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Abstract—Specific fuel consumption significantly impacts the shipping industry's operational costs and environmental footprint. 

Therefore, the development of modeling for predicting ship fuel consumption aiming to maximize the operation efficiency and minimize 

the pollutant emissions from ship operation is very necessary. By the use of predictive models such as Artificial Neural Networks (ANN) 

and eXtreme Gradient Boosting (XGBoost), this work optimizes ship fuel usage using machine learning approaches, in which we 

developed and tested both models using a 149-point dataset split between 70% training and 30% testing data. With a high R-value of 

0.9851, MSE of 129.8261, and a low MAPE of 0.2541%, ANN showed good training performance. XGBoost topped ANN in training 

with a flawless R² of 1.000, MSE of 0.01, and MAPE of 0.21%. With a MAPE of 0.2121%, ANN showed great proportional accuracy on 

the test set; nevertheless, its high MSE of 26,300 indicated strong sensitivity to outliers. XGBoost showed strong outliers handling with 

a lower MSE of 259.45 but had a larger MAPE of 16.97%, thereby suggesting lowered proportional accuracy. The findings highlight 

both models' trade-offs and merits. XGBoost shows higher performance in controlling severe deviations, ANN shines in proportional 

accuracy. These realizations emphasize the need for model selection depending on application needs as they help predictive modeling 

for enhancing operational efficiency and reducing fuel consumption in the shipping industry. 
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I. INTRODUCTION

In its 2020 report on greenhouse gas emissions, the 

International Maritime Organization (IMO) revealed that the 

global shipping industry contributed about 2.89% of the 

planet’s total emissions in 2018. This meant around 1.076 

billion tons of greenhouse gases were dumped into the 

environment. Unbelievably high predictions of a 50% to 
250% increase in carbon dioxide emissions from shipping 

without intervention highlighted the immediate necessity of 

sustainable practices in the marine industry [1]–[4]. Marine 

fuel costs, however, have been steadily high all over. Now, 

a major and rising percentage of fleet running costs are fuel 

expenditures, which put great financial strain on the 

shipping sector [5]–[7]. Since most ships worldwide run on 

marine diesel engines, improving their efficiency is essential 

to maintain operating profitability. Fuel optimization is a 

two-edged need as any inefficiencies in fuel usage not only 

result in high prices but also aggravate environmental effects 

[8]–[11]. 

In the maritime industry, operational efficiency is exactly 

correlated with fuel usage. Finding trends of inefficiency and 

places for development depends on an analysis of fuel use. 

Accurate fuel consumption statistics let operators create plans 

that maximize routes, reduce waste, and guarantee ships run 

within their most effective performance range [12], [13]. 

These steps help reduce running expenses and improve 

market competitiveness. These approaches will also help in 
coinciding with world carbon-reduction targets [14], [15]. 

Policies include the IMO's Energy Efficiency Existing Ship 

Index, and the Carbon Intensity Indicator demand complete 

awareness of a vessel's energy use profile. Employing 

continuous fuel consumption monitoring and analysis, 

operators may make informed decisions to reduce emissions 

and ensure long-term profitability [16]–[19]. 
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Investments in technologies like alternative propulsion 

systems, voyage planning software, and advanced fuel 

monitoring systems might greatly improve operational 

efficiency. By enabling accurate modifications throughout 

journeys, these technologies ensure ships burn the least 

amount of fuel required and preserve the safety and 

performance objectives [20]. These developments not only 

lower fuel costs but also support more general environmental 

goals, therefore putting the maritime sector as a major 

participant in the worldwide battle against climate change 
[21]. Given the critical deadlines for carbon reduction and the 

growing costs of marine fuels, fuel consumption monitoring 

has become a foundation of operational strategy in the 

maritime sector. In a regulatory environment becoming 

increasingly demanding, it represents a vital beginning 

towards achieving both environmental responsibility and 

financial sustainability [22]. 

In recent years, specific fuel consumption (SFC) prediction 

for ships has attracted more and more active studies. Using 

shipping data, a growing corpus of creative works has 

investigated the application of machine learning (ML) models 
to predict SFC at sea [23]–[26]. Notwithstanding these 

developments, numerous important aspects make precisely 

forecasting SFC difficult. The main difficulty is SFC forecast 

accuracy depending on shipping data quality and volume 

[27]–[29]. Nonetheless, ship-related data is intrinsically 

private as it relates to the transportation secrecy of shippers as 

well as shipping firms. Many times, regulatory restrictions 

limit enterprises engaged in shared shipping from exchanging 

SFC-related data. These constraints complicate access to 

enough high-quality data for strong model training and 

validation. Furthermore, greatly affected by a variety of 
climatic elements in different and erratic navigation 

conditions is SFC performance [30], [31]. Variations in 

meteorological conditions such as wind speed, wave height, 

and ocean currents that fluctuate dynamically across various 

areas and periods provide significant errors in SFC forecasts. 

Each ship and navigation situation affects SFC differently 

from these elements, hence careful feature selection is 

necessary to guarantee correct forecasts [25], [32], [33]. 

Improving prediction dependability depends on choosing the 

most relevant variables from a complicated and changing 

collection of inputs. Accurate SFC prediction is hampered 

overall by two main obstacles: restricted availability of high-
quality shipping data resulting from privacy concerns and the 

diversity of environmental elements in navigation [34]. 

Dealing with data security and adjusting to changing 

operating situations while keeping forecast accuracy calls for 

creative ideas that help to overcome these challenges [35]. 

Constraints in conventional forecast methods make SFC in 

the marine sector exact is still a challenging task. Often, 

conventional static models ignore the dynamic and complex 

nature of navigational environments or the many influences 

of climatic elements. Especially concerning building robust, 

adaptable, and accurate forecasting models for SFC, these 
shortcomings provide significant research opportunities. 

Filling up these gaps will help the maritime sector improve 

operational efficiency, economic resilience, and compliance 

with ever more environmental requirements. This study 

guarantees accurate SFC predictions employing a 

revolutionary method using artificial neural networks (ANN) 

and eXtreme Gradient Boosting (XGBoost), therefore 

transcending the limitations of traditional methods. Integrated 

with ANN, XGBoost—known for its ability to handle high-

dimensional data and complex relationships—is examined 

and increases the overall prediction accuracy. The framework 

builds a powerful model capable of managing numerous 

marine operational circumstances by using XGBoost's 

efficacy in feature selection and gradient-based optimization 

as well as the flexibility of the ANN in capturing nonlinear 

patterns. The predictive powers of ANN and XGBoost are 
assessed in hybrid architecture wherein XGBoost enhances 

ANN by improving input feature significance and reducing 

prediction errors, hence assuring precise SFC forecasting 

throughout many operating scenarios. By filling up certain 

crucial research gaps, our study improves SFC prediction by 

state-of-the-art standards. Comparative study of ANN and 

XGBoost ensures scalability and robustness in addition to 

improving forecasting accuracy, thus matching with global 

environmental and economic aims. The maritime sector will 

find great use for the findings of this research. With rising 

environmental regulations and fuel costs, the proposed idea 
provides a relevant solution for operating expenditure 

reduction. It also provides participants with effective tools to 

reach environmental aims and increase economic resilience. 

By allowing smart fuel consumption and educated decision-

making, this study helps to equip a future-ready maritime 

industry.  

II. MATERIALS AND METHOD 

A. Data Collection, Cleaning, and Analysis  

A ship register was the source of the data for this research; 
it offers an array of data on vessel operations, fuel 

consumption, and related environmental variables. This 

dataset is the foundation for creating and confirming the 

proposed PSO-optimized ANN architecture. Data collection 

included collating information from several ships operating in 

various navigational and climatic environments. The selection 

criteria assured that the dataset had a wide range of vessel 

types, operational features, and fuel efficiency patterns. This 

variation determines the generalizability of the predictive 

model across various shipping situations. Raw data was 

carefully cleaned to guarantee its validity and quality. Typical 
issues such as outliers, missing data, and repeated entries were 

identified and fixed. Missing values were imputed using 

statistical techniques to preserve the integrity of the dataset; 

duplicate entries were removed to avoid biased conclusions. 

Particularly in fuel use and meteorological data, outliers were 

extensively investigated and either deleted or corrected based 

on domain knowledge and statistical criteria.  

By the use of a robust data pipeline, this stage guarantees 

that the employed dataset for model development is both 

comprehensive and consistent. The basis of the proposed 

approach is the mix of high-quality data with innovative 
analytical techniques, which assures exact and useful 

estimates of SFC in the maritime industry.  

B. Artificial Neural Networks  

Artificial Neural Networks (ANNs) have become a 

fundamental tool for regression tasks due to their ability to 

model complex and nonlinear relationships between inputs 
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and outputs [36], [37]. ANNs provide a flexible and efficient 

structure in ship fuel consumption prediction to examine the 

complex interaction of operational characteristics and 

environmental circumstances affecting fuel economy [32]. An 

ANN's three fundamental layers—the input layer, hidden 

layers, and output layer, form a sequence. Data from several 

operational and environmental factors, like ship speed and 

distance covered during the voyage comes into the input layer. 

These factors project particular SFC. By the use of a network 

of linked neurons, the hidden layers analyze this input by 
using activation functions to capture the nonlinear 

connections. The projected SFC values then are produced by 

the output layer [5], [38]. 

Using a training procedure, ANNs get trained on the 

patterns in the data. The network changes the weights and 

biases of its connections throughout training to reduce the 

error between expected and real values. Gradient descent and 

other iteratively updating the weights depending on the 

gradient of the error function helps to accomplish this [39], 

[40]. Advanced optimization methods such as Particle Swarm 

Optimization (PSO) improve the training process even further 
by identifying ideal starting weights and biases, hence 

lowering the probability of the network being caught in local 

minima [41]. ANNs' capacity to generalize across several 

datasets is one of its main benefits for SFC prediction. In the 

marine sector, where ship kinds, routes, and operational 

circumstances vary greatly, this capacity is especially crucial. 

Because ANNs are flexible enough to fit these variances, they 

provide accurate forecasts for many situations. Incorporating 

meteorological variables allows the network to additionally 

consider dynamic environmental factors, like wind speed and 

wave height, thus guaranteeing strong performance under 
many navigation circumstances [42], [43]. 

The ANNs have the potential to replicate both linear as well 

as nonlinear connections between control factors and outputs. 

For SFC prediction, this factor is very important as a 

confluence of factors interacting in complex ways influences 

fuel consumption. By using these characteristics, ANNs may 

uncover subtle patterns and correlations buried by traditional 

regression methods, hence generating more accurate and 

consistent predictions. Moreover, the modular design of 

ANNs allows one to quickly scale and modify [44]. 

Investigators may modify the architecture by changing the 

number of hidden layers, neurons, and activation functions to 
match specific purposes. This versatility ensures that the 

network might be tailored to meet the particular requirements 

of SFC prediction in the maritime sector. Figure 1 shows 

typical ANN architecture.  

 
Fig. 1  ANN architecture 

C. Extreme Gradient Boosting 

eXtreme Gradient Boosting (XGBoost) is an advanced 

implementation of gradient-boosting algorithms. It is an 

efficient, flexible, and more precise version of gradient 
boosting for predictive modeling. The XGBoost regression 

develops an ensemble of decision trees in sequence. Herein, 

each tree is trained to minimize the residual errors of the 

preceding model [45], [46]. Guided by a gradient descent 

optimization approach, which ensures that the model always 

improves by focusing on reducing prediction errors, this 

process first produces predictions based on a constant value—

usually the mean of the target variable—XGBoost begins its 

construction. Later additions to the mix include additional 

trees, each trained on the residual errors of the current model 

[47]. XGBoost measures the difference between anticipated 
and actual values using a loss function—such as mean 

squared error (MSE)—for regression during training. To 

direct the optimization process, it then determines the gradient 

of the loss function concerning the predictions [48]. Figure 2 

shows a typical XGBoost architecture. 

 
Fig. 2  Flow chart of XGBoost  

 

XGBoost stands out mainly for its use of regularizing 
methods like L1 (Lasso) and L2 (Ridge), which penalize too 

complicated trees to avoid overfitting. The method also scales 

the contribution of every tree using a shrinkage parameter 

(learning rate), therefore guaranteeing smoother convergence 

[49]. XGBoost additionally employs column subsampling, in 

which case just a subset of characteristics is taken into account 

at every iteration hence improving generalization and 

processing efficiency. XGBoost's tree building is improved 

via a greedy split search wherein every node is split to 

maximize the loss reduction. Moreover, sparsity-aware 

techniques ensure efficient handling of missing data in 
XGBoost. The parallelization and support for distributed 

computing enable this method to analyze high-dimensional 

data with scalability, hence strengthening its robustness for 

use in many situations in regression analysis [50]–[52]. 

D. Statistical Evaluation  

The reliability and performance of machine learning (ML) 

models depend on quality statistical assessment. Important 

measures including Mean Absolute Percentage Error (MAPE), 
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Mean Squared Error (MSE), and R-squared (R²) were 

employed in the present work. While MSE and MAPE assess 

prediction errors, R² indicates explained variance, therefore 

gauging how well a model prediction matches the actual data. 

The following mathematical expressions were employed for 

the calculation of statistical metrics [53], [54]:  
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In this case, the 	
 depicts the measured value of SFC, � is 

the count of samples used in the study, 	�
 depicts the model-

predicted values of SFC, 	�
  depicts the mean of measured 

values for SFC.   

III. RESULTS AND DISCUSSION 

A. Correlational Analysis of SFC Data 

Figure 3 is a heatmap of data used in this study It depicts 

the correlation matrix among three variables: time (in hours), 

distance (in nautical miles), and fuel consumption (in 
gallons). Numerical values and color intensity indicate the 

strength of linear correlations between these variables. As 

might be predicted, a correlation coefficient of 1.00 along the 

diagonal denotes complete self-correlation. The off-diagonal 

values expose quite substantial positive correlations among 

the variables.  

 
Fig. 3  Correlational heatmap  

 

For example, the 0.96 correlation between distance and 

fuel consumption indicates that fuel consumption rises 

almost exactly with distance travel. In a similar vein, time 
and distance show a significant connection of 0.94, 

meaning that longer travel durations usually translate into 

more miles. Finally, time and fuel use exhibit a 0.92 

connection, which reflects the link between journey length 

and fuel usage. These strong relationships validate their 

usage as inputs for predictive modelling as they imply that 

the factors are interconnected and thus affect ship fuel 

consumption  [55], [56]. 

B. Model Development 

1) Artificial neural network: 

In this study, an Artificial Neural Network (ANN) model 

was developed to predict ship fuel consumption using key 

operational parameters. With 149 data rows, the dataset 
included goal variables related to the fuel consumption of the 

ship while input variables included the distance traversed and 

the time spent on journeys. Three subsets comprised the 

dataset: 70% of the data was used for training the model, 15% 

for validation to fine-tune hyperparameters and stop 

overfitting, and the remaining 15% for testing to assess the 

model's performance on unprocessed data. The careful design 

of the ANN architecture allowed it to capture the non-linear 

connections between the output variable and the input 

characteristics. Hidden layers used activation functions to 

improve the network's capacity to learn intricate data patterns. 
Optimization techniques were used during training to reduce 

the discrepancy between the expected and actual fuel 

consumption figures, therefore guaranteeing that the model 

fairly represented real-world situations. The validation 

method gave comments on the generalization capacity of the 

model, thereby allowing architectural changes and training 

parameter modifications for better performance. The ANN 

architecture used in this study had two inputs, one output, and 

ten neurons in a hidden layer as depicted in Figure 4.  

 
Fig. 4  ANN architecture used in this study  

 
The training statistics of the ANN model used for ship fuel 

consumption prediction are shown in Table 1. Early ending 
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conditions, including minimum validation error improvement, 

caused the training process to end after 13 epochs—far before 

the maximum aim of 1000 epochs. From an initial value of 

2.33E+05 to 122, the performance metric—gauges error—

probably MSE—improved considerably to show successful 

learning. Although the zero-goal performance value was not 

met, the attained value shows significant development. 

Indicating convergence, the gradient—which represents the 

rate of change in weights—dropped from 1.15E+06 to 223. 

Reaching the objective of 6, the validation checks imply no 
appreciable change in validation error during six consecutive 

epochs, so probably led to an early ending. From 0.001 to 10, 

the Mu value—a factor regulating the learning rate in 

Levenberg-Marquardt optimization—showcased signal 

model changes throughout training. Within the limits imposed 

by early stopping conditions, the model showed general good 

learning. 

TABLE I 

TRAINING PARAMETERS FOR ANN 

Unit 
Initial 

value  

Stopped 

value  

Target 

value  

Epoch 0 13 1000 

Elapsed Time - 00:00:00 - 
Performance 2.33E+05 122 0 
Gradient 1.15E+06 223 1.00E-07 
Mu 0.001 10 1.00E+10 
Validation Checks 0 6 6 

 

The ANN model demonstrated strong predictive 

capabilities across training, validation, and testing phases as 

listed in Table 2. With a correlation coefficient of 0.9851, the 

model obtained an MSE of 129.8261 during training, 

therefore demonstrating a very good match between the 

anticipated and actual data. With a mean absolute percentage 

error of 0.2541 percent, exact forecasts with little variation 

were shown. Showing strong generalizing ability, the MSE 

dropped to 25.57 in the validation phase using a correlation 

value of 0.9218 and a mean absolute percentage error of 3.258 

percent. Strong prediction accuracy was shown in the test 

phase by the model obtaining a mean absolute percentage 

error of 0.2121 percent and a correlation value of 0.988. At 

2.63E+04, the MSE was larger, however, indicating the 
likelihood of outliers or significant test data variance. The 

model showed consistent generalization to unprocessed data 

and did quite well in estimating ship fuel usage. 

TABLE II 

STATISTICAL EVALUATION OF THE ANN MODEL 

  Observations  MSE  R MAPE, % 

Training  105 129.8261 0.9851 0.2541 
Validation  22 25.57 0.9218 3.258 
Test  22 2.63E+04 0.988 0.2121 

 

This subfigure (Figure 5a) shows the gradient, mu, and 

validation checks along with the training progress for 13 

epochs. Reflecting the convergence of the model toward an 

optimum solution, the gradient, which reflects the rate of 

change of the error function, drops greatly from the beginning 

value and settles at 223.0834 by the last epoch. The mu 

parameter, which controls the step size in Levenberg-

Marquardt optimization, rises gradually to show changes to 

the learning rate throughout training to balance speed and 

stability. Early halting was set off after six consecutive epochs 

without an appreciable increase in validation performance, 
according to validation tests. .

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Fig. 5  ANN model (a) gradient, mu, and validation checks (b) training progress (c) error histogram (d) correlation results 
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Once the model begins to overfit the validation data, this 

method stops training, therefore preventing overfitting.  Over 

13 epochs, the subfigure (Figure 5b) the mean squared error 

(MSE) trends for the training, validation, and test sets. During 

the first epoch, the training and validation errors drop quickly; 

the validation error reaches its lowest level of 25.57 at epoch 

7, therefore indicating the best validation performance. Past 

this point, the validation error starts to somewhat rise, 

suggesting possible overfitting. Though larger overall, the test 

error stabilizes and indicates that the model generally fits 
unobserved data.  

For training, validation, and test datasets the histogram 

(Figure 5c) shows the distribution of errors—that is, 

variations between goals and outputs. Usually clustered close 

to zero, most mistakes indicate correct forecasts. A few 

outliers with more significant errors, especially in the test set, 

are evident, nevertheless, and may have affected the high test 

MSE. For training, validation, testing, and combined datasets 

the regression graphs (Figure 5d) show the link between 

expected and actual results. With a R = 0.99246 strong 

correlation value, the training plot exhibits a tight match. 
Strong but much less perfect fits are shown by the somewhat 

lower R values of 0.96008 and 0.994 respectively from the 

validation and test sets. With an R-value of 0.87658 overall, 

the model's dependability in estimating ship fuel consumption 

across all datasets is highlighted 

2) XGboost-based SFC prediction model: 

The XGBoost model was developed using a dataset of 149 

data points containing key operational parameters for 

predicting SFC in gallons. To ensure that the training and 

assessment of the model were conducted on different datasets, 

the dataset was split into training and testing subsets in a 70:30 

ratio. Comprising seventy percent of the data, the training 

sample helped to maximize the parameters of the model and 

equip it to spot trends and linkages within the dataset. The 

remaining thirty percent was set aside for testing to evaluate 

generalizing to unprocessed data and predicted the accuracy 

of the model. The graphic shows how well the XGBoost 
model forecasts ship fuel use. For both the training and testing 

sets, the graphic contrasts measured SFC values with 

expected ones. The training data are shown by the green stars, 

and the testing data by the red stars. Where anticipated and 

measured values are equal, the black dashed line—the ideal 

line of perfect prediction—is found. The green and orange 

dashed lines provide ±10% prediction boundaries, therefore 

offering a graphic assessment of prediction accuracy.  

With an R² of 1, the model shows almost flawless 

performance for the training set, therefore demonstrating a 

perfect match between anticipated and actual values. At 0.01 

the MSE is very low; the mean absolute percentage error 
(MAPE) is 0.21%, therefore verifying the model's accuracy 

throughout training. Most training data points exhibit great 

agreement by precisely on or very near the optimal prediction 

line. Though somewhat less than the training set, the model 

gets an R² of 0.9015 for the testing dataset, suggesting a 

significant connection between predicted and observed 

values. Higher than the training MSE, the test MSE is 259.45, 

indicating some aberrations in the model upon exposure to 

unprocessed data. Although it is larger than the training error, 

the test MAPE is 16.97%, still within reasonable bounds for 

many practical uses. A few testing data points, however, stray 

from the optimal line and lie outside the ±10% prediction 

limits, therefore suggesting the existence of prediction 

mistakes for certain data points. Based on high R² values and 

low error measurements, the XGBoost model shows overall 

great performance during training and good generalizing on 
the test data. The chart points out opportunities for 

improvement, including lowering prediction errors for certain 

outliers, and emphasizes the model's capacity to fairly 

estimate ship fuel usage. This assessment emphasizes the 

relevance of the concept in pragmatic marine fuel efficiency 

uses. Figure 6 presents actual vs predicted SFC values. 
 

 
Fig. 6  Actual vs predicted SFC values.  

 
Figure 7 evaluates the performance of the XGBoost model 

in predicting ship fuel consumption and is divided into four 

subplots, focusing on point-to-point comparisons and residual 

analysis for both training and test datasets. A detailed 

discussion of these subplots follows. For the training set, the 

subplot shown in Figure 7a contrasts the measured SFC (solid 

blue line) with the projected SFC (dashed green line). The 

high degree of overlap between the two lines indicates that the 
model faithfully reflects the trends and variances in the 

training data. The predictions closely reflect peaks and 

troughs in the observed data, suggesting the model learns 

intricate interactions between input factors and output very 

well. Small variations, however, might arise at certain places 

suggesting small prediction mistakes most likely related to 

overfitting to the training data. Consistent with the previous-

recorded R² of 1, the almost perfect alignment shows 

outstanding performance on the training set overall. Plot 

Figure 7b shows for the test dataset the comparison between 

observed SFC (solid red line) and anticipated SFC (dashed red 

line). The alignment is less exact than in the training data, 
even though the expected values usually track the observed 

patterns. There are some variances, particularly at the highest 

levels.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7  XGBoost-based model’s (a) Data point comparison during training (b) Data point comparison during test (c) Residual plot for training (d) Residual plot 

for test phase 

 

These differences might be ascribed to noise, data 

variability, or inadequate training set scenario representation 

of certain events. Still, the model works reasonably on 

unknown data, and the general trend is well represented. 

Though less than for the training set, the findings line up with 

the test R² of 0.9015, which demonstrates strong predictive 
power. The deviations point out locations that extra 

hyperparameter adjustment or feature inclusion may be 

needed. Plotting residuals, that are the difference between 

observed and expected values—against data points for the 

training set is shown in Figure 7c. Residuals should ideally 

scatter randomly about 0 without any obvious pattern, 

meaning the model picks all systematic tendencies in the data. 

Confirming the validity of the model, the residuals in this 

subplot are zero and show no systematic bias. The few 

residuals support the low training MSE of 0.01, therefore 

verifying the correctness of the model in matching the training 

data. On the other hand, the grouping of certain elements 
refers to small local deviations, which in the whole framework 

are hardly significant. Figure 7d shows, like the training data, 

the residuals for the test dataset. Test residuals show more 

variation than training residuals; certain locations differ far 

from zero. These anomalies highlight certain test data points 

where the model has difficulty forecasting precisely. Such 

events might result from underrepresented patterns or noise in 

data attributes not sufficiently recorded during training. Still, 

most residuals fall within reasonable limits, therefore 

validating the test MAPE of 16.97%. The distribution 

indicates no systematic bias, meaning the model generalizes 

well and emphasizes the necessity of improving its 

performance even further in certain situations.  

Both the point-to-point comparison and residual plot 

indicate that the XGBoost model works very well on the 

training dataset, precisely predicting SFC with minimum 

mistakes, so. This good result shows the capacity of the model 
to efficiently learn the fundamental connections in the data. 

Despite occasional outliers and somewhat higher errors, the 

model generalizes effectively on the test set to capture main 

patterns. Although the test performance is strong, especially 

in managing peak values and outliers, it still offers the 

opportunity for development. Residual analysis shows neither 

dataset has any consistent inclination. The modest residuals in 

the training set and good generalization-oriented tolerable 

deviations in the test set point to a well-trained model. 

Improving test performance might call for hyperparameter 

adjustment, more diverse training data, or investigating other 

characteristics to better capture complicated interactions. 
Dealing with test outliers might help the model's 

dependability even further. All things considered, Table 3 

shows how well the XGBoost model predicts ship fuel usage, 

shows great training results and good generalizing to 

unknown data, and points out areas that need work.  

TABLE III 

STATISTICAL EVALUATION OF THE XGBOOST MODEL 

Metric Train Test 

R2 1 0.9015 
MSE 0.01 259.45 

MAPE 0.21% 16.97% 
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3) Model comparison: 

The comparative analysis of the ANN and XGBoost 

models reveals distinct strengths and weaknesses in terms of 

training and test performance metrics. With an R of 0.9851, 
MSE of 129.8261, and a rather low MAPE of 0.2541%, the 

ANN model shows great training performance. On training 

data, the XGBoost model beats by perfect R² of 1.000, a far 

smaller MSE of 0.01, and even a lower MAPE of 0.21%. This 

suggests that XGBoost shines in remarkably accurate learning 

of the patterns in the training data. The performance varies 

greatly on the test set. With a high R of 0.988, a modest 

MAPE of 0.2121%, and a disproportionately high MSE of 

26,300—indicating the existence of significant outlier errors 

in its predictions—the ANN model performs. On the other 

hand, albeit having a somewhat lower R² at 0.9015, the 
XGBoost model has a considerably smaller MSE of 259.45 

and a somewhat higher MAPE of 16.97%. This implies, based 

on the greater MAPE, XGBoost shows less consistent 

accuracy compared to the real values even if its total 

prediction errors are fewer. With a reduced MAPE and 

reflecting its capacity to preserve proportional accuracy, the 

ANN model shows greater test consistency. It’s quite high test 

MSE, however, suggests difficulties in managing severe 

deviations. Conversely, XGBoost fails to maintain 

proportional accuracy throughout the whole range of test data 

but shows strong management of outliers indicated by its low 

MSE. Overall, ANN shows great proportional accuracy with 
low MAPE across both datasets but suffers from great outlier 

sensitivity. XGBoost achieves a low test MSE by handling 

outliers better and delivering outstanding training 

performance; but its greater MAPE suggests that it 

compromises proportional accuracy. The application's 

tolerance for outliers and proportionate accuracy needs will 

choose which of the models to use. 

IV. CONCLUSION 

This research provides a comparative analysis of ANN and 

XGBoost models for optimizing ship fuel consumption 

through predictive modelling.  The results draw attention to 

the different strengths and constraints of every model in test 

performance measures as well as in training. Having a low 

MAPE of 0.2541% during training and keeping a decent 

MAPE of 0.2121% on the test set, ANN shows outstanding 

proportional accuracy. However, its high test MSE of 26,300 

points to difficulties controlling severe deviations and outliers. 

Conversely, XGBoost shows its capacity to precisely learn 

training data patterns by delivering a flawless R² of 1.000, a 
much lower MSE of 0.01, and MAPE of 0.21%. With a 

substantially lower MSE of 259.45, XGBoost efficiently 

controls outliers for test data; nonetheless, its larger MAPE of 

16.97% represents inferior proportional accuracy throughout 

the data range. 

The operational priorities determine which of ANN and 

XGBoost to use. While XGBoost is useful for situations that 

give controlling outliers priority and guarantee solid overall 

prediction performance, ANN is better suited for applications 

needing constant proportional accuracy and low variance. 

Particularly for complicated systems like ship fuel usage, the 
findings highlight the crucial importance model choice plays 

in predictive analytics. This work helps to further develop 

machine learning applications for marine operational 

efficiency, therefore allowing sustainable and reasonably 

priced solutions in the shipping sector. 
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