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Abstract—Hydraulic systems are essential in industries like aerospace and petroleum. However, equipment degradation can lead to 

failures over time, resulting in costly downtime. Condition monitoring and predictive maintenance can be implemented to predict the 

equipment's failure before the machine's total failure. Current data-driven methods for predicting faults in hydraulic systems are 

insufficient due to inaccurate predictions. Our primary objective of this research is to investigate the potential of different classifier 

models’ predictive capabilities in enhancing the reliability of hydraulic systems. This paper implements two machine learning models 

(ML), random forest (RF) and categorical boost (Catboost), and one deep learning model (DL), long-short-term memory (LSTM), to 

predict the maintenance needs of hydraulic system equipment using the data from ZeMA gGmbH. The results of the models are 

evaluated through different metrics, such as Precision, Recall, F1-Score, and Accuracy. The outcomes of the experiments validated the 

paramount importance of the RF model, which has proven to be the most efficient and successful in accurately predicting the instances 

of equipment failure before the occurrence of total system failure. Critical hydraulic system condition components revealed their 

varying performance across different components, with LSTM excelling in predictiveness of the valve, RF dominating pump 

predictions, and overall reliability observed for Accumulator and Stable Flag. The experimental findings demonstrate that the proposed 

method for predicting the state of hydraulic systems outperforms alternative approaches.  
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I. INTRODUCTION

Hydraulic systems are used in numerous industries, 

including the oil and gas, air transport, construction, mobile 

vehicles, and factory equipment. Hence, many 

installations/mechanical components used in these 

applications need frequent service to continue operating 

flawlessly. As an innovative approach within industries, 

predictive maintenance (PdM), through its capability to detect 

potential equipment breakdown through sensors embedded in 

them, forms part of the Internet of Things (IoT). The 

conventional approach to machine maintenance costs a lot and 
mainly responds to breakdowns. Machine Learning (ML) and 

Deep Learning (DL) algorithms are used for predicting 

equipment failures, which have shown promising results in 

predicting them before they occur [1], [2]. This evolution 

includes increased operational efficiency, decreased 

downtime, and better practice in predictive maintenance [3]. 

Condition monitoring (CM) is the initial step or act that 

should be done to look for possible conditions and predict 

maintenance to stop machines from being down for a long 

time and reduce maintenance expenses [4]. It involves 
sampling process data, such as temperature, pressure, and so 

forth, through sampling equipment connected to a computer 

system [5]. The use of CM is an essential aspect of PdM. PdM 

entails continuous monitoring of machines for their health 

status and working conditions, which can lead to quality 

improvement of products, increased output rates, and overall 

factory performance [6], [7]. 

Hydraulic systems consist of five conditioning 

components: a cooler, which manages the fluid temperature 

and prevents overheating; the valve controls fluid flow and 

direction; the pump provides the necessary pressure to 
circulate fluid; the accumulator stores energy and 

compensates for fluid leakage; and the stable flag serves as an 

overall health indicator. Previous studies have adopted 

diverse methodologies to conduct hydraulic system fault 

analysis, including ML, DL, or combining both. Some 
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researchers have concentrated on the failure of the entire 

hydraulic system ([8], [9], [10], [11], [12], [13], [14]), while 

others have focused on specific hydraulic system conditions 

such as valves, pumps, coolers, accumulators, and stable flags 

([4],[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], 

[25]). Certain studies have aimed at diagnosing multiple faults 

and identifying different degrees of single faults ([26], [27]). 

A significant portion of the existing literature focuses on 

identifying the failure of the entire machinery or four specific 

condition components. However, studies investigating the 
failure of all five condition components are relatively limited. 

This paper aims to bridge this gap by incorporating all five 

condition components that predict the maintenance of 

hydraulic systems. Also, to explore the predictive 

maintenance of various ML and DL models to improve the 

reliability of hydraulic systems. 

The paper begins by discussing the literature regarding the 

predictive maintenance of hydraulic systems. Hydraulic 

systems necessitate regular maintenance to ensure optimal 

performance. Implementing Predictive Maintenance (PdM) 

can significantly enhance the efficiency of these systems. By 
utilizing ML or DL algorithms, it is possible to predict the 

degradation state of the conditioning components. Table I 

shows the ML and DL algorithms discussed in the related 

works.  

A. Machine Learning 

This paper proposes a technique to improve the fault 

tolerance and accuracy of a hydraulic system by using logistic 

regression (LR), K-nearest Neighbor (KNN), decision tree 

(DT), RF, and naïve Bayes (NB) to predict faults. The 
proposed technique is implemented using the Spyder IDE 

software tool on a Raspberry Pi 3 Model B+ controller [8]. 

The authors proposed a new design of multi-layer stacking 

ensemble models to enhance the fault detection of 

manufacturing plants through the use of data from hydraulic 

systems by combining five ML algorithms and Linear 

Discriminant Analysis (LDA) together for better 

classification performance than the traditional stacking 

ensemble methods [28]. Proposed for hydraulic system 

failure prediction enhancement was a Time-based 

Imbalanced Data Synthesis Technique (TIDS) process and 
an XGboost classifier used to generate time domain features 

from data and to synthesize minority samples to address data 

imbalance [10].  

The authors found faults in the pneumatic system. They 

predicted them with a hybrid semi-supervised learning model 

combined with traditional classification methods such as 

support vector machine (SVM), LR, DT, NB, and RF [12]. On 

the other hand, different research proposes a probability-

based algorithm for analyzing the time-series data of 

hydraulic systems and evaluating multiple conditions using 

the Gaussian Mixture Model (GMM) for high accuracy [20]. 
The authors presented a method to diagnose various faults in 

the condition components of a hydraulic system based on 

principal component analysis and a multi-output, multi-class 

SVM for effective fault identification [22]. 

 

 

B. Deep Learning 

One proposed data-driven approach focuses on deep neural 

networks (DNN) for multi-class classification degradation 

levels of each state of the hydraulic system [26]. The authors 
have described a strategy designed to diagnose many faults in 

hydraulic systems using time-series representations with FCN 

to acquire instantaneous features throughout multi-rate data 

[27]. The authors presented an advanced neural network 

model, Auto-NAHL, with automated hyperparameter tuning 

through Particle Swarm Optimization (PSO) for predicting 

maintenance in hydraulic systems [19]. Aa study focused on 

AI technique based on a Residual Network (ResNet-18) is 

presented for the high detection classification of faulted 

cooling circuitry in hydraulic systems [29]. Researchers 

proposed a Multirate Sensor Information Fusion Strategy 
(MRSIFS) for fault diagnosis under multitask conditions, 

which would address the condition of the hydraulic system. 

The method proposed in this study uses multidimensional 

convolutional blocks and integrates multisource information 

fusion into the architecture of CNN [25]. 

C. Machine Learning and Deep Learning 

A study focusing on predictive maintenance was conducted 

to diagnose faults and predict the condition of the components 

in hydraulic systems using LR, RF, ANN, LightGBM, and 
Catboost [15]. A web application was also developed to 

demonstrate the exploratory data analysis of the system’s 

condition. Researchers suggested a method for monitoring the 

health condition of hydraulic systems. Ensemble learning was 

used to improve the predictive precision of SVM classifiers, 

forming this method's essence. Besides, LDA and ANN were 

incorporated to compare the results against ensemble SVM 

[16]. A proposed method using machine and DL algorithms 

for fault detection and tolerance in each condition of the 

hydraulic systems. These algorithms include LR, KNN, DT, 

RF, and NB [4]. 
This includes the predictive study of industrial machine 

mechanical part conditions by using machine and deep 

learning algorithms, particularly LSTM and RF algorithms 

[17], [30]. In this research [31], the authors employed LSTM-

based machine learning algorithms for business energy 

management aimed at the efficient use of energy in the case 

of electric vehicle (EV) charging, enhancing the planning and 

reducing the computation requirements compared with 

conventional methods.  In another study, the authors 

presented an approach to monitoring the conditions of 

hydraulic systems using LDA, ANN, Linear SVM, and RBF 

SVM algorithms. The proposed technique applies 
multivariate statistics in sensor data analysis and fault 

detection. The data extracted from this is used in the training 

[18]. A proposed method for fault classification in hydraulic 

systems using a combination of Nearest Centroid (NC) with 

Dynamic time warping Barycenter Averaging (DBA) and RF 

algorithm to enhance the accuracy and speed of diagnosis 

[11]. A study on the predictive maintenance system on the 

innovative health assessment framework for hydraulic 

systems is undertaken using ensemble general multiclass 

support vector machines (EGMSVM) for stacking several 

GMSVMs as sub-models and one RF as a metamodel [21].  
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TABLE I 

MACHINE AND DEEP LEARNING ALGORITHMS 

 [4
] 

[8
] 

[11
] 

[12
] 

[13
] 

[14
] 

[15
] 

[16
] 

[17
] 

[18
] 

[19
] 

[21
] 

[23
] 

[24
] 

[25
] 

[26
] 

[27
] 

[28
] 

LR / /  /  / /       /    / 
KNN  /    /             
DT  / / /          /     
RF  / / /  / /  /   /  /     
NB  /  /  /             

ANN     /  / /  /         
XGBOOST              /    / 
LIGHTGBM       /       /     
CATBOOST       /            
LDA     / /  /  /  /  /     
Ensemble 
SVM 

       /           

DNN                /   

NN /                  
SVM /   / / /             
DF /                  
LSTM      /   /  / /       
SVM (Linear)   /       /         
SVM (RBF)          /         
SoftMax   /                
FCN                 /  
Auto-NAHL           /        

1D - CNN           / /       
DBN           /        
GMM                   
GMSVM            /       
E-SVM            /       
EGMSVMs            /       
Heterogeneou
s Stacking 

           /       

MO-RPELM             /      
MO-DSAE             /      
MO-RF             /      
MO-SVM             /      
MO-KNN             /      
CNN      /         /    
LSVM     /              
SVC              /     

Multi-layer 
Perceptron 

             /     

CART      /             

 

In this work, the authors presented algorithms such as 

LDA, RF, GMSVM, E-SVMs, LSTM, 1D-CNN, and 

heterogeneous stacking. This paper proposed a technique in 

hydraulic system fault diagnosis based on multiple output 
classification. They combined LDA and Hybrid Kernel 

Extreme Learning Machine to get high classification accuracy 

using MO-RPELM kernel. On the other hand, its authors 

compared performance in different models with MO-DSAE, 

MO-RF, MO-SVM, and MO-KNN, as shown in [21]. The 

present proposed hybrid artificial intelligence technique for 

predictive maintenance of the hydraulic system is composed 

of some algorithms like LSSVM, LDA SVM, and ANN, 

along with the combination of two additional feature selection 

techniques with ICEEMDAN-PCA or PCA without 

ICEEMDAN in combination with these algorithms [11]. A 

study was carried out on the anomaly detection system for the 
condition of hydraulic machinery signals, using eight 

algorithms: Multi-layer Perceptron, LDA, DT, RF, XGBoost, 

SVC, LightGBM and LR, along with three feature selection 

methods in the form of Pearson Correlation Coefficient, 

Spearman's Rank Correlation Coefficient, and the Boruta 

Algorithm [22]. It studies the fault detection and diagnosis 

framework for hydraulic machinery with nine algorithms: 
CNN, LR, CART, LDA, SVM, KNN, LSTM, RF and NB. 

The algorithms are implemented for four feature selections—

Feature Importance (FI), RkSE, Time Domain Features, and 

Principal Component Analysis—without feature selection to 

compare different results [12]. 

To conclude, most authors implemented fault analysis on 

the degradation states of the hydraulic system condition 

components since monitoring the health is crucial. However, 

a comprehensive analysis of all five condition components is 

often overlooked. This study aims to fill this void, thereby 

maintaining energy efficiency and material savings and 

enhancing quality.  In previous research papers, most 
implemented both ML and DL algorithms; in our research 

paper, the implementation of the ML model will be based on 

the most and least frequent ones: RF and Catboost. Catboost 
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achieved high accuracy for all the hydraulic system conditions 

compared to other ML algorithms [12]. For DL, the most 

frequent will be implemented, where LSTM is chosen over ANN 

due to LSTM performing better in previous papers for predicting 

the degradation states of the hydraulic system conditions. For 

example, LSTM achieved high accuracy in predicting the 

conditions of the hydraulic system with results of cooler (100%), 

valve (95%), pump (99%), and accumulator (97%) [14]. In 

another research paper, LSTM achieved results for coolers 

(100%), valves (100%), pumps (100%), and accumulators (73%) 
[18]. Compared to ANN results of cooler (100%), valve 

(100%),15 pump (80%), and accumulator (50.4%) [15]. In 

another paper, ANN had better results due to the feature selection 

technique, which resulted in a cooler (100%), valve (97%), pump 

(94%), and accumulator (92%) [12]. 

This study presents a predictive maintenance framework 

that significantly advances from current methods. Most of the 

earlier studies concentrated on either one or a few condition 

components of the hydraulic systems, which may affect their 

predictive abilities. In contrast, our proposed approach 

consists of all five condition components of hydraulic 
systems, offering a comprehensive and integrated solution. 

Therefore, this paper attempts to develop and validate a model 

which predicts the degradation state of certain vital parts of a 

hydraulic system using ML and DL techniques. This approach 

bridges the gap in current predictive maintenance strategies 

and sets a new standard for hydraulic systems reliability 

improvement. 

II. MATERIALS AND METHOD 

The methodology proposed includes the ZeMA gGmbH 

dataset, data pre-processing, modelling, and evaluation of the 

hydraulic system's predictive maintenance; the methodology 

flow chart is shown in Fig. 1. 
 

 
Fig. 1  Hydraulic System Methodology Chart 

A. Data Source 

The hydraulic system health condition data was sourced 

from a hydraulic test rig by the Centre for Mechatronics and 

Automation Technology (ZeMA), Saarbruecken, Germany 

[32]. The dataset encapsulates sensor data from the test rig, 

designed to simulate four distinct types of faults and system 

stability, each with varying severity levels. The test rig 

includes a primary fluid working circuit and an auxiliary 

cooling-filtration circuit connected by an oil tank. The 

working circuit, powered by main pump MP1 (with an 

electrical motor power of 3.3kw), undergoes cyclic repetition 

of different load levels regulated by the proportional pressure 

relief valve. 

The collection of process measures like pressure, volume 
flow and temperature are carried out by the system every 60 

seconds, while all the sensors are programmed to log process 

values in a cyclic manner. In the same experiment, five 

hydraulic components of the system’s cooling circuit were 

systematically changed: cooler, valve, pump, accumulator, 

and stable flag. The dataset consists of 2205 instances which 

constitute a useful basis for analysis. It includes multiple 

feature types, such as multivariate time-series data with 

numerical and categorical attributes. It consists of raw sensor 

data in matrix form, where every row is a cycle while columns 

are the data points within a cycle. 
The test rig was designed to emulate many fault scenarios, 

the details of which are shown in Table II. The test rig is 

equipped with sensors that record a variety of process values, 

including pressure (PS1-6), motor power (EPS1), volume 

flow (FS1-2), temperature (TS1-5), vibration (VS1), cooling 

efficiency (CE), cooling power (CP), and efficiency factor 

(SE). These sensors operate independently, meaning their 

readings remain unaffected by the system's state. Instead, they 

serve the crucial function of monitoring the system's 

condition. 

TABLE II 

SENSOR DATA 

Physical 

Dimension 
Sensor Measuring Value Units SF 

Pressure PS1-

PS6 

Pressure bar 100 

Hz 

MotorPower ESP1 Motor Power W 100 

Hz 

Flow Rate FS1-

FS2 

Volume Flow 1/min 10 

Hz 

Temperature TS1-

TS5 

Temperature °C 1 Hz 

Vibration VS1 Vibration mm/s 1 Hz 

Cooling 

Efficiency 

CE Cooling 

Efficiency(virtual) 

% 1 Hz 

Cooling Power CP Cooling Power 

(virtual) 

kW 1 Hz 

System 

Efficiency 

SE Efficiency Factor % 1 Hz 

 

The control parameters in this hydraulic system are deemed 
dependent variables, as their conditions are directly 

influenced by the independent variables within the system. 

These dependent variables include the cooler, valve, pump, 

and hydraulic accumulator, which are crucial to the system’s 

operation and are detailed in Table III. The cooler regulates 

the temperature, the valve controls the fluid flow, the pump 

maintains pressure, and the accumulator compensates for 

pressure fluctuations. 

B. Data Pre-Processing 

Data preprocessing is essential since it aligns the collected 

data and lays a base for any data-driven technique, allowing 
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an accurate and detailed analysis [15]. For this research paper, 

the data preprocessing implement was first extracting data 

from text files into arrays. Calculating the mean for all sensors 

per cycle. Setting the data frame for the processed data 

includes data from sensors and condition components. Lastly, 

explore the data to identify any missing or null values. Data 

exploration is visualizing data by identifying patterns and 

outliers, data distribution, and its importance. During the 

exploration, it was found that no data points were missing or 

outliers. Since the dataset does not include any outliers or 
missing data, this helps improve the predictions' accuracy. 

TABLE III 

CONTROL PARAMETERS 

Component Condition 

Cooler Cooling power decrease 
Valve Switching degradation 
Pump Internal leakage 
Accumulator Gas leakage 
Stable Flag Condition stability 

C. Modelling 

Upon completing data pre-processing, training was 

assigned 80% of the data, while 20% was reserved for testing. 

This allocation is consistent with research suggesting that the 

best results are obtained using 20-30% of all available test 

data sets and 70-80% on training [33]. Predictive maintenance 

data modelling contains the prediction model development 

through ML and DL algorithms- RF, Catboost, and LSTM. 

Complex pattern recognition and relationship identification 
effectiveness guide the choice of these algorithms. This 

process entails choosing appropriate algorithms as well as 

training them using information that will help bring out 

patterns in this regard. 

RF is a versatile approach that outperforms regression- and 

classification-related tasks. It is created by combining several 

decision trees built on random samples and features. It is fast-

fitting, low parameter-sensitive, has built-in error estimation, 

and is effective even when dimensions are extremely high 

[34]. Catboost, a well-known algorithm for gradient-boosting 

trees, utilises a random permutation process and unbiased 
boosting to mitigate information loss and variance. It 

considers any possible combination involving categorial to 

facilitate its performance and generalisation [35]. LSTM 

architecture contains memory blocks equipped with self-

connected memory cells and three gates for ruling the 

information flow. It is suitable for long term dependencies 

clustering in sequential data, including forecasting time 

series, natural language processing and speech recognition 

[36]. 

D. Evaluation 

Evaluation metrics are among the most critical tools for 

estimating model effectiveness and providing thrilling 

insights into a number of aspects of the functionality of 

making predictions by the model. Precision can also be 

referred to as positive predictive value. It provides a measure 

of correctness for those positive predictions made by a model 

in measuring the ratio of accurate positive outcomes to all 

positive forecasts. Recall, sometimes called sensitivity, is a 

measure of the model's capability to capture all relevant 

instances from a dataset. It finds the ratio of correct positive 

predictions divided by the number of actual positive 

predictions. The F1-Score encapsulates both precision and 

recall in one. The score is calculated as the harmonic mean of 

both, giving a good indicator across classes in an imbalanced 

data set. Finally, accuracy evaluates the overall correctness of 

the model based on the number of proper outcomes, including 

both true positives and true negatives, out of the whole 

number of cases considered. Table IV shows the evaluation 

metrics and their formulas. 

TABLE IV 

EVALUATION METRICS 

Metrics Formula  

Accuracy 

 

(1) 

Precision 

 

(2) 

Recall 

 

(3) 

F1-Score 

 

(4) 

 

Using Precision, Recall, F1-Score, and Accuracy metrics 

will be implemented to evaluate the performance of ML and 

DL models. 

III. RESULTS AND DISCUSSION 

A comprehensive prediction of the maintenance of 

hydraulic systems is carried out using ZeMA gGmbH data 

[32]. After the pre-processing for accuracy and alignment. 

ML and DL models are applied in predicting the failures in 

hydraulic systems., including Random Forest, Catboost, and 

Long Short-Term Memory. In this case, performance-based 

assessment metrics would be presented together with the 

model performances, such as Precision, Recall, F1-Score, and 

Accuracy. The results obtained for each of the five critical 

components of hydraulic systems, cooler, valve, pump, 
accumulator, and stable flag, are clearly compared by the 

algorithms used as shown in Tables V, VI and VII. 

A. Random Forest 

The RF model predicts the component ‘Cooler’ with 

extraordinary accuracy on all metrics as shown in Table V and 

Fig. 2. The valve component had a consistent performance of 

95.92% except for the F1-Score, which is slightly lower at 

95.90%. The pump component, however, displayed sorted 
scores which are near perfect: 99.55% for accuracy and recall, 

99.56% for precision, and F1 score. The Accumulator 

components and Stable Flag performance was also high, 

ranging from 97.01% to 97.60%. RF model was excellent at 

predicting several conditions, especially Pump and Cooler. 

Those high marks under all these standards signify that this 

model can be a useful resource when it comes to predictive 

maintenance. The slightly lower scores for the Valve, 

Accumulator and Stable Flag components, while still high, 

suggest areas where the model’s performance could 

potentially be improved. 
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TABLE V 

RF COMPARISON OF EVALUATION METRICS 

 Accuracy Precision Recall F1 Score 

Cooler 100% 100% 100% 100% 
Valve 95.92% 95.92% 95.92% 95.90% 
Pump 99.55% 99.56% 99.55% 99.55% 
Accumulator 97.51% 97.60% 97.51% 97.52% 
Stable Flag 97.01% 97.13% 97.05% 97.02% 

 

 
 

Fig. 2  RF Evaluation Metrics Results 

B. Catboost 

The Catboost model predicts with extraordinary accuracy 

for component ‘Cooler’, reaching 100% predictor rank in all 

dimensions as displayed in Table VI and Fig. 3. The Valve 
achieved scores between 89.02% and 89.12%, suggesting a 

good estimation rate, though not as perfect. The scores for the 

Pump component ranged from 98.87% to 98.92%, showing 

prediction accuracy that is close to perfect. High prediction 

accuracy is indicated as the Accumulator and Stable Flag 

component scores range from 95.01% to 95.63%. These 

findings prove how good our model is at predicting the status 

of different hydraulic system components: it can do so with 

assurance due to results obtained through its use, indicating 

the robustness and reliability of the Catboost model. The 

model may assist in the predictive maintenance and 
monitoring of hydraulic systems by preventing potential 

system failures and enhancing operational efficiency. There 

are corresponding areas where the valve component could be 

used to enhance the overall model’s performance. Therefore, 

further modifications will target and meet this specific design 

need. 

TABLE VI 

CATBOOST COMPARISON OF EVALUATION METRICS 

 Accuracy Precision Recall 
F1-

Score 

Cooler 100% 100% 100% 100% 
Valve 89.12% 89.02% 89.12% 88.77% 
Pump 98.87% 98.92% 98.87% 98.87% 
Accumulator 95.01% 95.06% 95.01% 95.02% 
Stable Flag 95.69% 95.83% 95.69% 95.63% 

 

 

Fig. 3  Catboost Evaluation Metrics Results 

C. LSTM 

The Cooler, Valve and Accumulator components turned to 
be the best predicted by an LSTM model with this observation 

pointing out that there exists an outstanding forecasting ability 

for such components as seen in Table VII and Fig. 4. In terms 

of performance, however, it is evident that the Cooler, Valve 

and Accumulator yield better scores as compared to the Pump, 

with 73.92% for accuracy rate, 82.00% for Precision rate and 

F1 Scores suggesting potential improvements. The lowest 

performing component is the Stable Flag component with an 

accuracy rate of about 66% for recall and 67% precision. The 

corresponding 53% F1 Score, while the related 44% 

precision. From these findings, it can be deduced that the 
LSTM model has some strongholds that should be 

strengthened to increase its ability to predict outcomes of the 

hydraulic system more accurately. Future research can be 

focused on optimizing LSTM architecture, for instance, by 

introducing more methods of feature scaling and selection in 

order to enhance the prediction of these constituents. 

Fig. 5 illustrates the three ML algorithms—RF, Catboost, 

and LSTM—across five critical components of hydraulic 

systems: Pump, Cooler, Hydraulic Accumulator, Valve and 

Stable Flag. Notably, the Cooler predictions achieved perfect 

accuracy (100%) across all mod LSTM outperformed the 

other algorithms for Valve maintenance with 100% accuracy, 
while Pump predictions favoured the RF model (99.55%). RF 

and Catboost performed well for Accumulator maintenance 

(97.51% and 95.01%, respectively). However, in the case of 

Stable Flag predictions, reliability was observed with RF and 

Catboost (97.05% and 95.69%), while LSTM lagged 

(66.67%). 

TABLE VII 

LSTM COMPARISON OF EVALUATION METRICS 

 Accuracy Precision Recall 
F1-

Score 

Cooler 100% 100% 100% 100% 
Valve 100% 100% 100% 100% 
Pump 73.92% 82.23% 73.92% 71.81% 
Accumulator 100% 100% 100% 100% 
Stable Flag 66.67% 44.44% 66.67% 53.33% 
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 Fig. 4  LSTM Evaluation Metrics Results 

 

 

Fig. 5  Overall Accuracy of Classifier Models  

 

RF performed well for the cooler, but the valve, 

accumulator, and stable flag had lower accuracy. It should be 

addressed through better hyperparameter tuning and feature 

selection. Catboost showed high accuracy in the cooler 

component but lower performance on the valve, indicating the 

need for feature selection analysis. LSTM had excellent 
accuracy for valve, cooler, and accumulator prediction 

results; however, lower accuracy for the pump and stable flag 

components suggests a need for more hyperparameter tuning 

or incorporating additional context into the model. 

IV. CONCLUSION 

In conclusion, the aim was to explore the potential of 

various types of classifier models in predicting hydraulic 

equipment failure. This was done using ML and DL models. 
RF, Catboost and LSTM algorithms were used in the research. 

The results show that valve predictions are made by LSTM 

with excellent performance levels whereas pumps have the 

best outcome in terms of RF. Besides, accumulators, as well 

as stable flags, could be predicted accurately by both RF and 

Catboost. The recommendation for future research is to 

continue implementing feature scaling, selection, and 

extraction methods to improve the accuracy of fault prediction 

models for hydraulic systems. 

REFERENCES 

[1] W.-W. Tay, S.-C. Chong, and L.-Y. Chong, “DDoS Attack Detection 

with Machine Learning,” Journal of Informatics and Web 

Engineering, vol. 3, no. 3, pp. 190–207, Oct. 2024, 

doi:10.33093/jiwe.2024.3.3.12. 

[2] S. A. Lashari, M. M. Khan, A. Khan, S. Salahuddin, and M. N. Ata, 

“Comparative Evaluation of Machine Learning Models for Mobile 

Phone Price Prediction: Assessing Accuracy, Robustness, and 

Generalization Performance,” Journal of Informatics and Web 

Engineering, vol. 3, no. 3, pp. 147–163, Oct. 2024, 

doi:10.33093/jiwe.2024.3.3.9. 

[3] F. Raza, “AI for Predictive Maintenance in Industrial Systems,” 

Cosmic Bulletin of Business Management, vol. 2, pp. 167–183, 2023, 

doi: 10.13140/RG.2.2.27313.35688. 

[4] E. Quatrini, F. Costantino, C. Pocci, and M. Tronci, “Predictive model 

for the degradation state of a hydraulic system with dimensionality 

reduction,” Procedia Manuf, vol. 42, pp. 516–523, 2020, 

doi:10.1016/j.promfg.2020.02.039. 

[5] R. S. Beebe, Predictive maintenance of pumps using condition 

monitoring. Elsevier, 2004. Accessed: Jun. 22, 2024. [Online]. 

Available: 

https://openlibrary.org/books/OL3301501M/Predictive_maintenance

_of_pumps_using_condition_monitoring 

[6] R. Keith Mobley, An Introduction to Predictive Maintenance, Second. 

Elsevier, 2002. doi: 10.1016/B978-0-7506-7531-4.X5000-3. 

[7] C. Palanisamy and T. Gangadharan, “Review on Development of 

Digital Twins for Predicting, Mitigating Faults and Defects in Solar 

Plants,” International Journal on Robotics, Automation and Sciences, 

vol. 6, no. 2, pp. 1–5, Sep. 2024, doi: 10.33093/ijoras.2024.6.2.1. 

[8] M. Yugapriya, A. K. J. Judeson, and S. Jayanthy, “Predictive 

Maintenance of Hydraulic System using Machine Learning 

Algorithms,” in 2022 International Conference on Electronics and 

Renewable Systems (ICEARS), IEEE, Mar. 2022, pp. 1208–1214. 

doi:10.1109/ICEARS53579.2022.9751840. 

[9] J. Wang, T. Zhang, and W. Wang, “Health classification of hydraulic 

system based on k-means,” in 2020 International Conference on 

Urban Engineering and Management Science (ICUEMS), IEEE, Apr. 

2020, pp. 550–553. doi: 10.1109/ICUEMS50872.2020.00121. 

[10] C.-H. Chen, Y.-K. Chan, and S.-S. Yu, “Hydraulic System Failure 

Prediction Method with Limited Failure Data,” in 2023 Sixth 

International Symposium on Computer, Consumer and Control 

(IS3C), IEEE, Jun. 2023, pp. 171–173. 

doi:10.1109/IS3C57901.2023.00053. 

[11] Z. Peng, K. Zhang, and Y. Chai, “Multiple fault diagnosis for hydraulic 

systems using Nearest-centroid-with-DBA and Random-Forest-based-

time-series-classification,” in 2020 39th Chinese Control Conference 

(CCC), IEEE, Jul. 2020, pp. 29–86. 

doi:10.23919/CCC50068.2020.9189401. 

[12] B. Askari, G. Cavone, R. Carli, A. Grall, and M. Dotoli, “A Semi-

Supervised Learning Approach for Fault Detection and Diagnosis in 

Complex Mechanical Systems,” in 2023 IEEE 19th International 

Conference on Automation Science and Engineering (CASE), IEEE, 

Aug. 2023, pp. 1–6. doi: 10.1109/CASE56687.2023.10260469. 

[13] A. Buabeng, A. Simons, N. K. Frempong, and Y. Y. Ziggah, “Hybrid 

intelligent predictive maintenance model for multiclass fault 

classification,” Soft comput, vol. 28, no. 15–16, pp. 8749–8770, Aug. 

2024, doi: 10.1007/s00500-023-08993-1. 

[14] A. Mallak and M. Fathi, “Sensor and Component Fault Detection and 

Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder 

Detector and Diagnostic Classifiers,” Sensors, vol. 21, no. 2, p. 433, 

Jan. 2021, doi: 10.3390/s21020433. 

[15] V. L. Chekkala and V. Milosavljevic, “Predictive Maintenance for 

Fault Diagnosis and Failure Prognosis in Hydraulic System MSc 

Research Project Data Analytics,” 2020. Accessed: Dec. 22, 2024.  

[16] P. Guo, J. Wu, X. Xu, Y. Cheng, and Y. Wang, “Health condition 

monitoring of hydraulic system based on ensemble support vector 

machine,” in 2019 Prognostics and System Health Management 

Conference (PHM-Qingdao), IEEE, Oct. 2019, pp. 1–5. 

doi:10.1109/PHM-Qingdao46334.2019.8942981. 

[17] S. Gaurkar, A. Kotalwar, and S. Gabale, “Predictive Maintenance of 

Industrial Machines using Machine Learning,” International Research 

Journal of Engineering and Technology, 2021. 

[18] N. Helwig, E. Pignanelli, and A. Schutze, “Condition monitoring of a 

complex hydraulic system using multivariate statistics,” in 2015 IEEE 

International Instrumentation and Measurement Technology 

Conference (I2MTC) Proceedings, IEEE, May 2015, pp. 210–215. 

doi: 10.1109/I2MTC.2015.7151267. 

[19] T. Berghout, M. Benbouzid, S. M. Muyeen, T. Bentrcia, and L.-H. 

Mouss, “Auto-NAHL: A Neural Network Approach for Condition-

Based Maintenance of Complex Industrial Systems,” IEEE Access, 

vol. 9, pp. 152829–152840, 2021, doi: 10.1109/access.2021.3127084. 

[20] J. Soh and D. Kim, “Condition Monitoring with Time Series Data 

Based on Probabilistic Model,” in 2021 24th International Conference 

on Electrical Machines and Systems (ICEMS), IEEE, Oct. 2021, pp. 

2630–2634. doi: 10.23919/ICEMS52562.2021.9634481. 

[21] J. Wu, P. Guo, Y. Cheng, H. Zhu, X.-B. Wang, and X. Shao, 

“Ensemble Generalized Multiclass Support-Vector-Machine-Based 

Health Evaluation of Complex Degradation Systems,” IEEE/ASME 

58



Transactions on Mechatronics, vol. 25, no. 5, pp. 2230–2240, Oct. 

2020, doi: 10.1109/TMECH.2020.3009449. 

[22] Z. Xu, H. Yu, J. Tao, and C. Liu, “Compound fault diagnosis in 

hydraulic system with multi-output SVM,” IET Conference 

Proceedings, vol. 2020, no. 3, pp. 84–89, May 2021, 

doi:10.1049/icp.2021.0470. 

[23] J. Liu, H. Xu, X. Peng, J. Wang, and C. He, “Reliable composite fault 

diagnosis of hydraulic systems based on linear discriminant analysis 

and multi-output hybrid kernel extreme learning machine,” Reliab Eng 

Syst Saf, vol. 234, p. 109178, Jun. 2023, 

doi:10.1016/j.ress.2023.109178. 

[24] D. Kim and T.-Y. Heo, “Anomaly Detection with Feature Extraction 

Based on Machine Learning Using Hydraulic System IoT Sensor 

Data,” Sensors, vol. 22, no. 7, p. 2479, Mar. 2022, 

doi:10.3390/s22072479. 

[25] X. Ma, P. Wang, B. Zhang, and M. Sun, “A Multirate Sensor 

Information Fusion Strategy for Multitask Fault Diagnosis Based on 

Convolutional Neural Network,” J Sens, vol. 2021, no. 1, Jan. 2021, 

doi: 10.1155/2021/9952450. 

[26] A. T. Keleko, B. Kamsu-Foguem, R. H. Ngouna, and A. Tongne, 

“Health condition monitoring of a complex hydraulic system using 

Deep Neural Network and DeepSHAP explainable XAI,” Advances in 

Engineering Software, vol. 175, p. 103339, Jan. 2023, 

doi:10.1016/j.advengsoft.2022.103339. 

[27] P. Zhang, W. Hu, W. Cao, L. Chen, and M. Wu, “Multi-Fault 

Diagnosis of Hydraulic Systems Based on Fully Convolutional 

Networks,” in 2022 13th Asian Control Conference (ASCC), IEEE, 

May 2022, pp. 631–636. doi: 10.23919/ASCC56756.2022.9828182. 

[28] K. Kim and J. Jeong, “Multi-layer Stacking Ensemble for Fault 

Detection Classification in Hydraulic System,” in 2022 26th 

International Conference on Circuits, Systems, Communications and 

Computers (CSCC), IEEE, Jul. 2022, pp. 341–346. 

doi:10.1109/CSCC55931.2022.00066. 

[29] H. A. Khan, U. Bhatti, K. Kamal, M. Alkahtani, M. H. Abidi, and S. 

Mathavan, “Fault Classification for Cooling System of Hydraulic 

Machinery Using AI,” Sensors, vol. 23, no. 16, p. 7152, Aug. 2023, 

doi: 10.3390/s23167152. 

[30] M. R. Abdurrahman, H. Al-Aziz, F. A. Zayn, M. A. Purnomo, and H. 

A. Santoso, “Development of Robot Feature for Stunting Analysis 

Using Long-Short Term Memory (LSTM) Algorithm,” Journal of 

Informatics and Web Engineering, vol. 3, no. 3, pp. 164–175, Oct. 

2024, doi: 10.33093/jiwe.2024.3.3.10. 

[31] J. Jayaram, J. Chetan, and B. Nayak, “Electric Vehicle Health 

Monitoring with Electric Vehicle Range Prediction and Route 

Planning,” Journal of Informatics and Web Engineering, vol. 3, no. 1, 

pp. 265–276, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.18. 

[32] T. Schneider, S. Klein, and M. Bastuck, “Condition monitoring of 

hydraulic systems Data Set at ZeMA.” Accessed: Jun. 22, 2024.  

[33] A. Gholamy, V. Kreinovich, and O. Kosheleva, “A Pedagogical 

Explanation A Pedagogical Explanation Part of the Computer Sciences 

Commons,” 2018. [Online]. Available: 

https://scholarworks.utep.edu/cs_techrephttps://scholarworks.utep.ed

u/cs_techrep/1209 

[34] C. Zhang and Y. Ma, Eds., Ensemble Machine Learning. New York, 

NY: Springer New York, 2012. doi: 10.1007/978-1-4419-9326-7. 

[35] S. Das, Artificial Intelligence in Highway Safety. Boca Raton: CRC 

Press, 2022. doi: 10.1201/9781003005599. 

[36] A. Graves, Supervised Sequence Labelling with Recurrent Neural 

Networks, vol. 385. Berlin, Heidelberg: Springer Berlin Heidelberg, 

2012. doi: 10.1007/978-3-642-24797-2. 

 

59




