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Abstract—Global climate change gains notoriety in literature discussions for potentially triggering extreme change intensity and 

regularity, like floods and droughts. In this study, the amount of daily rainfall in Selangor was predicted using a downscaling model 

based on the machine learning technique of the Support Vector Machine (SVM) approach. The collected atmospheric data (predictor) 

and daily rainfall data (predictand) between 2008 and 2018 used incorporate five imputation methods: mean imputation, K-nearest 

neighbor, Nonlinear Iterative Partial Least Squares (NIPALS) algorithm, Markov Chain Monte Carlo (MCMC) multiple imputation 

algorithm, and Expectation Maximization (EM) algorithm. The predictor selection was obtained using Principal Component Analysis 

(PCA). Primarily, gamma, cost, and epsilon were determined using K-fold cross-validation. Once the parameter value was identified, 

varying kernel types (linear, RBF, polynomial, and sigmoid) allowed the SVM performance as a regression model to be measured. The 

SVM model was developed by first handling missing data using imputation methods. The model generating the lowest RMSE value 

performs best because the difference of the estimated and observed value is minor. PCA efficiently reduced data dimension while 

retaining key variabilities. The SVM model with a Radial Basis Function (RBF) kernel outperformed others in predicting daily rainfall 

by displaying the lowest RMSE during calibration (13.95071) and validation (12.60423). The most fitting parameter set for the SVM 

model is � set to 4.00, � set to 1.935, and � set to 0.2. Based on the study, the SVM model performance is limited when applied to this 

dataset. For future studies, exploring advanced imputation techniques and broadening the methodology to other tropical climates for 

broader applicability are recommended. 

Keywords—Support vector machine; principal component analysis; gamma; cost; K-fold cross-validation. 

Manuscript received 4 Mar. 2024; revised 26 Aug. 2024; accepted 18 Dec. 2024. Date of publication 28 Feb. 2025. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Climate change globally acquires notoriety in literature 

discussions due to its potentially critical consequences on the 

Earth's environment. Generally, it has been acknowledged the 

surge in extreme climate intensity and regularity, like in the 
examples of floods and droughts, is potentially triggered by 

global climate change [1]. Climate prediction models and 

statistical analysis could approximate future rainfall data in 

this regard. These climate data, including rainfall, temperature, 

and wind speed, could be predicted via many climate 

prediction models [2], [3]. However, General Circulation 

Models (GCMs) and Support Vector Machines (SVMs) are 

extensively utilized in various studies to forecast climate 

properties, such as temperature and rainfall. For classification 

and regression problems, SVM is an effective machine-

learning technique. Selangor, a river basin near Kuala Lumpur, 

the capital of Malaysia, produces about 70% of the city's 

water needs for domestic and industrial use. There are two 
water supply dams in the Selangor River basin: the Tinggi 
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Dam and the Selangor Dam. A water intake is located 21 and 

42 km downstream of the Tinggi and Selangor dams. During 

the rainy season, when uncontrolled flow downstream of the 

dam is sufficient for abstraction, no discharge from the dam 

is required. However, releases are necessary during the dry 

season when downstream flows fall below normal. To achieve 

this goal, flow forecasting is needed so that future flows, 

based on specific time intervals, are estimated using current 

rainfall, and river flow can be known. In addition, drought 

monitoring, recognition, and forecasting play a vital in the 
planning and management of natural resources and the water 

resource system in this country, as well as avoiding any flash 

floods, water rationing problems, or the destruction of river 

water in the surrounding areas in Selangor. 

This study was conducted to help and estimate changes in 

rainfall in the future to find appropriate measures to reduce 

the problem of this natural disaster, this is why this study was 

conducted so that every issue that arises as a result of an 

increase in the amount of rain can be overcome. Hence, this 

study seeks to predict the daily rainfall amount in Selangor 

via a downscaling model based on the Support Vector 
Machine (SVM) approach and to find which imputation 

method to handle missing predictand data in Selangor. In 

addition, this study also incorporated five types of appropriate 

imputation methods as part of its methodology. It used K-fold 

cross-validation before applying the following learning 

technique: the Support Vector Machine (SVM). Besides, this 

study also aims to investigate the precipitation forecast on the 

data set acquired from Malaysia’s Department of Irrigation 

and Drainage (DID) using a support vector machine. This 

study was also conducted in Selangor, consisting of several 

stations on the map. Additionally, the data considered in this 
study were taken daily for 10 years, from 2008 to 2018. 

Therefore, the drive of this study is to help estimate future 

rainfall revolutions to find suitable measures to reduce the 

problem of this natural disaster. This is why this study was 

carried out so that every issue arising from increased rainfall 

can be overcome. When identifying the most appropriate 

machine learning model, selecting predictors (atmospheric 

variables) is one of the issues to address. A good predictor 

must be informative, and the relationship between the 

predictor and the prediction (local climate factor) should be 

stationary. Dimensionality reduction methods like MCA, 

PCA, and independent component analysis can be used to 
identify informative predictors. Predictor selection is also 

based on interactive mode-fitting approaches. Selecting the 

right dimension reduction method saves time and effort in 

selecting and analyzing relevant features. Moreover, a 

dimensionality reduction approach can identify and extract 

relevant characteristics (predictors) to enable faster predictor 

analysis while requiring less information. At the same time, 

using a dimensionality reduction strategy helps extract a small 

set of significant features that express a considerable data set 

[4]. Therefore, researchers studying climate change impacts 

will find it helpful to use the appropriate statistical 
downscaling methods that integrate predictor selection 

mechanisms. This study aims to highlight climate change-

related changes in rainfall events using Support Vector 

Machines. Missing data analysis, fitting predictors selection, 

historical data calibration, and pre-selected predictors 

validation were performed. As such, most Malaysian studies 

revolving around climate change focus on the effects of 

climate change instead of a specific parameter like rainfall 

and imminent trends. 

II. MATERIAL AND METHODS 

A. Missing Value 

The imputation of missing values poses a challenge when 

dealing with machine learning and data mining [5]. The bias 
generated by missing values may affect the quality of the 

mining outcome. These imputation techniques seek to 

estimate population parameters accurately to ensure that the 

power of data mining and data analysis techniques is retained. 

This study also incorporated five types of appropriate 

imputation methods as parts of its methodology, which are the 

mean imputation method, K-nearest neighbor approach, 

NIPALS (Nonlinear Iterative Partial Least Squares) algorithm, 

MCMC (Markov Chain Monte Carlo) multiple imputation 

algorithm, and EM (Expectation Maximization) algorithm. 

Mean imputation is commonly employed to replace data 
[25]. Depending on data distribution, the missing values are 

substituted with the sample mean, median, or mode. For large 

missing values, each value is imputed with an equal 

imputation value, the mean, resulting in a change in 

distribution shape. The more missing values, the smaller the 

standard deviation will be. Besides, the K-nearest neighbor 

(KNN) approach is a non-parametric classification algorithm 

that makes no assumptions about the elementary dataset [26]. 

It is known for its simplicity and effectiveness. The 

Expectation Maximization (EM) algorithm achieves maximum 

parameters’ likelihood estimates when missing data occurs. 

However, the EM algorithm is also more frequently applied 
when there is unobserved latent, where the data’s purpose was 

never for observation [27]. The NIPALS algorithm is applied 

to the dataset, while a PCA model predicts missing values [28]. 

MCMC method Monte Carlo simulation was used for 

imputation. In the MCMC method, the expectation-

maximization (EM) technique attains maximum likelihood 

estimates for missing data substitution [29]. 

B. Principal Component Analysis 

The principal component analysis (PCA) is significant in 

feature extraction and data compression. A large data matrix 

can also be reduced to a smaller dimension by maintaining 

mostly the original variability [6]. The PCA method is 

standard in data compression and feature selection. Regarding 

feature selection, a data space transforms into a reduced-

dimensional feature space. In the consequent section, we will 

briefly discuss some basic PCA knowledge. According to the 

varimax rotation method, only PCs with eigenvectors with 

values bigger than one can be utilized to generate new 

variables known as varifactors (VF) or factor loadings. In 

contrast to factor loading, factor scores describe the 
transformations of observations according to the original 

variables. In contrast to factor loading, factor scores describe 

the transformations of observations according to the original 

variables. The factor loading correlation is computed with the 

following formula: 

 �� = ∑ �	
���
�
  (1) 
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where 	
, as the eigenvector, denotes the �th entry with � =
1,2, … , �  and � = 1,2, … , � . �����  represents the absolute 

values of ���. In the correlation of factor loading, ��  sorts in 

descending order and uses ��  to store the order. To conclude, 

the steps involved in the PCA algorithm are firstly to obtain 

the input data matrix. Secondly, it centers the data matrix by 

subtracting the mean from all the observations. Thirdly, it 

generates a correlated database in the form of matrix 

correlation. Fourth, it calculates the eigenvalues and 

eigenvectors of the correlation matrix in PCA, and lastly, it 

selects the eigenvectors corresponding to the largest 

eigenvalues (more than 1). 

C. Turning Parameter 

The methods of cross-validation and repetitive random 

subsampling are similar, but in the sampling for the cross-

validation, no two steps overlap [30]. The KCV technique 

divides a dataset into k-independent subsets, with all but one 

of these subsets employed to train a classifier while the 

others evaluate the generalization error. The K-fold cross-

validation was run multiple times to increase the number of 

estimates. In K-fold cross-validation, the sample data was 

classified into � disjoint subset ���ℎ = 1,2,3, … , �  of 

equivalent size. As a term, “fold” signifies the number of 

resulting subsets. The mean of the � value signifies the CV 

estimates of extra-sample error. Denoted by ���ℎ =
1,2, … , � , the training set was achieved by excluding the ℎth 

subset, ��.Let � = !
" be the number of a subset’s units. The 

CV-estimator is the average error of the � analyses, 

formulated as follows [7]: 

 #$$%& = 

" ∑ 


�
"!�
 ∑ ' ()�, *+��,-�./�∈12  (2) 

where #$$%& is the CV-estimator, ' indicates the loss function, 

and *+�� shows the estimated function of random covariates. 

K-fold CV is known to be a biased estimate of 3$$ and the 

bias will be decreased by cumulating the number of folds [13]. 

If the training sets �
, �4, … , �5 are the samples of size (6 − �) 

and the interval of the training set on a different sample is 

estimated, then #$$%& becomes an unbiased estimator of 3$$ 

for sample size (6 − �). Thus, the approximate estimate 

obtains of 3%73$$,*+%.8 9 3%�6 : � ;3$$ (*+%�6 : � /<. 
D. Machine Learning 

The study of computational science, machine learning 

(ML), involves analyzing and interpreting patterns and 

structures in data to improve outcomes and decision-making 

processes. It is an automated process, and the algorithm 

learns over time while gaining experience. The models 

created by MLs are not just able to analyze large volumes of 
complex data but are also capable of producing appropriate 

results [8]. The steps involved in constructing machine 

learning models can be divided into two phases: calibration 

and validation. A data set should be divided into two periods 

to minimize discrepancies and understand the enhanced 

model's features. Based on the study by Hadipour et al. [9], 

the dataset was divided into 70% for training and 30% for 

testing, following an appropriate percentage distribution for 

statistical scale reduction development. 

The ML Model algorithm was primarily trained with a set 

of exercises via hyperparameter value substitution. 

Meanwhile, the model's performance was evaluated using the 

current calibration period of the statistical measurement. The 

most appropriate hyperparameters selected will be employed 

to test the data during the validation period. Then, test data 

were evaluated using a range of kernel types, followed by the 

selection of hyperparameters. After that, the model will 

produce a prediction. Fig. 1 shows the complete ML 

procedure used in this study. 
 

 
Fig. 1  Machine Learning procedure of this study 

E. Support Vector Machine 

SVM functions as a two-layer neural network and is 

effective for both linear and non-linear regression. The 

principle of SVM is based on statistical learning theory and 

the structural risk minimization approach. For Support 
Vector Regression, mapping the original data into a new 

feature space can be performed via the function of =. The 

regression prediction function is formulated as follows [10]: 

 *�- = >?=�-@ A B (3)   

where > and B are attained using the solution of the 

following optimizing problem: 

 

Min 

 


4 ‖>‖4 A � ∑ �D@ A D@∗ 11�
  (4) 

Subject to  

 �〈>1G�-@ 〉 A B : )@ I � A D@  

 �〈>1G�-@ 〉 A B : )@ I � A D@∗  

 D@ , D@∗ J 0 �M = 1,2, … , 6   

 
Regarding Equation 4, the first item simplifies the 

function, aiding in refining generalization. The � parameter, 

known as penalty terms, indicates the penalty for an 

experimental error. If the � value is small, the penalty for 

experimental error is similarly small. Hence, there is less fit 

and forecasting error. Also, if � shows a large value, the 

penalty for experimental error becomes extra-large, leading 

to over-learning. � represents the non-sensitive loss function 

with a positive constant. The difference between the 

predictive value, *(-), and the real value, )M is disregarded 

when less than the value of �. However, the error becomes |*�-@ : )@| : �  when an error difference is more than �. 

The � signifies the error expectation between the predictive 

and the real value. For the lower value of �, the demanding 

error is also less but with a greater prediction precision. The 

non-linear data issues could be simplified by introducing the 

Lagrange and kernel functions. Equation 4 was translated 
into the following quadratic function maximizing problem. 
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Max 

O�P@∗ A P@ )@ : �
Q

Q�

O�P@∗ A P@ 

Q

Q�

 

1
2 O�P@∗ A P@ ,P�∗ A P�@.�,-@ , -�.

Q

Q�

 

(5) 

Subject to 

0 I P@ , P@∗ I �        �M = 1,2, … , 6  

O�P@∗ : P@∗ = 0
Q

Q�

 

Therefore, the final prediction function will be as 

follows: 

 *�-, P@ , P@∗ = ∑ �P@ : P@∗ ��-@ , - QQ�
 A B (6) 

 

In Equation 5 and Equation 6, the function of ��-@ , -  

represents the kernel function. The kernel function, 

�,-@ , -�. = G�-@ ? ∙ G,-�. was presented for computing the 

inner products. Some kernels are possibly used in the SVM; 

however, the standard kernels employed are polynomial, 

linear, radial basis function, and sigmoid. The most prevalent 

and competent kernel is the radial basis function with 

parameter �, which is the kernel parameter gamma. Multiple 

experiments have demonstrated that the gamma value 

significantly influences the performance of the SVM model 

[11]. A high gamma value may decrease the structural risk 

and result in a more slippery function curve (while 

maximizing the experimental error). Also, the over-small 
gamma will result in an over-fitting model. In the Support 

Vector Machine for regression, the parameters that will be 

chosen when the model set up are penalty terms �, non-

sensitive loss, �, and kernel parameter �. Fig. 2 illustrates the 

essential steps for ensuring the accuracy of SVR models, 

which have been simplified as follows.  
 

 
Fig. 2  Steps of SVR Model 

F. Evaluation Model Performance Assessment 

After the model is developed, its performance is 

rigorously evaluated by comparing rainfall forecast values 

using model performance metrics. SVM performance was 
evaluated using Root Mean Error (RMSE) and was 

compared among six imputation methods. Using RMSE, 

high-flow values can also be analyzed for suitability and 

relevance. The advantage of using RMSE is that the error is 

unbiased and follows a normal distribution. As a result, 

RMSE is generally better at illustrating model performance 

differences because it gives more weight to adverse 

conditions [12]. It is widely recognized that a higher RMSE 

value indicates a greater prediction error. The mathematical 

expression of RMSE is stated below. 

 STU3 = V

! ∑ �-1 : )1 4!1�
   (7) 

where -1is the measured value of rainfall, )1 is the predicted 

value of rainfall, and 6 is the number of data sets. 

III. RESULTS AND DISCUSSION 

A. Handling Missing Predictors Data 

There are six different imputation methods used to deal 

with the challenge of missing data, including the mean 

imputation method, nearest neighbor approach, NIPALS 

algorithm, MCMC (Markov Chain Monte Carlo), multiple 

imputation algorithm, and also EM (Expectation 
Maximization) algorithm. We then compared the error values 

using Root Mean Square Error (RMSE), and the results were 

generated according to lower RMSE values among the five 

methods used. As a result, the model generating the lowest 

RMSE value performs best because the estimated and 

observed value differences will be minor. Therefore, we chose 

the mean imputation method with the lowest RMSE value to 

substitute the missing data in the predictor dataset by 

calculating the RMSE value of each predictor variable. 

TABLE I 

RMSE VALUE OF PREDICTOR VARIABLES FOR EACH IMPUTATION METHODS 

Missing Value RMSE 

Mean Imputation   0.751* 
Nipals 1.334 
MCMC 1.631 

Em Algorithm 2.225 
Nearest 1.686 

*Indicates the lowest value of RMSE 

B. Selection of Predictor Variables and Reduction of 

Dimensional Data 

In the high-dimensional data reduction stage, PCA has 

been used as one of the methods in the dimensionality 

reduction approach for predictors’ amount reduction via the 
extraction of the number of principal components (PC) with 

no critical information or data loss. Table II demonstrates the 

analysis results, including eigenvalues, variances, and 

cumulative percentages of variance. 

Six components were extracted from Table II, considering 

the eigenvalues and total variation. Variation percentages and 

eigenvalues are shown in descending order. Nonetheless, 

according to the Kaiser criteria, eigenvalues beyond 1.00 will 

be opted to interpret the components [13]. Next, the results 

display eigenvalues greater than 1.00 for Components 1, 2, 

and 3, which are 1.595, 1.077, and 1.008, respectively. 
Nevertheless, eigenvalues approaching 1.00 also need to be 

considered, such as components 4 and 5, which are 0.973 and 

0.88, but other factors, such as cumulative percentage values, 

must be considered. The rule of thumb here is that the 

cumulative percentage explained by the components must be 

at least 70%. According to [14], Calinski and Harabasz, an 

index is most appropriate to determine the best number of 

clusters, and a PCA score between 65% and 70% produces the 

most reasonable number of clusters. Therefore, components 4 

Input: Training 

Data
Simulation Data Kernel Selection

Evaluated 

Performance by 

RMSE, NSE

Model Selection
Output: Rainfall 

Prediction 
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and 5 are also considered because they have a cumulative 

value of 77.55% and 92.32%. 

TABLE II 

RESULTS OF PRINCIPLE COMPONENTS (PC’S) 

Dimension Eigenvalue 
Percentage of 

Variability (%) 

Cumulative 

Percentage (%) 

Component 1 1.595 26.575 26.575 

Component 2 1.077 17.952 44.527 

Component 3 1.008 16.799 61.327 

Component 4 0.973 16.219 77.546 

Component 5 0.886 14.771 92.317 

Component 6 0.461 7.683 100.000 

 

Additionally, PCA can identify factors that significantly 

influence each variable. According to [15], loading refers to 

the forecast of the original variable onto the PC subspace with 

alternating coefficients between the PC and the variable. As 

part of Principal Component Analysis (PCA), principal 

components (PCs) should be rotated using the varimax 

method to facilitate the interpretation of the relationship 
between PCs and the original variables [16].  Furthermore, the 

varimax rotation of the axes outlined by PCA produced a new 

factor set. Every factor mainly includes a subset of the 

original variable and is distributed into groups of independent 

variables. A substantial PC loading coefficient was deemed 

'weak' when the correlation was between 0.49 and 0.30, 

'moderate' if the correlation was between 0.74-0.50, and 

'strong' if it was greater than 0.75 (>0.75). As a result, this 

study considered a positive and negative PC loading of 0.74. 
 

TABLE III 

RESULT OF EACH CORRELATION PC LOADING BETWEEN VARIABLES AND 

FACTORS 

Variables Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 

Rainfall -0.284 0.647 -0.008 0.235 0.666 

Maximum 

temperature 0.840* 0.192 -0.137 0.087 0.070 
Minimum 

temperature 0.628 0.508 -0.062 -0.430 -0.161 
Wind 0.267 -0.368 0.576 -0.450 0.509 
RH 0.182 0.216 0.767* 0.496 -0.288 
SR 0.557 -0.426 -0.255 0.526 0.266 

*Indicates strong loading values >0.74 

 

Table III above presents the correlations between the 

principal component loadings and each predictor variable. A 

measure of the number of factors produced by the chosen 
eigenvalues is provided in Table II. Here, the highest or 

strongest PC loading for each predictor variable was 

introduced to predictor selection based on the study by [17]. A 

variable with a higher PC loading contributes more to a PC if 

it contributes more to the PC that belongs to that variable. 

According to Table III, Factor 1 displays a strong positive 

loading at maximum temperature (0.84), while the third factor 

has a strong positive loading at RH (0.77). Due to the 

sequential extraction of factors, each factor accounts for the 

majority of the remaining variance as possible. Therefore, a 

new data set was produced in matrix format: 132564 rows 
represent the number of days respective of the stations, and six 

columns noted as Factor 1, Factor 2, Factor 3, Factor 4, and 

Factor 5 represent the extracted factor.  

C. Statistical Downscaling Model Based on Regression 

Approaches 

This data set is also divided into 70% of the calibration and 

30% of the validation phase based on the study by [18]. A 
demanding task in Support Vector Machine (SVM) is 

determining the kernel type and accurately choosing the 

parameters gamma (�), penalty period (�), and epsilon (�). 

The feature selection process is crucial for identifying 

relevant variables within the search space, while the penalty 

parameter (C) and kernel function settings significantly 

influence the performance of SVM [19]. Furthermore, [20] 

noted that SVM requires an optimization process to avoid 

overfitting the model. The convolution method has been 

applied to SVM to optimize the selection parameter k for 

multiple cross-validation (KCV). In machine learning, the 
statistical technique of cross-validation could estimate the 

skills of the model. Moreover, k-fold cross-validation is often 

used to evaluate SVM with hyperparameter sets. Therefore, 

Table IV below demonstrates that the parameter � shows the 

highest performance at 0.5, where the error and dispersion 

values show the smallest values among the other 30 iterations 

while � is constant at 1.935. This finding is so because the 

dispersion value is the average MSE of 30 test error estimates. 

The model with the smallest RMSE value was selected and 

will be employed in SVM in this study. Upon identifying �, 

the optimal value of � is attained, as presented in Table IV. 

According to the results, the range used values can produce a 

good combination of 30 parameters by considering all-time 

series features while maintaining the generalization 

performance. 

Fig. 3 shows the visualization of the rotation parameters 

between � and �. A darker color indicates a smaller error on 

the blue scale. SVM model effectiveness is calculated by 

averaging the error estimates over all k trials. Despite a large 
imbalance in the response variable, stratified variation in the 

error estimates throughout the range is quite similar. Hence, 

the most fitting parameter set for the SVM model is �=4.00, 

�=1.935, and �=0.2. Once the parameter values have been 

identified, varying the kernel type (linear, Radial Basis 

Function (RBF), polynomial, and sigmoid) will allow the 

performance of SVM as a regression model to be measured. 

Due to the importance of determining the best kernel function 

in SVM applications, selecting the best one is an important 

step. Many previous studies have investigated the aptness of 
distinctive kernel functions used in downscaling [21],[22].  

SVM model performance is measured by the RMSE for the 

calibration and validation periods, as presented in Table V. 

Since regularization is used to improve validation accuracy 

during the calibration period, SVM’s calibration performance 

is generally much better than its validation performance. Thus, 

the SVM models with RBF kernels had the lowest RMSE 

values in calibration and validation, which were 13.9507 and 

12.60423. According to a study by [23], applying the RBF 

kernel in SVM can also reduce the computational complexity 

more than the Polynomial kernel in downscaling monthly 
precipitation. A sigmoid kernel, for example, without 

comparing its capabilities, will produce poor predictions 

without identifying the kernel type. 

The calibration and validation results presented in Fig. 4 and 

Fig. 5 illustrate the comparison between observed daily rainfall 

(Predictand) and predicted rainfall using the Support Vector 
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Machine (SVM) model. In the calibration phase, the observed 

rainfall exhibits significant variability, with notable extreme 

peaks exceeding 2000 mm. However, the SVM-predicted 

values remain relatively stable and fail to capture these high-

intensity rainfall events, suggesting that the model struggles 

with extreme precipitation while maintaining reasonable 

accuracy for moderate rainfall conditions. Similarly, in the 

validation phase, the observed rainfall maintains high 

variability, with multiple extreme values exceeding 500 mm. 

The SVM model continues to underestimate these peaks, 
producing more stable predictions that align with general 

rainfall patterns but not with extreme events. The consistency 

between calibration and validation results indicates that while 

the SVM model effectively captures overall rainfall trends, it 

has limitations in predicting extreme precipitation. This 

limitation suggests that further improvements, such as 

integrating ensemble learning techniques or hybrid models, 

may be necessary to enhance the predictive accuracy of 

extreme rainfall events in future studies. 

It clearly shows that the daily rainfall forecast values 

produced by the SVM model are more or less the same and do 
not respond to extreme values. As you can see from the plot 

below, the SVM model looks different from the predicted 

pattern and data. It tends to flatten out as the calibration and 

validation processes proceed. As a result of the study by [24] 

that unbalanced and noisy data, SVM's performance is limited 

when applied to this dataset. 

TABLE IV 

THE RESULT OF OPTIMIZATION PARAMETER � AND � 

Parameter 
Error Dispersion � W 

4.00* 0.2* 131.0784* 59.2384* 
8.00 0.2 131.8495 59.5833 

16.00 0.2 134.2943 59.6395 
32.00 0.2 136.5345 60.5076 
64.00 0.2 139.9322 60.5079 

128.00 0.2 144.5168 61.1629 
4.00 0.4 132.1314 54.5875 
8.00 0.4 132.6679 55.2893 

16.00 0.4 135.0581 55.0397 
32.00 0.4 136.4924 55.1146 
64.00 0.4 140.0597 55.3870 

128.00 0.4 146.9883 56.8581 
4.00 0.6 142.5411 49.7784 
8.00 0.6 143.5305 51.0533 

16.00 0.6 146.5203 51.3432 
32.00 0.6 147.4821 50.4266 
64.00 0.6 150.3398 51.6368 

128.00 0.6 158.3768 52.5456 
4.00 0.8 163.4084 44.7456 

8.00 0.8 163.8017 46.0207 
16.00 0.8 165.5818 45.9124 
32.00 0.8 166.1530 46.1291 
64.00 0.8 169.2882 49.0604 

128.00 0.8 175.7528 51.0012 
4.00 1.0 194.9591 39.6295 
8.00 1.0 195.0145 39.9239 

16.00 1.0 195.7446 40.0286 

32.00 1.0 196.2499 40.1332 
64.00 1.0 197.8295 43.6621 

128.00 1.0 200.7167 48.3563 
*Indicates the selected value 

 
Fig. 3  Turning parameter ε by 30th -fold cross-validation 

TABLE V 

PERFORMANCE SVM BY VARYING THE KERNEL FUNCTION 

Type of 

Kernel 

Parameter RMSE 

� � � Calibration Validation 

Linear 4 1.935 0.2 14.75032 13.72201 
Polynomial 4 1.935 0.2 142.0788 263.2877 
RBF 4* 1.935* 0.2* 13.95071* 12.60423* 
Sigmoid 4 1.935 0.2 356360.9 168596.1 

*Indicates the best kernel function 

 

 
Fig. 4  Performance of SVM in predicting daily rainfall data amount in the 

validation period. 

IV. CONCLUSION 

The impact of climate change on the hydrological cycle is 

evident through extreme weather events, such as floods and 

tsunamis. In Malaysia, flooding is one of the most devastating 

consequences, significantly disrupting daily life, particularly 

in rapidly urbanizing regions. Accurate rainfall forecasting is 

essential to mitigate flood risks, especially in Selangor, where 

meteorological analysis is crucial in disaster prevention. This 

study addressed rainfall forecasting challenges using low-
scaling techniques and correlation analysis to improve 

predictive accuracy. 

A key focus of this study was efficiently handling missing 

local data. Various imputation techniques were explored, and 

single-value imputation was identified as the most suitable 

method due to the minimal occurrence of missing data in 

Selangor. Additionally, Principal Component Analysis (PCA) 
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was employed for dimensionality reduction, facilitating the 

identification of significant predictor variables and mitigating 

computational complexity associated with high-dimensional 

hydrological data. 

Furthermore, Support Vector Machine (SVM) was applied 

as a statistical downscaling approach to classify wet and dry 

days, enabling a more precise daily rainfall forecast. The 

Radial Basis Function (RBF) kernel-based SVM model was 

selected as the optimal predictive model, following Y-fold 
cross-validation for parameter optimization. Through this 

approach, the study effectively tackled key challenges related 

to missing data, high-dimensional datasets, and statistical 

downscaling, contributing to an improved understanding of 

rainfall patterns in Selangor. 

Future research could explore more advanced imputation 

techniques beyond NIPALS, Expectation-Maximization (EM) 

Algorithm, Markov Chain Monte Carlo (MCMC), and Mean 

Imputation to enhance data handling efficiency. Additionally, 

while this study focused on Selangor, the proposed 

methodology is adaptable to other tropical regions in 
Malaysia. Given the similarities in rainfall patterns between 

Malaysia and other tropical or even seasonal climates, 

researchers are encouraged to extend this framework to 

broader geographical contexts. 

 

 
Fig. 5 Performance of SVM in predicting daily rainfall data amount in 

calibration period. 
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