness, additional 

validation using other models or more data may be beneficial, 
as shown in Table 5.  

TABLE V 

ESTIMATION OF NONLINEAR TIME SERIES FOR CHAPMAN-RICHARDS 

MODELS 

Chapman Richards 

estimate sd t stat p-value 

29.154 0.8460 34.461 *** 

0.953 0.047 20.2766 *** 
0.253 0.06902 3.6656 * 
0.936 0.064 14.51563 *** 

 

Therefore, the Richard model can effectively capture the 

fundamental trend that is present in the data. In light of these 

findings, the model can be considered trustworthy for 

describing the observed occurrence; however, to ensure its 

robustness, additional validation is presented in Table 6.  

TABLE VI 

ESTIMATION OF NONLINEAR TIME SERIES FOR RICHARD MODELS 

Richard 

par estimate sd t stat p-value = 27.851 2.1490 12.9599 *** 

� 0.827 0.173 4.78035 ** 

� 0.0554 0.0054 10.2593 *** A 0.929 0.071 13.08451 *** 

 

Then, a comparison was made between the four models 

using the comparison criteria shown in Table 7. 

TABLE VII 

COMPARISON CRITERIA 

Model RMSE AIC BIC R2 

Logistic 10.1615 189.68 194.21 0.3374 
Gompertz 8.11942 178.26 182.24 0.4048 
Richard 6.23688 140.84 143.80 0.5051 
Chapman Richards 4.61605 136.62 139.07 0.6199 

 
The best model for predicting unemployment rates was 

found to be the Chapman-Richards model, because it has the 

lowest value for (RMSE, AIC, BIC) and the highest value for 

(R2). Therefore, the estimated equation for the Chapman-

Richards model can be written according to the following 

formula: 

 �1� = 29.154(1 − 0.953
&f.Hgh�)f.ihj  (25) 

Fig. 3  Represents the Chapman-Richards model residual test 

 
Based on Equation (25), we can derive the predictive 

values of unemployment rates in Iraq from 2022 to 2031, as 

shown in Table 5 and Figure 4. Figure (3) shows that the 

autocorrelation coefficients of the standard residuals fall 

inside the confidence limits and that the p-values of the Ljung-

Box statistic are higher than the significance level of 0.05.

TABLE VIII 

 PREDICTIVE VALUES OF UNEMPLOYMENT RATES IN IRAQ 

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 

18.70 20.65 21.26 21.46 21.85 22.52 23.72 24.78 25.67 26.24 
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Fig. 4 Time series plot of the real, estimated, and predicted values of 

unemployment rates in Iraq 

IV. CONCLUSION 

The study of the characteristics of the time series of 

unemployment rates in Iraq for the period (1990-2021) 
showed that they are unstable, non-linear, and heterogeneous, 

and thus are suitable for use in applying non-linear time series 

models (Logistic, Gompertz, Richard, Chapman Richards). 

When comparing these models with each other, it was 

concluded that the best model for estimating unemployment 

rates is the Chapman-Richards model, as it yielded the lowest 

value for the predictive power measure (RMSE), indicating 

its prediction efficiency. When predicting unemployment 

rates in Iraq using the best model, we observe that 

unemployment rates have been consistently increasing from 

2022 to 2031, despite the government's efforts to reduce 

unemployment in the country.  
Therefore, we recommend utilizing this research to inform 

plans that address the unemployment problem in Iraq and 

increase job opportunities in both the public and private 

sectors, thereby accommodating the growing number of 

unemployed individuals. We recommend using the best 

model in this research to study other economic and social 

phenomena. We recommend increasing attention to collecting 

and documenting data accurately so that researchers can use 

it in future studies. 
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